Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging combinatorial hormone therapies for the treatment of obesity and T2DM

Abstract

Peptide hormones and proteins control body weight and glucose homeostasis by engaging peripheral and central metabolic signalling pathways responsible for the maintenance of body weight and euglycaemia. The development of obesity, often in association with type 2 diabetes mellitus (T2DM), reflects a dysregulation of metabolic, anorectic and orexigenic pathways in multiple organs. Notably, therapeutic attempts to normalize body weight and glycaemia with single agents alone have generally been disappointing. The success of bariatric surgery, together with emerging data from preclinical studies, illustrates the rationale and feasibility of using two or more agonists, or single co-agonists, for the treatment of obesity and T2DM. Here, we review advances in the science of co-agonist therapy, and highlight promising areas and challenges in co-agonist development. We describe mechanisms of action for combinations of glucagon-like peptide 1, glucagon, gastric inhibitory polypeptide, gastrin, islet amyloid polypeptide and leptin, which enhance weight loss whilst preserving glucoregulatory efficacy in experimental models of obesity and T2DM. Although substantial progress has been achieved in preclinical studies, the putative success and safety of co-agonist therapy for the treatment of patients with obesity and T2DM remains uncertain and requires extensive additional clinical validation.

Key Points

  • Multiple enteroendocrine and adipose-derived hormones convey satiety signals to the central nervous system

  • Many regulatory peptides exert glucoregulatory actions independent of their effects on appetite and body weight

  • Most organisms exhibit robust counter-regulatory responses to one anorectic agent acting through a single signalling pathway

  • Combining two or more hormones with complementary anorectic and glucoregulatory activities might be a promising approach for the treatment of obesity and diabetes mellitus

  • The safety of new co-agonists in the brain and cardiovascular system, and their potential for promoting cell proliferation, requires careful scrutiny

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Mechanisms for leptin and IAPP co-agonism in the control of body weight and glucose homeostasis.

Similar content being viewed by others

References

  1. Sjöström, L. et al. Bariatric surgery and long-term cardiovascular events. JAMA 307, 56–65 (2012).

    Article  Google Scholar 

  2. Campbell, J. E. & Drucker, D. J. Pharmacology physiology and mechanisms of incretin hormone action. Cell Metab. 17, in press (2013).

  3. Scrocchi, L. A. et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide receptor gene. Nat. Med. 2, 1254–1258 (1996).

    Article  CAS  Google Scholar 

  4. Vilsbøll, T., Christensen, M., Junker, A. E., Knop, F. K. & Gluud, L. L. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ 344, d7771 (2012).

    Article  Google Scholar 

  5. Colman, E. et al. The FDA's assessment of two drugs for chronic weight management. N. Engl. J. Med. 367, 1577–1579 (2012).

    Article  CAS  Google Scholar 

  6. Unger, R. H. & Cherrington, A. D. Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover. J. Clin. Invest. 122, 4–12 (2012).

    Article  CAS  Google Scholar 

  7. Habegger, K. M. et al. The metabolic actions of glucagon revisited. Nat. Rev. Endocrinol. 6, 689–697 (2010).

    Article  CAS  Google Scholar 

  8. Nair, K. S. Hyperglucagonemia increases resting metabolic rate in man during insulin deficiency. J. Clin. Endocrinol. Metab. 64, 896–901 (1987).

    Article  CAS  Google Scholar 

  9. Tan, T. M. et al. Coadministration of glucagon-like peptide-1 during glucagon infusion in man results in increased energy expenditure and amelioration of hyperglycemia. Diabetes http://dx.doi.org/10.2337/db12–0797.

  10. Liljenquist, J. E. et al. Effects of glucagon on lipolysis and ketogenesis in normal and diabetic men. J. Clin. Invest. 53, 190–197 (1974).

    Article  CAS  Google Scholar 

  11. Geary, N., Kissileff, H. R., Pi-Sunyer, F. X. & Hinton, V. Individual, but not simultaneous, glucagon and cholecystokinin infusions inhibit feeding in men. Am. J. Physiol. 262, R975–R980 (1992).

    Article  CAS  Google Scholar 

  12. Habegger, K. M. et al. Fibroblast growth factor 21 mediates specific glucagon actions. Diabetes http://dx.doi.org/10.2337/db12–1116.

  13. Potthoff, M. J., Kliewer, S. A. & Mangelsdorf, D. J. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev. 26, 312–324 (2012).

    Article  CAS  Google Scholar 

  14. Drucker, D. J. The biology of incretin hormones. Cell Metab. 3, 153–165 (2006).

    Article  CAS  Google Scholar 

  15. Abbott, C. R. et al. The inhibitory effects of peripheral administration of peptide YY(3–36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 1044, 127–131 (2005).

    Article  CAS  Google Scholar 

  16. Kinzig, K. P., D'Alessio, D. A. & Seeley, R. J. The diverse roles of specific GLP-1 receptors in the control of food intake and the response to visceral illness. J. Neurosci. 22, 10470–10476 (2002).

    Article  CAS  Google Scholar 

  17. Baggio, L. L., Huang, Q., Cao, X. & Drucker, D. J. The long-acting albumin-exendin-4 GLP-1R agonist CJC-1134 engages central and peripheral mechanisms regulating glucose homeostasis. Gastroenterology 134, 1137–1147 (2008).

    Article  CAS  Google Scholar 

  18. Zander, M., Madsbad, S., Madsen, J. L. & Holst, J. J. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 359, 824–830 (2002).

    Article  CAS  Google Scholar 

  19. Astrup, A. et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 374, 1606–1616 (2009).

    Article  CAS  Google Scholar 

  20. Nauck, M. A., Kemmeries, G., Holst, J. J. & Meier, J. J. Rapid tachyphylaxis of the glucagon-like peptide 1-induced deceleration of gastric emptying in humans. Diabetes 60, 1561–1565 (2011).

    Article  CAS  Google Scholar 

  21. Turton, M. D. et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69–72 (1996).

    Article  CAS  Google Scholar 

  22. Baggio, L. L., Huang, Q., Brown, T. J. & Drucker, D. J. A recombinant human glucagon-like peptide (GLP)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes 53, 2492–2500 (2004).

    Article  CAS  Google Scholar 

  23. Baggio, L. L., Huang, Q., Brown, T. J. & Drucker, D. J. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology 127, 546–558 (2004).

    Article  CAS  Google Scholar 

  24. Mayo, K. E. et al. International Union of Pharmacology. XXXV. The Glucagon Receptor Family. Pharmacol. Rev. 55, 167–194 (2003).

    Article  CAS  Google Scholar 

  25. Dakin, C. L. et al. Oxyntomodulin inhibits food intake in the rat. Endocrinology 142, 4244–4250 (2001).

    Article  CAS  Google Scholar 

  26. Dakin, C. L. et al. Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 145, 2687–2695 (2004).

    Article  CAS  Google Scholar 

  27. Lockie, S. H. et al. Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like Peptide-1 receptor signaling. Diabetes 61, 2753–2762 (2012).

    Article  CAS  Google Scholar 

  28. Kosinski, J. R. et al. The glucagon receptor is involved in mediating the body weight-lowering effects of oxyntomodulin. Obesity (Silver Spring) 20, 1566–1571 (2012).

    Article  CAS  Google Scholar 

  29. Wynne, K. et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes 54, 2390–2395 (2005).

    Article  CAS  Google Scholar 

  30. Wynne, K. et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int. J. Obes. (Lond.) 30, 1729–1736 (2006).

    Article  CAS  Google Scholar 

  31. Parker, J. A. et al. Glucagon and GLP-1 inhibit food intake and increase c-fos expression in similar appetite regulating centres in the brainstem and amygdala. Int. J. Obes. (Lond.) http://dx.doi.org/10.1038/ijo.2012.227.

  32. Day, J. W. et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat. Chem. Biol. 5, 749–757 (2009).

    Article  CAS  Google Scholar 

  33. Pocai, A. et al. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 58, 2258–2266 (2009).

    Article  CAS  Google Scholar 

  34. Du, X. et al. Differential effects of oxyntomodulin and GLP-1 on glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 303, E265–E271 (2012).

    Article  CAS  Google Scholar 

  35. Baggio, L. L. & Drucker, D. J. Biology of incretins: GLP-1 and GIP. Gastroenterology 132, 2131–2157 (2007).

    Article  CAS  Google Scholar 

  36. Højberg, P. V. et al. Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia 52, 199–207 (2009).

    Article  Google Scholar 

  37. Hansotia, T. et al. Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. J. Clin. Invest. 117, 143–152 (2007).

    Article  CAS  Google Scholar 

  38. Chia, C. W. et al. Exogenous glucose-dependent insulinotropic polypeptide worsens post prandial hyperglycemia in type 2 diabetes. Diabetes 58, 1342–1349 (2009).

    Article  CAS  Google Scholar 

  39. Kulkarni, R. N. GIP: no longer the neglected incretin twin? Sci. Transl. Med. 2, 49ps47 (2010).

    Article  Google Scholar 

  40. Lamont, B. J. & Drucker, D. J. Differential anti-diabetic efficacy of incretin agonists vs. DPP-4 inhibition in high fat fed mice. Diabetes 57, 190–198 (2008).

    Article  CAS  Google Scholar 

  41. Irwin, N., Hunter, K., Frizzell, N. & Flatt, P. R. Antidiabetic effects of sub-chronic activation of the GIP receptor alone and in combination with background exendin-4 therapy in high fat fed mice. Regul. Pept. 153, 70–76 (2009).

    Article  CAS  Google Scholar 

  42. Gault, V. A., Kerr, B. D., Harriott, P. & Flatt, P. R. Administration of an acylated GLP-1 and GIP preparation provides added beneficial glucose-lowering and insulinotropic actions over single incretins in mice with Type 2 diabetes and obesity. Clin. Sci. (Lond.) 121, 107–117 (2011).

    Article  CAS  Google Scholar 

  43. Irwin, N., Montgomery, I. A., O'Harte, F. P., Frizelle, P. & Flatt, P. R. Comparison of the independent and combined metabolic effects of subchronic modulation of CCK and GIP receptor action in obesity-related diabetes. Int. J. Obes (Lond.) http://dx.doi.org/10.1038/ijo.2012.

  44. Irwin, N., McClean, P. L., Hunter, K. & Flatt, P. R. Metabolic effects of sustained activation of the GLP-1 receptor alone and in combination with background GIP receptor antagonism in high fat-fed mice. Diabetes Obes. Metab. 11, 603–610 (2009).

    Article  CAS  Google Scholar 

  45. Irwin, N., Hunter, K. & Flatt, P. R. Comparison of independent and combined chronic metabolic effects of GIP and CB1 receptor blockade in high-fat fed mice. Peptides 29, 1036–1041 (2008).

    Article  CAS  Google Scholar 

  46. Tschöp, M. H. & DiMarchi, R. D. Outstanding Scientific Achievement Award Lecture 2011: defeating diabesity: the case for personalized combinatorial therapies. Diabetes 61, 1309–1314 (2012).

    Article  Google Scholar 

  47. Mentis, N. et al. GIP does not potentiate the antidiabetic effects of GLP-1 in hyperglycemic patients with type 2 diabetes. Diabetes 60, 1270–1276 (2011).

    Article  CAS  Google Scholar 

  48. Wang, T. C. et al. Pancreatic gastrin stimulates islet differentiation of transforming growth factor alpha-induced ductular precursor cells. J. Clin. Invest. 92, 1349–1356 (1993).

    Article  CAS  Google Scholar 

  49. Rooman, I., Lardon, J. & Bouwens, L. Gastrin stimulates beta-cell neogenesis and increases islet mass from transdifferentiated but not from normal exocrine pancreas tissue. Diabetes 51, 686–690 (2002).

    Article  CAS  Google Scholar 

  50. Suarez-Pinzon, W. L. et al. Combination therapy with glucagon-like peptide-1 and gastrin restores normoglycemia in diabetic NOD mice. Diabetes 57, 3281–3288 (2008).

    Article  CAS  Google Scholar 

  51. Wang, M. et al. Mixed chimerism and growth factors augment beta cell regeneration and reverse late-stage type 1 diabetes. Sci. Transl. Med. 4, 133ra59 (2012).

    PubMed  Google Scholar 

  52. Fosgerau, K. et al. The novel GLP-1-gastrin dual agonist, ZP3022, increases beta-cell mass and prevents diabetes in db/db mice. Diabetes Obes. Metab. 15, 62–71 (2013).

    Article  CAS  Google Scholar 

  53. Singh, P. K. et al. Pantoprazole improves glycemic control in type 2 diabetes: a randomized, double-blind, placebo-controlled trial. J. Clin. Endocrinol. Metab. 97, E2105–E2108 (2012).

    Article  CAS  Google Scholar 

  54. Hove, K. D. et al. Effects of 12 weeks' treatment with a proton pump inhibitor on insulin secretion, glucose metabolism and markers of cardiovascular risk in patients with type 2 diabetes: a randomised double-blind prospective placebo-controlled study. Diabetologia 56, 22–30 (2013).

    Article  CAS  Google Scholar 

  55. Roth, J. D. Amylin and the regulation of appetite and adiposity: recent advances in receptor signaling, neurobiology and pharmacology. Curr. Opin. Endocrinol. Diabetes Obes. 20, 8–13 (2013).

    Article  CAS  Google Scholar 

  56. Smith, S. R. et al. Sustained weight loss following 12-month pramlintide treatment as an adjunct to lifestyle intervention in obesity. Diabetes Care 31, 1816–1823 (2008).

    Article  Google Scholar 

  57. Myers, M. G. Jr et al. Challenges and opportunities of defining clinical leptin resistance. Cell Metab. 15, 150–156 (2012).

    Article  CAS  Google Scholar 

  58. Coppari, R. & Bjørbæk, C. Leptin revisited: its mechanism of action and potential for treating diabetes. Nat. Rev. Drug Discov. 11, 692–708 (2012).

    Article  CAS  Google Scholar 

  59. Osto, M., Wielinga, P. Y., Alder, B., Walser, N. & Lutz, T. A. Modulation of the satiating effect of amylin by central ghrelin, leptin and insulin. Physiol. Behav. 91, 566–572 (2007).

    Article  CAS  Google Scholar 

  60. Roth, J. D. et al. Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc. Natl Acad. Sci. USA 105, 7257–7262 (2008).

    Article  CAS  Google Scholar 

  61. Reidelberger, R. et al. Effects of leptin replacement alone and with exendin-4 on food intake and weight regain in weight-reduced diet-induced obese rats. Am. J. Physiol. Endocrinol. Metab. 302, E1576–E1585 (2012).

    Article  CAS  Google Scholar 

  62. Müller, T. D. et al. Restoration of leptin responsiveness in diet-induced obese mice using an optimized leptin analog in combination with exendin-4 or FGF21. J. Pept. Sci. 18, 383–393 (2012).

    Article  Google Scholar 

  63. Trevaskis, J. L. et al. Amylin-mediated restoration of leptin responsiveness in diet-induced obesity: magnitude and mechanisms. Endocrinology 149, 5679–5687 (2008).

    Article  CAS  Google Scholar 

  64. Ravussin, E. et al. Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. Obesity (Silver Spring) 17, 1736–1743 (2009).

    Article  CAS  Google Scholar 

  65. [No authors listed] Amylin and Takeda discontinue development of pramlintide/metreleptin combination treatment for obesity following commercial reassessment of the program. Takeda Pharmaceuticals [online], (2011).

  66. Holzer, P., Reichmann, F. & Farzi, A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 46, 261–274 (2012).

    Article  CAS  Google Scholar 

  67. Savage, A. P., Adrian, T. E., Carolan, G., Chatterjee, V. K. & Bloom, S. R. Effects of peptide YY (PYY) on mouth to caecum intestinal transit time and on the rate of gastric emptying in healthy volunteers. Gut 28, 166–170 (1987).

    Article  CAS  Google Scholar 

  68. Batterham, R. L. et al. Inhibition of food intake in obese subjects by peptide YY3–36. N. Engl. J. Med. 349, 941–948 (2003).

    Article  CAS  Google Scholar 

  69. Gantz, I. et al. Efficacy and safety of intranasal peptide YY3–36 for weight reduction in obese adults. J. Clin. Endocrinol. Metab. 92, 1754–1757 (2007).

    Article  CAS  Google Scholar 

  70. Roth, J. D. et al. Combination therapy with amylin and peptide YY[3–36] in obese rodents: anorexigenic synergy and weight loss additivity. Endocrinology 148, 6054–6061 (2007).

    Article  CAS  Google Scholar 

  71. Wei, W. et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma. Proc. Natl Acad. Sci. USA 109, 3143–3148 (2012).

    Article  CAS  Google Scholar 

  72. Axelsen, L. N. et al. Glucagon and a glucagon-GLP-1 dual-agonist increases cardiac performance with different metabolic effects in insulin-resistant hearts. Br. J. Pharmacol. 165, 2736–2748 (2012).

    Article  CAS  Google Scholar 

  73. Ussher, J. R. & Drucker, D. J. Cardiovascular biology of the incretin system. Endocr. Rev. 33, 187–215 (2012).

    Article  CAS  Google Scholar 

  74. Drucker, D. J., Sherman, S. I., Bergenstal, R. M. & Buse, J. B. The safety of incretin-based therapies—review of the scientific evidence. J. Clin. Endocrinol. Metab. 96, 2027–2031 (2011).

    Article  CAS  Google Scholar 

  75. Clapper, J. R. et al. Effects of amylin and bupropion/naltrexone on food intake and body weight are interactive in rodent models. Eur. J. Pharmacol. 698, 292–298 (2013).

    Article  CAS  Google Scholar 

  76. Drucker, D. J. & Asa, S. Glucagon gene expression in vertebrate brain. J. Biol. Chem. 263, 13475–13478 (1988).

    CAS  PubMed  Google Scholar 

  77. Blache, P., Kervran, A. & Bataille, D. Oxyntomodulin and glicentin: brain gut peptides in the rat. Endocrinology 123, 2782–2787 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Daniel J. Drucker.

Ethics declarations

Competing interests

S. A. Sadry declares no competing interests. D. J. Drucker has served as an advisor or consultant within the past 12 months to Arisaph Pharmaceuticals Inc., Diartis Pharmaceuticals., Eli Lilly Inc, Glaxo Smith Kline, Merck Research Laboratories, Novo Nordisk Inc., NPS Pharmaceuticals Inc., Sanofi, Takeda, and Transition Pharmaceuticals Inc. Neither Dr Drucker nor his family members hold stock directly or indirectly in any of these companies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadry, S., Drucker, D. Emerging combinatorial hormone therapies for the treatment of obesity and T2DM. Nat Rev Endocrinol 9, 425–433 (2013). https://doi.org/10.1038/nrendo.2013.47

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.47

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing