Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Evo-devo: the evolution of a new discipline

Abstract

The history of life documented in the fossil record shows that the evolution of complex organisms such as animals and plants has involved marked changes in morphology, and the appearance of new features. However, evolutionary change occurs not by the direct transformation of adult ancestors into adult descendants but rather when developmental processes produce the features of each generation in an evolving lineage. Therefore, evolution cannot be understood without understanding the evolution of development, and how the process of development itself biases or constrains evolution. A revolutionary synthesis of developmental biology and evolution is in progress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hox gene expression in the evolution of snakes — a dramatic modification of the vertebrate body axis.
Figure 2: Polymorphism in the development of horns in the male dung beetle, Onthophagus taurus.
Figure 3: Evolution of developmental mode in closely related species.

Similar content being viewed by others

References

  1. Slack, J. M. W., Holland, P. W. H. & Graham, C. F. The zootype and the phylotypic stage. Nature 361, 490–492 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  2. Coates, M. I. & Clack, J. A. Polydactyly in the earliest tetrapod limbs. Nature 347, 66–69 (1990).

    Article  Google Scholar 

  3. Raff, R. A. The Shape of Life: Genes, Development and the Evolution of Animal Form (Chicago Univ. Press, Chicago, 1996).

    Book  Google Scholar 

  4. Leroi, A. M. The scale independence of evolution. Evol. Dev. 2, 67–77 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Orr, H. A. The population genetics of adaptation: the distribution of factors fixed during adaptive radiation. Evolution 52, 935– 949 (1998).

    Article  PubMed  Google Scholar 

  6. Haag, E. S. & True, J. R. From mutants to mechanisms? Assessing the candidate gene paradigm in evolutionary biology. Evolution (Submitted.)

  7. Smith, A. B. Dating the origin of metazoan body plans. Evol. Dev. 1, 138–142 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Mabee, P. M. Developmental data and phylogenetic systematics. Am. Zool. (in the press).

  9. Rogers, B. T. & Kaufman, T. C. Structure of the insect head in ontogeny and phylogeny: a view from Drosophila. Int. Rev. Cytol. 174, 1–84 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  10. Finnerty, J. R. & Martindale, M. Q. Ancient origins of axial patterning genes: Hox genes and paraHox genes in the Cnidaria . Evol. Dev. 1, 16–23 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Abzhanov, A., Popadic, A. & Kaufman, T. C. Chelicerate Hox genes and the homology of arthropod segments. Evol. Dev. 1, 77– 89 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Averof, M. & Akam, M. Hox genes and the diversification of insect and crustacean body plans. Nature 376, 420–423 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Grenier, J. K., Garber, T. L., Warren, R., Whitington, P. M. & Carroll, S. Evolution of the entire arthropod Hox gene set predated the origin and radiation of the onychophoran/arthropod clade. Curr. Biol. 7, 547– 553 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Weatherbee, S. D. et al. Ultrabithorax function in butterfly wings and the evolution of insect wing patterns. Curr. Biol. 9, 109–115 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Gaunt, S. J. Conservation in the Hox code during morphological evolution. Int. J. Dev. Biol. 38, 549–552 (1994).

    CAS  PubMed  Google Scholar 

  16. Burke, A. C., Nelson, C. E., Morgan, B. A. & Tabin, C. Hox genes and the evolution of vertebrate axial morphology. Development 121, 333–346 ( 1995).

    CAS  PubMed  Google Scholar 

  17. Cohn, M. & Tickle, C. Developmental basis of limblessness and axial patterning in snakes. Nature 399, 474–479 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Fishman, M. C. & Olson, E. N. Parsing the heart: genetic modules for organ assembly. Cell 91, 153–156 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Halder, G., Callaerts, P. & Gehring, W. J. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267 , 1788–1792 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Shubin, N., Tabin, C. & Carroll, S. Fossils, genes and the evolution of animal limbs. Nature 388, 639–648 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  21. Gerhart, J. & Kirschner, M. Cells, Embryos, and Evolution (Blackwell, Malden, 1997).

  22. Burndine, R. D. & Schier, A. F. Conserved and divergent mechanisms in left–right axis formation. Genes Dev. 14, 763–776 ( 2000).

    Google Scholar 

  23. Christen, B. & Slack, J. All limbs are not the same. Nature 395, 230–231 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez-Esteban, C. et al. The T–box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature 398, 814– 818 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Grbic, M., Nagy, L. M. & Strand, M. R. Development of polyembryonic insects: a major departure from typical insect embryogenesis. Dev. Genes Evol. 208, 69–81 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Budd, G. E. & Jensen, S. A critical reappraisal of the fossil record of the bilaterian phyla. Biol. Rev. 75, 253–295 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Conway Morris, S. Why molecular biology needs palaeontology. Development S1–S13 (1994).

  28. De Robertis, E. M. & Sasai, Y. A. A common plan for dorsoventral patterning in Bilateria. Nature 380 , 37–40 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Peterson, K. J., Cameron, R. A. & Davidson, E. H. Bilaterian origins: significance of new experimental observations. Dev. Biol. 219, 1– 17 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Jenner, R. A. Evolution of animal body plans: the role of metazoan phylogeny at the interface between pattern and process. Evol. Dev. 2, 208–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Rouse, G. W. The epitome of hand waving? Larval feeding and hypotheses of metazoan phylogeny . Evol. Dev. 2, 222–233 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Valentine, J. W., Jablonski, D. & Erwin, D. H. Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development 126, 851–859 (1999).

    CAS  PubMed  Google Scholar 

  33. Chen, J. Y. et al. Precambrian animal diversity: putative phosphatized embryos from the Doushantuo Formation of China. Proc. Natl Acad. Sci. USA 97, 4457–4462 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stern, D. L. & Emlen, D. J. The developmental basis for allometry in insects. Development 126, 1091– 1101 (1999).

    CAS  PubMed  Google Scholar 

  35. Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl Acad. Sci. USA 95, 8420–8427 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wagner, G. P. Homologues, natural kinds and the evolution of modularity. Am. Zool. 36, 36–43 ( 1996).

    Article  Google Scholar 

  37. Brakefield, P. M. et al. Development, plasticity and evolution of butterfly eyespot patterns. Nature 384, 236– 242 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Raff, R. A. & Sly, B. J. Modularity and dissociation in the evolution of gene expression territories in development. Evol. Dev. 2, 102–113 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  39. Jacobson, A. G. & Sater, A. K. Features of embryonic induction. Development 104, 341– 359 (1988).

    CAS  PubMed  Google Scholar 

  40. Raff, E. C. et al. A novel ontogenetic pathway in hybrid embryos between species with different modes of development. Development 126 , 1937–1945 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank T. Frankino and K. Wilson for helpful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Additional information

Stephen J Gaunt, Babraham Institute, Babraham, Cambridge, UK

Related links

Related links

FURTHER INFORMATION

Faculty research interests at the University of Indiana

Evolution and Development

Raff lab homepage

ENCYCLOPEDIA OF LIFE SCIENCES

Evolutionary developmental biology: Homologous regulatory genes and processes

Glossary

CLADISTICS

An approach to inferring evolutionary relationships among organisms, on the basis of identifying shared features among diverging clades.

HOX CLUSTER

A group of linked regulatory genes involved in patterning the animal body axis during development.

MACRO-EVOLUTION

Evolutionary change above the species level. Evolutionary changes in populations within a species are termed micro-evolution.

METAZOANS

Multicellular animals.

ONTOGENY

The course of development in an organism from embryo to adult.

PHYLOGENETICS

The study of evolutionary relationships among organisms.

TETRAPOD

Four-legged vertebrate animals.

FIXATION (OF AN ALLELE)

When an allele replaces all other alleles in a population, so that its frequency is equal to one (that is, 100%).

EPIGENETICS

Events in development that depend on interactions with other parts of an embryo or the environment.

HALTERES

In Diptera (true flies), the second or hind wings have become modified into a pair of club-like balancing organs called halteres.

SOMITES

Axial blocks of mesoderm along the vertebrate body axis that further differentiate into dermal skin, bone and muscle.

PROTOSTOME/DEUTEROSTOME

The two principal divisions of animal phyla, based on how the mouth forms in the embryo.

BASAL MEMBERS

Lineages or branches that diverge at the base of a phylogenetic tree; more primitive lineages.

BILATERIAN

Animals with bilateral body symmetry.

CNIDARIANS

Radially symmetric animals such as jelly fish, corals, hydra and anemonies.

CAMBRIAN EXPLOSION

The rapid diversification of animal life observed in the fossil record in rocks of early-mid Cambrian age (540–530 million years ago). Many of the major phyla that characterize modern animal life evolved at this time.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raff, R. Evo-devo: the evolution of a new discipline. Nat Rev Genet 1, 74–79 (2000). https://doi.org/10.1038/35049594

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35049594

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing