Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The evolutionary significance of ancient genome duplications

Abstract

Many organisms are currently polyploid, or have a polyploid ancestry and now have secondarily 'diploidized' genomes. This finding is surprising because retained whole-genome duplications (WGDs) are exceedingly rare, suggesting that polyploidy is usually an evolutionary dead end. We argue that ancient genome doublings could probably have survived only under very specific conditions, but that, whenever established, they might have had a pronounced impact on species diversification, and led to an increase in biological complexity and the origin of evolutionary novelties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Survival of the fittest.
Figure 2: Reciprocal gene loss or subfunctionalization facilitates speciation.

Similar content being viewed by others

References

  1. Masterston, J. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264, 421–423 (1994).

    Google Scholar 

  2. Blanc, G. & Wolfe, K. H. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16, 1667–1678 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Tang, H. et al. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res. 18, 1944–1954 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cui, L. et al. Widespread genome duplications throughout the history of flowering plants. Genome Res. 16, 738–749 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ramsey, J. & Schemske, D. W. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 29, 467–501 (1998).

    Google Scholar 

  6. Otto, S. P. & Whitton, J. Polyploid incidence and evolution. Annu. Rev. Genet. 34, 401–437 (2000).

    CAS  PubMed  Google Scholar 

  7. Soltis, P. S. & Soltis, D. E. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 60, 561–588 (2009).

    CAS  PubMed  Google Scholar 

  8. Wolfe, K. H. & Shields, D. C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–713 (1997).

    CAS  PubMed  Google Scholar 

  9. Aury, J. M. et al. Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444, 171–178 (2006).

    CAS  PubMed  Google Scholar 

  10. Wittbrodt, J., Meyer, A. & Schartl, M. More genes in fish? Bioessays 20, 511–515 (1998).

    Google Scholar 

  11. Otto, S. P. The evolutionary consequences of polyploidy. Cell 131, 452–462 (2007).

    CAS  PubMed  Google Scholar 

  12. Comai, L. The advantages and disadvantages of being polyploid. Nature Rev. Genet. 6, 836–846 (2005).

    CAS  PubMed  Google Scholar 

  13. Soltis, D. E. et al. Polyploidy and angiosperm diversification. Am. J. Bot. 96, 336–348 (2009).

    PubMed  Google Scholar 

  14. Soltis, D. E., Bell, C. D., Kim, S. & Soltis, P. S. Origin and early evolution of angiosperms. Ann. NY Acad. Sci. 1133, 3–25 (2008).

    CAS  PubMed  Google Scholar 

  15. Tang, H. et al. Synteny and collinearity in plant genomes. Science 320, 486–488 (2008).

    CAS  PubMed  Google Scholar 

  16. Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Scannell, D. R., Butler, G. & Wolfe, K. H. Yeast genome evolution — the origin of the species. Yeast 24, 929–942 (2007).

    CAS  PubMed  Google Scholar 

  18. Dehal, P. & Boore, J. L. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 3, e314 (2005).

    PubMed  PubMed Central  Google Scholar 

  19. Putnam, N. H. et al. The amphioxus genome and the evolution of the chordate karyotype. Nature 453, 1064–1071 (2008).

    CAS  PubMed  Google Scholar 

  20. Jaillon, O. et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431, 946–957 (2004).

    PubMed  Google Scholar 

  21. Meyer, A. & Van de Peer, Y. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays 27, 937–945 (2005).

    CAS  PubMed  Google Scholar 

  22. Crow, K. D. & Wagner, G. P. What is the role of genome duplication in the evolution of complexity and diversity? Mol. Biol. Evol. 23, 887–892 (2006).

    CAS  PubMed  Google Scholar 

  23. Donoghue, P. C. J. & Purnell, M. A. Genome duplication, extinction and vertebrate evolution. Trends Ecol. Evol. 20, 312–319 (2005).

    PubMed  Google Scholar 

  24. Fawcett, J. A., Maere, S. & Van de Peer, Y. Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. Proc. Natl Acad. Sci. USA 106, 5737–5742 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Levin, D. A. Polyploidy and novelty in flowering plants. Am. Nat. 122, 1–25 (1983).

    Google Scholar 

  26. Thompson, J. D. & Lumaret, R. The evolutionary dynamics of polyploid plants — origins, establishment and persistence. Trends Ecol. Evol. 7, 302–307 (1992).

    CAS  PubMed  Google Scholar 

  27. Bretagnolle, F. & Thompson, J. D. Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol. 129, 1–22 (1995).

    PubMed  Google Scholar 

  28. Osborn, T. C. et al. Understanding mechanisms of novel gene expression in polyploids. Trends Genet. 19, 141–147 (2003).

    CAS  PubMed  Google Scholar 

  29. Rieseberg, L. H. et al. Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129, 149–165 (2007).

    PubMed  Google Scholar 

  30. Rieseberg, L. H. et al. Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301, 1211–1216 (2003).

    CAS  PubMed  Google Scholar 

  31. Hegarty, M. J. et al. Changes to gene expression associated with hybrid speciation in plants: further insights from transcriptomic studies in Senecio. Philos. Trans. R. Soc. Lond. B 363, 3055–3069 (2008).

    CAS  Google Scholar 

  32. Ellstrand, N. C. & Schierenbeck, K. A. Hybridization as a stimulus for the evolution of invasiveness in plants? Proc. Natl Acad. Sci. USA 97, 7043–7050 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pandit, M. K., Tan, H. T. W. & Bisht, M. S. Polyploidy in invasive plant species of Singapore. Bot. J. Linn. Soc. 151, 395–403 (2006).

    Google Scholar 

  34. Soltis, D. E., Soltis, P. S. & Tate, J. A. Advances in the study of polyploidy since plant speciation. New Phytol. 161, 173–191 (2003).

    Google Scholar 

  35. Lokki, J. & Saura, A. Polyploidy in insect evolution. Basic Life Sci. 13, 277–312 (1979).

    CAS  PubMed  Google Scholar 

  36. Weldon, C., du Preez, L. H., Hyatt, A. D., Muller, R. & Spears, R. Origin of the amphibian chytrid fungus. Emerg. Infect. Dis. 10, 2100–2105 (2004).

    PubMed  PubMed Central  Google Scholar 

  37. Parker, J. M., Mikaelian, I., Hahn, N. & Diggs, H. E. Clinical diagnosis and treatment of epidermal chytridiomycosis in African clawed frogs (Xenopus tropicalis). Comp. Med. 52, 265–268 (2002).

    CAS  PubMed  Google Scholar 

  38. Hegarty, M. & Hiscock, S. Polyploidy: doubling up for evolutionary success. Curr. Biol. 17, R927–R929 (2007).

    CAS  PubMed  Google Scholar 

  39. Bicknell, R. A. & Koltunow, A. M. Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16, S228–S245 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Holland, L. Z. et al. The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res. 18, 1100–1111 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Xiao, S. & Laflamme, M. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends Ecol. Evol. 24, 31–40 (2009).

    PubMed  Google Scholar 

  42. Wille, M., Nagler, T. F., Lehmann, B., Schroder, S. & Kramers, J. D. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary. Nature 453, 767–769 (2008).

    CAS  PubMed  Google Scholar 

  43. Knoll, A. H. & Carroll, S. B. Early animal evolution: emerging views from comparative biology and geology. Science 284, 2129–2137 (1999).

    CAS  PubMed  Google Scholar 

  44. Hurley, I. A. et al. A new time-scale for ray-finned fish evolution. Proc. R. Soc. B 274, 489–498 (2007).

    CAS  PubMed  Google Scholar 

  45. Werth, C. R. & Windham, M. D. A model for divergent, allopatric speciation of polyploid pteridophytes resulting from silencing of duplicate-gene expression. Am. Nat. 137, 515–526 (1991).

    Google Scholar 

  46. Lynch, M. & Force, A. The probability of duplicate gene preservation by subfunctionalization. Genetics 154, 459–473 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Scannell, D. R., Byrne, K. P., Gordon, J. L., Wong, S. & Wolfe, K. H. Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440, 341–345 (2006).

    CAS  PubMed  Google Scholar 

  48. Semon, M. & Wolfe, K. H. Reciprocal gene loss between Tetraodon and zebrafish after whole genome duplication in their ancestor. Trends Genet. 23, 108–112 (2007).

    CAS  PubMed  Google Scholar 

  49. Bikard, D. et al. Divergent evolution of duplicate genes leads to genetic incompatibilities within A. thaliana. Science 323, 623–626 (2009).

    CAS  PubMed  Google Scholar 

  50. Postlethwait, J., Amores, A., Cresko, W., Singer, A. & Yan, Y. L. Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet. 20, 481–490 (2004).

    CAS  PubMed  Google Scholar 

  51. Volff, J. N. Genome evolution and biodiversity in teleost fish. Heredity 94, 280–294 (2005).

    CAS  PubMed  Google Scholar 

  52. De Bodt, S., Maere, S. & Van de Peer, Y. Genome duplication and the origin of angiosperms. Trends Ecol. Evol. 20, 591–597 (2005).

    PubMed  Google Scholar 

  53. Bowers, J. E., Chapman, B. A., Rong, J. & Paterson, A. H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433–438 (2003).

    CAS  PubMed  Google Scholar 

  54. Magallón, S. & Castillo, A. Angiosperm diversification through time. Am. J. Bot. 96, 349–365 (2009).

    PubMed  Google Scholar 

  55. Vandepoele, K., De Vos, W., Taylor, J. S., Meyer, A. & Van de Peer, Y. Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc. Natl Acad. Sci. USA 101, 1638–1643 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Christoffels, A., Koh, E. G., Brenner, S., Aparicio, S. & Venkatesh, B. Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol. Biol. Evol. 21, 1146–1151 (2004).

    CAS  PubMed  Google Scholar 

  57. Hoegg, S., Brinkmann, H., Taylor, J. S. & Meyer, A. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J. Mol. Evol. 59, 190–203 (2004).

    CAS  PubMed  Google Scholar 

  58. Semon, M. & Wolfe, K. H. Preferential subfunctionalization of slow-evolving genes after allopolyploidization in Xenopus laevis. Proc. Natl Acad. Sci. USA 105, 8333–8338 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chain, F. J. & Evans, B. J. Multiple mechanisms promote the retained expression of gene duplicates in the tetraploid frog Xenopus laevis. PLoS Genet. 2, e56 (2006).

    PubMed  PubMed Central  Google Scholar 

  60. Chain, F. J., Ilieva, D. & Evans, B. J. Duplicate gene evolution and expression in the wake of vertebrate allopolyploidization. BMC Evol. Biol. 8, 43 (2008).

    PubMed  PubMed Central  Google Scholar 

  61. McPeek, M. A. & Brown, J. M. Clade age and not diversification rate explains species richness among animal taxa. Am. Nat. 169, E97–E106 (2007).

    PubMed  Google Scholar 

  62. Sole, R. V., Fernandez, P. & Kauffman, S. A. Adaptive walks in a gene network model of morphogenesis: insights into the Cambrian explosion. Int. J. Dev. Biol. 47, 685–693 (2003).

    PubMed  Google Scholar 

  63. Maere, S. et al. Modeling gene and genome duplications in eukaryotes. Proc. Natl Acad. Sci. USA 102, 5454–5459 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Seoighe, C. & Gehring, C. Genome duplication led to highly selective expansion of the Arabidopsis thaliana proteome. Trends Genet. 20, 461–464 (2004).

    CAS  PubMed  Google Scholar 

  65. Blanc, G. & Wolfe, K. H. Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16, 1679–1691 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Blomme, T. et al. The gain and loss of genes during 600 million years of vertebrate evolution. Genome Biol. 7, R43 (2006).

    PubMed  PubMed Central  Google Scholar 

  67. Brunet, F. G. et al. Gene loss and evolutionary rates following whole-genome duplication in teleost fishes. Mol. Biol. Evol. 23, 1808–1816 (2006).

    CAS  PubMed  Google Scholar 

  68. Seoighe, C. & Wolfe, K. H. Yeast genome evolution in the post-genome era. Curr. Opin. Microbiol. 2, 548–554 (1999).

    CAS  PubMed  Google Scholar 

  69. Davis, J. C. & Petrov, D. A. Preferential duplication of conserved proteins in eukaryotic genomes. PLoS Biol. 2, E55 (2004).

    PubMed  PubMed Central  Google Scholar 

  70. Papp, B., Pal, C. & Hurst, L. D. Dosage sensitivity and the evolution of gene families in yeast. Nature 424, 194–197 (2003).

    CAS  PubMed  Google Scholar 

  71. Birchler, J. A., Riddle, N. C., Auger, D. L. & Veitia, R. A. Dosage balance in gene regulation: biological implications. Trends Genet. 21, 219–226 (2005).

    CAS  PubMed  Google Scholar 

  72. Freeling, M. & Thomas, B. C. Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res. 16, 805–814 (2006).

    CAS  PubMed  Google Scholar 

  73. Freeling, M. Bias in plant gene content following different sorts of duplication: tandem, whole-genome segmental, or by transposition. Annu. Rev. Plant Biol. 60, 433–453 (2009).

    CAS  PubMed  Google Scholar 

  74. Remington, D. L., Vision, T. J., Guilfoyle, T. J. & Reed, J. W. Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol. 135, 1738–1752 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Veron, A. S., Kaufmann, K. & Bornberg-Bauer, E. Evidence of interaction network evolution by whole-genome duplications: a case study in MADS-box proteins. Mol. Biol. Evol. 24, 670–678 (2007).

    CAS  PubMed  Google Scholar 

  76. Zahn, L. M. et al. The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169, 2209–2223 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Holland, P. W. & Garcia-Fernandez, J. Hox genes and chordate evolution. Dev. Biol. 173, 382–395 (1996).

    CAS  PubMed  Google Scholar 

  78. Holland, P. W. More genes in vertebrates? J. Struct. Funct. Genomics 3, 75–84 (2003).

    CAS  PubMed  Google Scholar 

  79. Huminiecki, L. et al. Emergence, development and diversification of the TGF-β signalling pathway within the animal kingdom. BMC Evol. Biol. 9, 28 (2009).

    PubMed  PubMed Central  Google Scholar 

  80. Hernandez-Sanchez, C., Mansilla, A., de Pablo, F. & Zardoya, R. Evolution of the insulin receptor family and receptor isoform expression in vertebrates. Mol. Biol. Evol. 25, 1043–1053 (2008).

    CAS  PubMed  Google Scholar 

  81. Bertrand, S. et al. Evolutionary genomics of nuclear receptors: from twenty-five ancestral genes to derived endocrine systems. Mol. Biol. Evol. 21, 1923–1937 (2004).

    CAS  PubMed  Google Scholar 

  82. Conant, G. C. & Wolfe, K. H. Turning a hobby into a job: how duplicated genes find new functions. Nature Rev. Genet. 9, 938–950 (2008).

    CAS  PubMed  Google Scholar 

  83. Semon, M. & Wolfe, K. H. Consequences of genome duplication. Curr. Opin. Genet. Dev. 17, 505–512 (2007).

    CAS  PubMed  Google Scholar 

  84. Gould, S. J. & Lewontin, C. R. The spandrels of San Marco and the panglossian paradigm: a critique of the adaptationist programme. Proc. Roy. Soc. Lond. B 205, 581–598 (1979).

    CAS  Google Scholar 

  85. Feild, T. S. & Arens, N. C. The ecophysiology of early angiosperms. Plant Cell Environ. 30, 291–309 (2007).

    CAS  PubMed  Google Scholar 

  86. Garcia-Fernandez, J. Amphioxus: a peaceful anchovy fillet to illuminate chordate evolution (I). Int. J. Biol. Sci. 2, 30–31 (2006).

    PubMed  PubMed Central  Google Scholar 

  87. Schlueter, J. A. et al. Mining EST databases to resolve evolutionary events in major crop species. Genome 47, 868–876 (2004).

    CAS  PubMed  Google Scholar 

  88. Schranz, M. E. & Mitchell-Olds, T. Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Plant Cell 18, 1152–1165 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hall, J. C., Iltis, H. H. & Sytsma, K. J. Molecular phylogenetics of core Brassicales, placement of orphan genera Emblingia, Forchhammeria, Tirania, and character evolution. Syst. Bot. 29, 654–669 (2004).

    Google Scholar 

  90. Mondragon-Palomino, M. & Theissen, G. Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Ann. Bot. (Lond.) 13 Jan 2009 (doi:10.1093/abo/mcn258).

  91. Mondragon-Palomino, M. & Theissen, G. MADS about the evolution of orchid flowers. Trends Plant Sci. 13, 51–59 (2008).

    CAS  PubMed  Google Scholar 

  92. Valentine, J. W. Determinants of diversity in higher taxonomic categories. Paleobiology 6, 444–450 (1980).

    Google Scholar 

  93. Conant, G. C. & Wolfe, K. H. Increased glycolytic flux as an outcome of whole-genome duplication in yeast. Mol. Syst. Biol. 3, 129 (2007).

    PubMed  PubMed Central  Google Scholar 

  94. Hegarty, M. J. & Hiscock, S. J. Genomic clues to the evolutionary success of polyploid plants. Curr. Biol. 18, R435–R444 (2008).

    CAS  PubMed  Google Scholar 

  95. Marshall, C. S. Explaining the Cambrian 'explosion' of animals. Annu. Rev. Earth Planet. Sci. 34, 355–384 (2006).

    CAS  Google Scholar 

  96. Glover, B. J. Understanding Flowers and Flowering: An Integrated Approach (Oxford Univ. Press, New York, 2007).

    Google Scholar 

  97. Regal, P. J. Ecology and evolution of flowering plant dominance. Science 196, 622–629 (1977).

    CAS  PubMed  Google Scholar 

  98. Theissen, G. & Melzer, R. Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann. Bot. (Lond.) 100, 603–619 (2007).

    Google Scholar 

  99. Hu, S., Dilcher, D. L., Jarzen, D. M. & Winship Taylor, D. Early steps of angiosperm pollinator coevolution. Proc. Natl Acad. Sci. USA 105, 240–245 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Poinar, G. O. Jr & Danforth, B. N. A fossil bee from Early Cretaceous Burmese amber. Science 314, 614 (2006).

    CAS  PubMed  Google Scholar 

  101. Kuraku, S., Meyer, A. & Kuratani, S. Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? Mol. Biol. Evol. 26, 47–59 (2009).

    CAS  PubMed  Google Scholar 

  102. Shimeld, S. M. & Holland, P. W. Vertebrate innovations. Proc. Natl Acad. Sci. USA 97, 4449–4452 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Holland, N. D. & Chen, J. Origin and early evolution of the vertebrates: new insights from advances in molecular biology, anatomy, and palaeontology. Bioessays 23, 142–151 (2001).

    CAS  PubMed  Google Scholar 

  104. Wagner, A. Gene duplications, robustness and evolutionary innovations. Bioessays 30, 367–373 (2008).

    CAS  PubMed  Google Scholar 

  105. Khaner, O. Evolutionary innovations of the vertebrates. Int. Zool. 2, 60–67 (2007).

    Google Scholar 

  106. Ohno, S. Evolution by Gene Duplication (Springer, New York, 1970).

    Google Scholar 

  107. Aburomia, R., Khaner, O. & Sidow, A. Functional evolution in the ancestral lineage of vertebrates or when genomic complexity was wagging its morphological tail. J. Struct. Funct. Genomics 3, 45–52 (2003).

    CAS  PubMed  Google Scholar 

  108. Crepet, W. L. Progress in understanding angiosperm history, success, and relationships: Darwin's abominably 'perplexing phenomenon'. Proc. Natl Acad. Sci. USA 97, 12939–12941 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Stuessy, T. F. A transitional-combinatorial theory for the origin of angiosperms. Taxon 53, 3–16 (2004).

    Google Scholar 

  110. Carlquist, S. & Schneider, E. L. The tracheid-vessel element transition in angiosperms involves multiple independent features: cladistic consequences. Am. J. Bot. 89, 185–195 (2002).

    PubMed  Google Scholar 

  111. Muhammad, A. F. & Sattler, R. Vessel structure of Gnetum and the origin of angiosperms. Am. J. Bot. 69, 1004–1021 (1982).

    Google Scholar 

  112. Valentine, J. W. & Walker, D. Diversity trends within a model of taxonomic hierarchy. Physica D 22, 31–42 (1986).

    Google Scholar 

  113. Niklas, K. J. Computer models of early land plant evolution. Annu. Rev. Earth Planet. Sci. 32, 47–66 (2004).

    CAS  Google Scholar 

  114. Niklas, K. J. Morphological evolution through complex domains of fitness. Proc. Natl Acad. Sci. USA 91, 6772–6779 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kauffman, S. A. The Origins of Order (Oxford Univ. Press, New York, 1993).

    Google Scholar 

Download references

Acknowledgements

Y.V.d.P. acknowledges support from the IUAP P6/25 (BioMaGNet). A.M. thanks the Deutsche Forschungsgemeinschaft, University of Konstanz and the Institute for Advanced Study Berlin for support. S.M. is a fellow of the Fund for Scientific Research — Flanders (FWO). We thank two anonymous reviewers for valuable comments and suggestions and apologize to those whose work could not be cited because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Van de Peer.

Related links

Related links

FURTHER INFORMATION

Van de Peer laboratory homepage

Meyer laboratory homepage

Glossary

Accession

A sample of a plant variety collected at a specific location and time. This term is used to describe the Arabidopsis thaliana laboratory lines collected initially from the wild.

Allopolyploidy

The generation of the polyploid state by the fusion of nuclei from different species. For example, two fertilized diploid oocytes can fuse such that the newly formed single egg has two complete sets of chromosomes.

Autopolyploidy

In contrast to allopolyploidy, different sets of chromosomes are derived from the same species. This can occur in the fertilized oocyte if the nucleus divides but the cell does not.

Bateson–Dobzhansky–Muller model

Describes incompatibilities between organisms on the basis of the synergistic interaction of genes that have functionally diverged among the respective parents. Such incompatibilities can lead to speciation.

Carpel

A leaf-like structure that encloses the ovules and seeds and is the defining characteristic of flowering plants. In some species, multiple carpels might be present in a compound structure called an ovary.

Dosage balance effects

The components of macromolecular complexes must be balanced to avoid dominant fitness defects. Therefore, both under- and overexpression of individual protein subunits within a complex — for example, through duplication — tend to lower fitness.

Haploinsufficient

Describes the situation in which a lower than normal amount of a wild-type gene product confers a detectable phenotype.

Heterosis

The greater fitness of a hybrid individual carrying different alleles of genes relative to either of the two corresponding homozygous parents. Also called hybrid vigour. A more precise definition is non-additive inheritance, in which a trait in the first filial generation transgresses both parental values.

K–T boundary

The K–T event — which occurred 65 million years ago at the end of the Cretaceous period and the beginning of the Tertiary — is the most recent large-scale mass extinction of animal and plant species. There is general consensus that the K–T extinction was caused by one or more catastrophic events, such as a massive asteroid impact and increased volcanic activity.

Mutational robustness

Describes the extent to which the phenotype of an organism remains constant in spite of mutations. If an organism has an extra copy of a gene through gene or genome duplication, the effect of the loss of one copy might be limited.

Neural crest

A migratory cell population that gives rise to numerous differentiated cell types in vertebrates.

Orthologues

Loci in two species that are derived from a common ancestral locus by a speciation event.

Paralogues

Genes in the same organism that have evolved from a gene duplication, usually with a subsequent, sometimes subtle, divergence of function.

Phenotype space

A multi-dimensional continuum of all possible phenotypes.

Pleiotropic gene

A gene that is responsible for several distinct and seemingly unrelated phenotypic effects.

Transgressive segregation

Refers to the formation of extreme phenotypes that are observed in segregating hybrid populations when compared with parental lines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van de Peer, Y., Maere, S. & Meyer, A. The evolutionary significance of ancient genome duplications. Nat Rev Genet 10, 725–732 (2009). https://doi.org/10.1038/nrg2600

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2600

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing