Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Osteopetrosis: genetics, treatment and new insights into osteoclast function

Abstract

Osteopetrosis is a genetic condition of increased bone mass, which is caused by defects in osteoclast formation and function. Both autosomal recessive and autosomal dominant forms exist, but this Review focuses on autosomal recessive osteopetrosis (ARO), also known as malignant infantile osteopetrosis. The genetic basis of this disease is now largely uncovered: mutations in TCIRG1, CLCN7, OSTM1, SNX10 and PLEKHM1 lead to osteoclast-rich ARO (in which osteoclasts are abundant but have severely impaired resorptive function), whereas mutations in TNFSF11 and TNFRSF11A lead to osteoclast-poor ARO. In osteoclast-rich ARO, impaired endosomal and lysosomal vesicle trafficking results in defective osteoclast ruffled-border formation and, hence, the inability to resorb bone and mineralized cartilage. ARO presents soon after birth and can be fatal if left untreated. However, the disease is heterogeneous in clinical presentation and often misdiagnosed. This article describes the genetics of ARO and discusses the diagnostic role of next-generation sequencing methods. The management of affected patients, including guidelines for the indication of haematopoietic stem cell transplantation (which can provide a cure for many types of ARO), are outlined. Finally, novel treatments, including preclinical data on in utero stem cell treatment, RANKL replacement therapy and denosumab therapy for hypercalcaemia are also discussed.

Key Points

  • Autosomal recessive osteopetrosis (ARO) is a genetically and phenotypically heterogeneous disease; most forms result from late endosomal trafficking defects that prevent osteoclast ruffled-border formation

  • Early molecular diagnosis is essential to guide management decisions, and novel genetic tools should enable identification of causative mutations in all patients with ARO in the near future

  • Haematopoietic stem cell transplantation (HSCT) can cure ARO if given in early life to patients with osteoclast-intrinsic disease without neurodegenerative complications

  • New treatments that target RANKL/RANK signalling offer promise in ARO subtypes that currently cannot be cured by HSCT and to prevent hypercalcaemia after HSCT

  • Study of osteopetrosis-causing mutations continues to identify essential genes for osteoclast function, to increase understanding of osteoclast biology and to reveal novel targets for therapeutic intervention

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radiographs illustrating key features of ARO.
Figure 2: Mechanisms underlying osteoclast-rich ARO.
Figure 3: Mechanisms underlying osteoclast-poor ARO.
Figure 4: Molecular diagnosis and treatment decisions in babies with clinical osteopetrosis.

Similar content being viewed by others

References

  1. Stark, Z. & Savarirayan, R. Osteopetrosis. Orphanet. J. Rare Dis. 4, 5 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Del Fattore, A., Cappariello, A. & Teti, A. Genetics, pathogenesis and complications of osteopetrosis. Bone 42, 19–29 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. de Vernejoul, M. C. & Kornak, U. Heritable sclerosing bone disorders: presentation and new molecular mechanisms. Ann. NY Acad. Sci. 1192, 269–277 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Perdu, B. & Van Hul, W. Sclerosing bone disorders: too much of a good thing. Crit. Rev. Eukaryot. Gene Expr. 20, 195–212 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Villa, A., Guerrini, M. M., Cassani, B., Pangrazio, A. & Sobacchi, C. Infantile malignant, autosomal recessive osteopetrosis: the rich and the poor. Calcif. Tissue Int. 84, 1–12 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Sly, W. S., Hewett-Emmett, D., Whyte, M. P., Yu, Y. S. & Tashian, R. E. Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc. Natl Acad. Sci. USA 80, 2752–2756 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marks, S. C. Jr. Osteoclast biology: lessons from mammalian mutations. Am. J. Med. Genet. 34, 43–54 (1989).

    Article  PubMed  Google Scholar 

  8. Doffinger, R. et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NFκB signaling. Nat. Genet. 27, 277–285 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Villa, A., Vezzoni, P. & Frattini, A. Osteopetroses and immunodeficiencies in humans. Curr. Opin. Allergy Clin. Immunol. 6, 421–427 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Gelb, B. D., Shi, G. P., Chapman, H. A. & Desnick, R. J. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273, 1236–1238 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Mory, A. et al. Kindlin-3: a new gene involved in the pathogenesis of LAD-III. Blood 112, 2591 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Malinin, N. L. et al. A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nat. Med. 15, 313–318 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Harris, E. S., Weyrich, A. S. & Zimmerman, G. A. Lessons from rare maladies: leukocyte adhesion deficiency syndromes. Curr. Opin. Hematol. 20, 16–25 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Frattini, A. et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat. Genet. 25, 343–346 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Sobacchi, C. et al. The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum. Mol. Genet. 10, 1767–1773 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Bliznetz, E. A. et al. Genetic analysis of autosomal recessive osteopetrosis in Chuvashiya: the unique splice site mutation in TCIRG1 gene spread by the founder effect. Eur. J. Hum. Genet. 17, 664–672 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fasth, A. Osteopetrosis—more than only a disease of the bone. Am. J. Hematol. 84, 469–470 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Souraty, N. et al. Molecular study of six families originating from the Middle-East and presenting with autosomal recessive osteopetrosis. Eur. J. Med. Genet. 50, 188–199 (2007).

    Article  PubMed  Google Scholar 

  19. Ihde, L. L. et al. Sclerosing bone dysplasias: review and differentiation from other causes of osteosclerosis. Radiographics 31, 1865–1882 (2011).

    Article  PubMed  Google Scholar 

  20. Dlouhy, B. J. & Menezes, A. H. Osteopetrosis with Chiari I malformation: presentation and surgical management. J. Neurosurg. Pediatr. 7, 369–374 (2011).

    Article  PubMed  Google Scholar 

  21. Steward, C. G. Neurological aspects of osteopetrosis. Neuropathol. Appl. Neurobiol. 29, 87–97 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Stocks, R. M., Wang, W. C., Thompson, J. W., Stocks, M. C. & Horwitz, E. M. Malignant infantile osteopetrosis: otolaryngological complications and management. Arch. Otolaryngol. Head Neck Surg. 124, 689–694 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Gerritsen, E. J. et al. Autosomal recessive osteopetrosis: variability of findings at diagnosis and during the natural course. Pediatrics 93, 247–253 (1994).

    CAS  PubMed  Google Scholar 

  24. Landa, J., Margolis, N. & Di, C. P. Orthopaedic management of the patient with osteopetrosis. J. Am. Acad. Orthop. Surg. 15, 654–662 (2007).

    Article  PubMed  Google Scholar 

  25. da Silva Santos, P. S., Esperidiao, A. P. & de Freitas, R. R. Maxillofacial aspects in malignant osteopetrosis. Cleft Palate Craniofac. J. 46, 388–390 (2009).

    Article  PubMed  Google Scholar 

  26. Sekerci, A. E., Sisman, Y., Ertas, E. T., Sahman, H. & Aydinbelge, M. Infantile malignant osteopetrosis: report of 2 cases with osteomyelitis of the jaws. J. Dent. Child. (Chic.) 79, 93–99 (2012).

    Google Scholar 

  27. Mazzolari, E. et al. A single-center experience in 20 patients with infantile malignant osteopetrosis. Am. J. Hematol. 84, 473–479 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Gonen, K. A., Yazici, Z., Gokalp, G. & Ucar, A. K. Infantile osteopetrosis with superimposed rickets. Pediatr. Radiol. 43, 189–195 (2012).

    Article  PubMed  Google Scholar 

  29. Guerrini, M. M. et al. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am. J. Hum. Genet. 83, 64–76 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pangrazio, A. et al. RANK-dependent autosomal recessive osteopetrosis: characterization of five new cases with novel mutations. J. Bone Miner. Res. 27, 342–351 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Frattini, A. et al. Chloride channel CLCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J. Bone Miner. Res. 18, 1740–1747 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Pangrazio, A. et al. Mutations in OSTM1 (grey lethal) define a particularly severe form of autosomal recessive osteopetrosis with neural involvement. J. Bone Miner. Res. 21, 1098–1105 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Castellano, C. D. et al. Neuroimaging findings in malignant infantile osteopetrosis due to OSTM1 mutations. Neuropediatrics 38, 154–156 (2007).

    Article  CAS  Google Scholar 

  34. Pangrazio, A. et al. Molecular and clinical heterogeneity in CLCN7-dependent osteopetrosis: report of 20 novel mutations. Hum. Mutat. 31, E1071–E1080 (2010).

    Article  PubMed  Google Scholar 

  35. Schinke, T. et al. Impaired gastric acidification negatively affects calcium homeostasis and bone mass. Nat. Med. 15, 674–681 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Rees, H., Ang, L. C., Casey, R. & George, D. H. Association of infantile neuroaxonal dystrophy and osteopetrosis: a rare autosomal recessive disorder. Pediatr. Neurosurg. 22, 321–327 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Ben, H. H. et al. Association of severe autosomal recessive osteopetrosis and Dandy–Walker syndrome with agenesis of the corpus callosum. Acta Orthop. Belg. 67, 528–532 (2001).

    Google Scholar 

  38. Abinun, M. & Pieniazek, P. Successful haematopoietic stem cell transplantation for osteopetrosis due to TCRIG1 mutation. Arch. Dis. Child. 95, 984 (2010).

    Article  PubMed  Google Scholar 

  39. Stark, Z., Pangrazio, A., McGillivray, G. & Fink, A. M. Association of severe autosomal recessive osteopetrosis and structural brain abnormalities: A case report and review of the literature. Eur. J. Med. Genet. 56, 36–38 (2013).

    Article  PubMed  Google Scholar 

  40. Yarali, N., Fisgin, T., Duru, F. & Kara, A. Osteopetrosis and Glanzmann's thrombasthenia in a child. Ann. Hematol. 82, 254–256 (2003).

    CAS  PubMed  Google Scholar 

  41. Buchbinder, D. et al. Successful cord blood transplantation in a patient with malignant infantile osteopetrosis and hemophilia. Pediatr. Transplant. 17, E20–E24 (2013).

    Article  PubMed  Google Scholar 

  42. Pangrazio, A. et al. A homozygous contiguous gene deletion in chromosome 16p13.3 leads to autosomal recessive osteopetrosis in a Jordanian patient. Calcif. Tissue Int. 91, 250–254 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Askmyr, M. K., Fasth, A. & Richter, J. Towards a better understanding and new therapeutics of osteopetrosis. Br. J. Haematol. 140, 597–609 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Mellis, D. J., Itzstein, C., Helfrich, M. H. & Crockett, J. C. The skeleton: a multi-functional complex organ. The role of key signalling pathways in osteoclast differentiation and in bone resorption. J. Endocrinol. 211, 131–143 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Leisle, L., Ludwig, C. F., Wagner, F. A., Jentsch, T. J. & Stauber, T. ClC-7 is a slowly voltage-gated 2Cl/1H+-exchanger and requires Ostm1 for transport activity. EMBO J. 30, 2140–2152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tabata, K. et al. Rubicon and PLEKHM1 negatively regulate the endocytic/autophagic pathway via a novel Rab7-binding domain. Mol. Biol. Cell 21, 4162–4172 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ye, S. et al. LIS1 regulates osteoclast formation and function through its interactions with dynein/dynactin and Plekhm1. PLoS ONE 6, e27285 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aker, M. et al. An SNX10 mutation causes malignant osteopetrosis of infancy. J. Med. Genet. 49, 221–226 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Megarbane, A. et al. Homozygous stop mutation in the SNX10 gene in a consanguineous Iraqi boy with osteopetrosis and corpus callosum hypoplasia. Eur. J. Med. Genet. 56, 32–35 (2013).

    Article  PubMed  Google Scholar 

  50. Worby, C. A. & Dixon, J. E. Sorting out the cellular functions of sorting nexins. Nat. Rev. Mol. Cell Biol. 3, 919–931 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Lacey, D. L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Nakagawa, N. et al. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem. Biophys. Res. Commun. 253, 395–400 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Takayanagi, H. New developments in osteoimmunology. Nat. Rev. Rheumatol. 8, 684–689 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Susani, L. et al. TCIRG1-dependent recessive osteopetrosis: mutation analysis, functional identification of the splicing defects, and in vitro rescue by U1 snRNA. Hum. Mutat. 24, 225–235 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Pangrazio, A. et al. Autosomal recessive osteopetrosis: report of 41 novel mutations in the TCIRG1 gene and diagnostic implications. Osteoporos. Int. 23, 2713–2718 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Pangrazio, A. et al. Characterization of a novel Alu–Alu recombination-mediated genomic deletion in the TCIRG1 gene in five osteopetrotic patients. J. Bone Miner. Res. 24, 162–167 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Ott, C. E. et al. Severe neuronopathic autosomal recessive osteopetrosis due to homozygous deletions affecting OSTM1. Bone 55, 292–297 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Pangrazio, A. et al. SNX10 mutations define a subgroup of human Autosomal Recessive Osteopetrosis with variable clinical severity. J. Bone Miner. Res. 28, 1041–1049 (2012).

    Article  CAS  Google Scholar 

  59. Hecht, J. et al. Detection of novel skeletogenesis target genes by comprehensive analysis of a Runx2−/− mouse model. Gene Expr. Patterns 7, 102–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Zhu, C. H., Morse, L. R. & Battaglino, R. A. SNX10 is required for osteoclast formation and resorption activity. J. Cell Biochem. 113, 1608–1615 (2012).

    CAS  PubMed  Google Scholar 

  61. Choi, M. et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc. Natl Acad. Sci. USA 106, 19096–19101 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Glazov, E. A. et al. Whole-exome re-sequencing in a family quartet identifies POP1 mutations as the cause of a novel skeletal dysplasia. PLoS Genet. 7, e1002027 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Simpson, M. A. et al. Mutations in NOTCH2 cause Hajdu–Cheney syndrome, a disorder of severe and progressive bone loss. Nat. Genet. 43, 303–305 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Sirmaci, A. et al. Mutations in ANKRD11 cause KBG syndrome, characterized by intellectual disability, skeletal malformations, and macrodontia. Am. J. Hum. Genet. 89, 289–294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sarig, O. et al. Short stature, onychodysplasia, facial dysmorphism, and hypotrichosis syndrome is caused by a POC1A mutation. Am. J. Hum. Genet. 91, 337–342 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yamaguchi, T. et al. Exome resequencing combined with linkage analysis identifies novel PTH1R variants in primary failure of tooth eruption in Japanese. J. Bone Miner. Res. 26, 1655–1661 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Zankl, A. et al. Multicentric carpotarsal osteolysis is caused by mutations clustering in the amino-terminal transcriptional activation domain of MAFB. Am. J. Hum. Genet. 90, 494–501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Campeau, P. M. et al. Whole-exome sequencing identifies mutations in the nucleoside transporter gene SLC29A3 in dysosteosclerosis, a form of osteopetrosis. Hum. Mol. Genet. 21, 4904–4909 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Molho-Pessach, V. et al. The H syndrome is caused by mutations in the nucleoside transporter hENT3. Am. J. Hum. Genet. 83, 529–534 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cliffe, S. T. et al. SLC29A3 gene is mutated in pigmented hypertrichosis with insulin-dependent diabetes mellitus syndrome and interacts with the insulin signaling pathway. Hum. Mol. Genet. 18, 2257–2265 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Bruzzaniti, A. & Baron, R. Molecular regulation of osteoclast activity. Rev. Endocr. Metab. Disord. 7, 123–139 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Teitelbaum, S. L. & Ross, F. P. Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Van Wesenbeeck, L. & Van Hul, W. Lessons from osteopetrotic mutations in animals: impact on our current understanding of osteoclast biology. Crit. Rev. Eukaryot. Gene Expr. 15, 133–162 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Helfrich, M. H., Crockett, J. C., Hocking, L. J. & Coxon, F. P. The pathogenesis of osteoclast diseases: some knowns, but still many unknowns. BoneKEy–Osteovision 4, 61–77 (2007).

    Article  Google Scholar 

  75. Coxon, F. P. & Taylor, A. Vesicular trafficking in osteoclasts. Semin. Cell Dev. Biol. 19, 424–433 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Teitelbaum, S. L. The osteoclast and its unique cytoskeleton. Ann. NY Acad. Sci. 1240, 14–17 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Kornak, U. et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104, 205–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Blair, H. C. et al. In vitro differentiation of CD14 cells from osteopetrotic subjects: contrasting phenotypes with TCIRG1, CLCN7, and attachment defects. J. Bone Miner. Res. 19, 1329–1338 (2004).

    Article  PubMed  Google Scholar 

  79. Del Fattore, A. et al. Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment. J. Med. Genet. 43, 315–325 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Maranda, B. et al. Clinical and cellular manifestations of OSTM1-related infantile osteopetrosis. J. Bone Miner. Res. 23, 296–300 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Li, Y. P., Chen, W., Liang, Y., Li, E. & Stashenko, P. Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat. Genet. 23, 447–451 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Scimeca, J. C. et al. The gene encoding the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteosclerotic (oc/oc) mutants. Bone 26, 207–213 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Kasper, D. et al. Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J. 24, 1079–1091 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chalhoub, N. et al. Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat. Med. 9, 399–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Qin, A. et al. V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. Int. J. Biochem. Cell Biol. 44, 1422–1435 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Hiesinger, P. R. et al. The V-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila. Cell 121, 607–620 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sun-Wada, G. H. et al. The a3 isoform of V-ATPase regulates insulin secretion from pancreatic β-cells. J. Cell Sci. 119, 4531–4540 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Lee, B. S., Gluck, S. L. & Holliday, L. S. Interaction between vacuolar H+-ATPase and microfilaments during osteoclast activation. J. Biol. Chem. 274, 29164–29171 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Holliday, L. S. et al. The amino-terminal domain of the B subunit of vacuolar H+-ATPase contains a filamentous actin binding site. J. Biol. Chem. 275, 32331–32337 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Zuo, J. et al. Actin binding activity of subunit B of vacuolar H+-ATPase is involved in its targeting to ruffled membranes of osteoclasts. J. Bone Miner. Res. 21, 714–721 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Nakamura, I. et al. Lack of vacuolar proton ATPase association with the cytoskeleton in osteoclasts of osteosclerotic (oc/oc) mice. FEBS Lett. 401, 207–212 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Nakamura, I. et al. Phosphatidylinositol-3 kinase is involved in ruffled border formation in osteoclasts. J. Cell Physiol. 172, 230–239 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Chen, S. H. et al. Vacuolar H+-ATPase binding to microfilaments: regulation in response to phosphatidylinositol 3-kinase activity and detailed characterization of the actin-binding site in subunit B. J. Biol. Chem. 279, 7988–7998 (2004).

    Article  PubMed  Google Scholar 

  94. Shinohara, M. et al. Class IA phosphatidylinositol 3-kinase regulates osteoclastic bone resorption through protein kinase B-mediated vesicle transport. J. Bone Miner. Res. 27, 2464–2475 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Ochotny, N. et al. The V-ATPase a3 subunit mutation R740S is dominant negative and results in osteopetrosis in mice. J. Bone Miner. Res. 26, 1484–1493 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Hurtado-Lorenzo, A. et al. V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat. Cell Biol. 8, 124–136 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Jentsch, T. J. CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit. Rev. Biochem. Mol. Biol. 43, 3–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Stauber, T. & Jentsch, T. J. Chloride in Vesicular Trafficking and Function. Annu. Rev. Physiol. 75, 453–477 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Graves, A. R., Curran, P. K., Smith, C. L. & Mindell, J. A. The Cl/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453, 788–792 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Lange, P. F., Wartosch, L., Jentsch, T. J. & Fuhrmann, J. C. ClC-7 requires Ostm1 as a β-subunit to support bone resorption and lysosomal function. Nature 440, 220–223 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Novarino, G., Weinert, S., Rickheit, G. & Jentsch, T. J. Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis. Science 328, 1398–1401 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Saito, M., Hanson, P. I. & Schlesinger, P. Luminal chloride-dependent activation of endosome calcium channels: patch clamp study of enlarged endosomes. J. Biol. Chem. 282, 27327–27333 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Luzio, J. P., Bright, N. A. & Pryor, P. R. The role of calcium and other ions in sorting and delivery in the late endocytic pathway. Biochem. Soc. Trans. 35, 1088–1091 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Weinert, S. et al. Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl accumulation. Science 328, 1401–1403 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Cigic, B. & Pain, R. H. Location of the binding site for chloride ion activation of cathepsin C. Eur. J. Biochem. 264, 944–951 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Wartosch, L., Fuhrmann, J. C., Schweizer, M., Stauber, T. & Jentsch, T. J. Lysosomal degradation of endocytosed proteins depends on the chloride transport protein ClC–7. FASEB J. 23, 4056–4068 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Van Wesenbeeck, L. et al. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J. Clin. Invest. 117, 919–930 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sun, Q., Westphal, W., Wong, K. N., Tan, I. & Zhong, Q. Rubicon controls endosome maturation as a Rab7 effector. Proc. Natl Acad. Sci. USA 107, 19338–19343 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Tsai, N. P., Tsui, Y. C. & Wei, L. N. Dynein motor contributes to stress granule dynamics in primary neurons. Neuroscience 159, 647–656 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Ng, P. Y. et al. Disruption of the dynein–dynactin complex unveils motor-specific functions in osteoclast formation and bone resorption. J. Bone Miner. Res. 28, 119–134 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Taranta, A. et al. Genotype–phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis. Am. J. Pathol. 162, 57–68 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shroff, R., Beringer, O., Rao, K., Hofbauer, L. C. & Schulz, A. Denosumab for post-transplantation hypercalcemia in osteopetrosis. N. Engl. J. Med. 367, 1766–1767 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Chen, Y. et al. A SNX10/V-ATPase pathway regulates ciliogenesis in vitro and in vivo. Cell Res. 22, 333–345 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Crockett, J. C., Mellis, D. J., Scott, D. I. & Helfrich, M. H. New knowledge on critical osteoclast formation and activation pathways from study of rare genetic diseases of osteoclasts: focus on the RANK/RANKL axis. Osteoporos. Int. 22, 1–20 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Liu, C. et al. Structural and functional insights of RANKL-RANK interaction and signaling. J. Immunol. 184, 6910–6919 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Ta, H. M. et al. Structure-based development of a receptor activator of nuclear factor-κB ligand (RANKL) inhibitor peptide and molecular basis for osteopetrosis. Proc. Natl Acad. Sci. USA 107, 20281–20286 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Douni, E. et al. A RANKL G278R mutation causing osteopetrosis identifies a functional amino acid essential for trimer assembly in RANKL and TNF. Hum. Mol. Genet. 21, 784–798 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Henriksen, K. et al. Dissociation of bone resorption and bone formation in adult mice with a non-functional V-ATPase in osteoclasts leads to increased bone strength. PLoS ONE 6, e27482 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Oliveira, G., Boechat, M. I., Amaral, S. M. & Young, L. W. Osteopetrosis and rickets: an intriguing association. Am. J. Dis. Child. 140, 377–378 (1986).

    CAS  PubMed  Google Scholar 

  120. Marks, S. C. Jr, Seifert, M. F. & Lane, P. W. Osteosclerosis, a recessive skeletal mutation on chromosome 19 in the mouse. J. Hered. 76, 171–176 (1985).

    Article  PubMed  Google Scholar 

  121. Wise, G. E. & King, G. J. Mechanisms of tooth eruption and orthodontic tooth movement. J. Dent. Res. 87, 414–434 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Wise, G. E., He, H., Gutierrez, D. L., Ring, S. & Yao, S. Requirement of alveolar bone formation for eruption of rat molars. Eur. J. Oral Sci. 119, 333–338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dick, H. M. & Simpson, W. J. Dental changes in osteopetrosis. Oral Surg. Oral Med. Oral Pathol. 34, 408–416 (1972).

    Article  CAS  PubMed  Google Scholar 

  124. Helfrich, M. H. Osteoclast diseases and dental abnormalities. Arch. Oral Biol. 50, 115–122 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Jälevik, B., Fasth, A. & Dahllof, G. Dental development after successful treatment of infantile osteopetrosis with bone marrow transplantation. Bone Marrow Transplant. 29, 537–540 (2002).

    Article  PubMed  Google Scholar 

  126. Koehne, T. et al. Osteopetrosis, osteopetrorickets and hypophosphatemic rickets differentially affect dentin and enamel mineralization. Bone 53, 25–33 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Xue, Y., Wang, W., Mao, T. & Duan, X. Report of two Chinese patients suffering from CLCN7-related osteopetrosis and root dysplasia. J. Craniomaxillofac. Surg. 40, 416–420 (2012).

    Article  PubMed  Google Scholar 

  128. McLeod, N. M., Brennan, P. A. & Ruggiero, S. L. Bisphosphonate osteonecrosis of the jaw: a historical and contemporary review. Surgeon 10, 36–42 (2012).

    Article  PubMed  Google Scholar 

  129. Qi, W. X., Tang, L. N., He, A. N., Yao, Y. & Shen, Z. Risk of osteonecrosis of the jaw in cancer patients receiving denosumab: a meta-analysis of seven randomized controlled trials. Int. J. Clin. Oncol. http://dx.doi.org/10.1007/s10147-013-0561-6.

  130. Coccia, P. F. et al. Successful bone-marrow transplantation for infantile malignant osteopetrosis. N. Engl. J. Med. 302, 701–708 (1980).

    Article  CAS  PubMed  Google Scholar 

  131. Schulz, A. S. et al. Osteopetrosis: a heterogeneous group of dieases requiring individualized therapeutic strategies [online], (2013).

  132. Steward, C. G. et al. High peripheral blood progenitor cell counts enable autologous backup before stem cell transplantation for malignant infantile osteopetrosis. Biol. Blood Marrow Transplant. 11, 115–121 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Johansson, M. K. et al. Hematopoietic stem cell-targeted neonatal gene therapy reverses lethally progressive osteopetrosis in oc/oc mice. Blood 109, 5178–5185 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Naldini, L. Ex vivo gene transfer and correction for cell-based therapies. Nat. Rev. Genet. 12, 301–315 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Frattini, A. et al. Rescue of ATPa3-deficient murine malignant osteopetrosis by hematopoietic stem cell transplantation in utero. Proc. Natl Acad. Sci. USA 102, 14629–14634 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tondelli, B. et al. Fetal liver cells transplanted in utero rescue the osteopetrotic phenotype in the oc/oc mouse. Am. J. Pathol. 174, 727–735 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sobacchi, C. et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat. Genet. 39, 960–962 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Hofbauer, L. C. et al. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J. Bone Miner. Res. 15, 2–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Lloyd, S. A. et al. Soluble RANKL induces high bone turnover and decreases bone volume, density, and strength in mice. Calcif. Tissue Int. 82, 361–372 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Tomimori, Y. et al. Evaluation of pharmaceuticals with a novel 50-hour animal model of bone loss. J. Bone Miner. Res. 24, 1194–1205 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Campbell, G. M., Ominsky, M. S. & Boyd, S. K. Bone quality is partially recovered after the discontinuation of RANKL administration in rats by increased bone mass on existing trabeculae: an in vivo micro-CT study. Osteoporos. Int. 22, 931–942 (2011).

    Article  PubMed  Google Scholar 

  142. Mundy, G. R. & Edwards, J. R. The osteoclast—not always guilty. Cell Metab. 6, 157–159 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Kim, N., Odgren, P. R., Kim, D. K., Marks, S. C. Jr & Choi, Y. Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene. Proc. Natl Acad. Sci. USA 97, 10905–10910 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lo Iacono, N. et al. Osteopetrosis rescue upon RANKL administration to Rankl−/− mice: a new therapy for human RANKL-dependent ARO. J. Bone Miner. Res. 27, 2501–2510 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Lo Iacono, N. et al. RANKL Cytokine: From pioneer of the osteoimmunology era to cure for a rare disease. Clin. Dev. Immunol. http://dx.doi.org/10.1155/2013/412768.

  146. Gerritsen, E. J. A. et al. Bone marrow transplantation for autosomal recessive osteopetrosis. A report from the Working Party on Inborn Errors of the European Bone Marrow Transplantation Group. J. Pediatr. 125, 896–902 (1994).

    Article  CAS  PubMed  Google Scholar 

  147. Driessen, G. J. et al. Long-term outcome of haematopoietic stem cell transplantation in autosomal recessive osteopetrosis: an EBMT report. Bone Marrow Transplant. 32, 657–663 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Grigoriadis, A. E. et al. Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS cells. Blood 115, 2769–2776 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Helfrich, M., Perdu, B. & Coxon, F. Human recessive osteopetrosis. New understanding of osteoclast function through molecular and functional analysis of a rare genetic bone disease. Osteologie 18, 260–267 (2009).

    Article  Google Scholar 

  150. Schulz, A. et al. Osteopetrosis–Consensus Guidelines of the ESID and the EBMT Working Party Inborn Errors [online], (2011).

    Google Scholar 

  151. Kong, Y. Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Li, J. et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl Acad. Sci. USA 97, 1566–1571 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mansour, A. et al. Osteoclasts promote the formation of hematopoietic stem cell niches in bone marrow. J. Exp. Med. 209, 537–549 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lymperi, S., Ersek, A., Ferraro, F., Dazzi, F. & Horwood, N. J. Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo. Blood. 117, 1540–1549 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Miyamoto, K. et al. Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization. J. Exp. Med. 208, 2175–2181 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Henriksen, K., Bollerslev, J., Everts, V. & Karsdal, M. A. Osteoclast activity and subtypes as a function of physiology and pathology—implications for future treatments of osteoporosis. Endocr. Rev. 32, 31–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Corbacioglu, S. et al. Stem cell transplantation in children with infantile osteopetrosis is associated with a high incidence of VOD, which could be prevented with defibrotide. Bone Marrow Transplant. 38, 547–553 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Corbacioglu, S. et al. Defibrotide for the treatment of hepatic veno-occlusive disease in children after hematopoietic stem cell transplantation. Expert Rev. Hematol. 5, 291–302 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Steward, C. G. et al. Severe pulmonary hypertension: a frequent complication of stem cell transplantation for malignant infantile osteopetrosis. Br. J. Haematol. 124, 63–71 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge grant support from the following sources: Ministero della Salute grants GR-2008-1134,625 to C. Sobacchi and RF-2009-1499,542 to A. Villa; Telethon Foundation grant GGP12178 to C. Sobacchi; Research Projects of National Interest (PRIN) Project grant 20122M7T8X_003 by the National Research Program-National Research Council (PNR-CNR) Aging Program 2012–2014 to A. Villa; Arthritis Research UK grants 17285 and 19379 to F. P. Coxon and M. H. Helfrich, respectively. The authors wish to thank: D. Mellis and J. Crockett (University of Aberdeen) for contributing Figure 4 panels a and d, and discussion regarding RANK and RANKL mutants; M. Hoenig (University Medical Centre, Ulm) for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Miep H. Helfrich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobacchi, C., Schulz, A., Coxon, F. et al. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 9, 522–536 (2013). https://doi.org/10.1038/nrendo.2013.137

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing