Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Changes in pituitary function with ageing and implications for patient care

Abstract

The pituitary gland has a role in puberty, reproduction, stress-adaptive responses, sodium and water balance, uterine contractions, lactation, thyroid function, growth, body composition and skin pigmentation. Ageing is marked by initially subtle erosion of physiological signalling mechanisms, resulting in lower incremental secretory-burst amplitude, more disorderly patterns of pituitary hormone release and blunted 24 h rhythmic secretion. Almost all pituitary hormones are altered by ageing in humans, often in a manner dependent on sex, body composition, stress, comorbidity, intercurrent illness, medication use, physical frailty, caloric intake, immune status, level of exercise, and neurocognitive decline. The aim of this article is to critically discuss the mechanisms mediating clinical facets of changes in the hypothalamic–pituitary axis during ageing, and the extent to which confounding factors operate to obscure ageing-related effects.

Key Points

  • Growth hormone responses to most, but not all, stimuli decline markedly with ageing

  • Adrenocorticotropic hormone–cortisol dynamics change with age in a sex-related fashion

  • Water and electrolyte homeostasis is precarious in ageing

  • TSH tends to rise with age, especially in women

  • Gonadotropins increase more in women during ageing than in men

  • Multiple factors co-determine ageing effects on pituitary hormones

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human thyrotropic axis in ageing.
Figure 2: Adrenocorticotropic hormone secretion in ageing individuals.
Figure 3: Effects of ageing on water balance.
Figure 4: Ageing-related effects on prolactin secretion.

Similar content being viewed by others

References

  1. Surks, M. I. & Sievert, R. Drugs and thyroid function. N. Engl. J. Med. 333, 1688–1694 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Tietz, N. W., Shuey, D. F. & Wekstein, D. R. Laboratory values in fit aging individuals—sexagenarians through centenarians. Clin. Chem. 38, 1167–1185 (1992).

    CAS  PubMed  Google Scholar 

  3. Pinchera, A. et al. Thyroid autoimmunity and ageing. Horm. Res. 43, 64–68 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Ligthart, G. J. et al. Necessity of the assessment of health status in human immunogerontological studies: evaluation of the SENIEUR protocol. Mech. Ageing Dev. 55, 89–105 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. van Coevorden, A. et al. Decreased basal and stimulated thyrotropin secretion in healthy elderly men. J. Clin. Endocrinol. Metab. 69, 177–185 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Erfurth, E. M., Norden, N. E., Hedner, P., Nilsson, A. & Ek, L. Normal reference interval for thyrotropin response to thyroliberin: dependence on age, sex, free thyroxin index, and basal concentrations of thyrotropin. Clin. Chem. 30, 196–199 (1984).

    CAS  PubMed  Google Scholar 

  7. Roelfsema, F. et al. Thyrotropin secretion profiles are not different in men and women. J. Clin. Endocrinol. Metab. 94, 3964–3967 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Volpato, S. et al. Serum thyroxine level and cognitive decline in euthyroid older women. Neurology 58, 1055–1061 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. da Costa, V. M. & Rosenthal, D. Effects of aging on thyroidal function and proliferation. Curr. Aging Sci. 1, 101–104 (2008).

    Article  PubMed  Google Scholar 

  10. Peteranderl, C. et al. Nocturnal secretion of TSH and ACTH in male patients with depression and healthy controls. J. Psychiatr. Res. 36, 189–196 (2002).

    Article  PubMed  Google Scholar 

  11. Surks, M. I. et al. Subclinical thyroid disease: scientific review and guidelines for diagnosis and management. JAMA 291, 228–238 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Burman, K. D. et al. Nature of suppressed TSH secretion during undernutrition: effect of fasting and refeeding on TSH responses to prolonged TRH infusions. Metabolism 29, 46–52 (1980).

    Article  CAS  PubMed  Google Scholar 

  13. Over, R., Mannan, S., Nsouli-Maktabi, H., Burman, K. D. & Jonklaas, J. Age and the thyrotropin response to hypothyroxinemia. J. Clin. Endocrinol. Metab. 95, 3675–3683 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Waring, A. C. et al. Longitudinal changes in thyroid function in the oldest old and survival: the cardiovascular health study all-stars study. J. Clin. Endocrinol. Metab. 97, 3944–3950 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gussekloo, J. et al. Thyroid status, disability and cognitive function, and survival in old age. JAMA 292, 2591–2599 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Atzmon, G., Barzilai, N., Hollowell, J. G., Surks, M. I. & Gabriely, I. Extreme longevity is associated with increased serum thyrotropin. J. Clin. Endocrinol. Metab. 94, 1251–1254 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rozing, M. P. et al. Familial longevity is associated with decreased thyroid function. J. Clin. Endocrinol. Metab. 95, 4979–4984 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Bjergved, L. et al. Predictors of change in serum TSH after iodine fortification: an 11-year follow-up to the DanThyr study. J. Clin. Endocrinol. Metab. 97, 4022–4029 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Costa-E-Sousa R. H & Hollenberg, A. N. Minireview: the neural regulation of the hypothalamic–pituitary–thyroid axis. Endocrinol. 153, 4128–4135 (2012).

    Article  CAS  Google Scholar 

  20. Alkemade, A., Unmehopa, U. A., Wiersinga, W. M., Swaab, D. F. & Fliers, E. Glucocorticoids decrease thyrotropin-releasing hormone messenger ribonucleic acid expression in the paraventricular nucleus of the human hypothalamus. J. Clin. Endocrinol. Metab. 90, 323–327 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Van den Berghe, G. et al. Reactivation of pituitary hormone release and metabolic improvement by infusion of growth hormone-releasing peptide and thyrotropin-releasing hormone in patients with protracted critical illness. J. Clin. Endocrinol. Metab. 84, 1311–1323 (1999).

    CAS  PubMed  Google Scholar 

  22. Lieberman, S. A., Oberoi, A. L., Gilkison, C. R., Masel, B. E. & Urban, R. J. Prevalence of neuroendocrine dysfunction in patients recovering from traumatic brain injury. J. Clin. Endocrinol. Metab. 86, 2752–2756 (2001).

    CAS  PubMed  Google Scholar 

  23. Ferretti, E. et al. Evaluation of the adequacy of levothyroxine replacement therapy in patients with central hypothyroidism. J. Clin. Endocrinol. Metab. 84, 924–929 (1999).

    CAS  PubMed  Google Scholar 

  24. Walsh, J. P. et al. Thyrotropin and thyroid antibodies as predictors of hypothyroidism: a 13-year, longitudinal study of a community-based cohort using current immunoassay techniques. J. Clin. Endocrinol. Metab. 95, 1095–1104 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Parle, J. V., Franklyn, J. A., Cross, K. W., Jones, S. C. & Sheppard, M. C. Prevalence and follow-up of abnormal thyrotrophin (TSH) concentrations in the elderly in the United Kingdom. Clin. Endocrinol. (Oxf.) 34, 77–83 (1991).

    Article  CAS  Google Scholar 

  26. Gencer, B. et al. Subclinical thyroid dysfunction and the risk of heart failure events: an individual participant data analysis from 6 prospective cohorts. Circulation 126, 1040–1049 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, L. B. et al. Subclinical hyperthyroidism and the risk of cardiovascular events and all-cause mortality: an updated meta-analysis of cohort studies. Eur. J. Endocrinol. 167, 75–84 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Turner, M. R. et al. Levothyroxine dose and risk of fractures in older adults: nested case–control study. BMJ 342, d2238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heuser, I. J. et al. Age-associated changes of pituitary-adrenocortical hormone regulation in humans: importance of gender. Neurobiol. Aging 15, 227–231 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Born, J., Ditschuneit, I., Schreiber, M., Dodt, C. & Fehm, H. L. Effects of age and gender on pituitary-adrenocortical responsiveness in humans. Eur. J. Endocrinol. 132, 705–711 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Rubin, R. T., Rhodes, M. E., O'Toole, S. & Czambel, R. K. Sexual diergism of hypothalamo-pituitary-adrenal cortical responses to low-dose physotigmine in elderly vs. young women and men. Neuropsychopharmacology 26, 672–681 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Giordano, R. et al. Hypothalamus-pituitary-adrenal hyperactivity in human aging is partially refractory to stimulation by mineralocorticoid receptor blockade. J. Clin. Endocrinol. Metab. 90, 5656–5662 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Blicher-Toft, M. & Hummer, L. Immunoreactive corticotrophin reserve in old age in man during and after surgical stress. J. Gerontol. 31, 539–545 (1976).

    Article  CAS  PubMed  Google Scholar 

  34. Otte, C. et al. Mineralocorticoid receptor-mediated inhibition of the hypothalamic–pituitary-adrenal axis in aged humans. J. Gerontol. A Biol. Sci. Med. Sci. 58, B900–B905 (2003).

    Article  PubMed  Google Scholar 

  35. Blichert-Toft, M. & Hummer, L. Serum immunoreactive corticotrophin and response to metyrapone in old age in man. Gerontology 23, 236–243 (1977).

    Article  CAS  Google Scholar 

  36. Gelfin, Y., Lerer, B., Lesch, K. P., Gorfine, M. & Allolio, B. Complex effects of age and gender on hypothermic, adrenocorticotrophic hormone and cortisol responses to ipsapirone challenge in normal subjects. Psychopharmacology (Berl.) 120, 356–364 (1995).

    Article  CAS  Google Scholar 

  37. Boscaro, M. et al. Age-related changes in glucocorticoid fast feedback inhibition of adrenocorticotropin in man. J. Clin. Endocrinol. Metab. 83, 1380–1383 (1998).

    CAS  PubMed  Google Scholar 

  38. Wilkinson, C. W. et al. Human glucocorticoid feedback inhibition is reduced in older individuals: evening study. J. Clin. Endocrinol. Metab. 86, 545–550 (2001).

    CAS  PubMed  Google Scholar 

  39. Wolf, O. T. et al. Subjective memory complaints in aging are associated with elevated cortisol levels. Neurobiol. Aging 26, 1357–1363 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Sherman, B., Wysham, C. & Pfohl, B. Age-related changes in the circadian rhythm of plasma cortisol in man. J. Clin. Endocrinol. Metab. 61, 439–443 (1985).

    Article  CAS  PubMed  Google Scholar 

  41. Haus, E., Nicolau, G., Lakatua, D. J., Sackett-Lundeen, L. & Petrescu, E. Circadian rhythm parameters of endocrine functions in elderly subjects during the seventh to the ninth decade of life. Chronobiologia 16, 331–352 (1989).

    CAS  PubMed  Google Scholar 

  42. Purnell, J. Q., Brandon, D. D., Isabelle, L. M., Loriaux, D. L. & Samuels, M. H. Association of 24-hour cortisol production rates, cortisol-binding globulin, and plasma-free cortisol levels with body composition, leptin levels, and aging in adult men and women. J. Clin. Endocrinol. Metab. 89, 281–287 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Van Cauter, E., Leproult, R. & Kupfer, D. J. Effects of gender and age on the levels and circadian rhythmicity of plasma cortisol. J. Clin. Endocrinol. Metab. 81, 2468–2473 (1996).

    CAS  PubMed  Google Scholar 

  44. Andrew, R., Phillips, D. I. & Walker, B. R. Obesity and gender influence cortisol secretion and metabolism in man. J. Clin. Endocrinol. Metab. 83, 1806–1809 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Roelfsema, F., Pijl, H., Keenan, D. M. & Veldhuis, J. D. Diminshed adrenal sensitivity and ACTH efficacy in obese premenopausal women. Eur. J. Endocrinol. 167, 633–642 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Morano, M. I., Vazquez, D. M. & Akil, H. The role of the hippocampal mineralocorticoid and glucocorticoid receptors in the hypothalamo–pituitary-adrenal axis of the aged Fisher rat. Mol. Cell Neurosci. 5, 400–412 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Swaab, D. F. & Bao, A. M. (Re-)activation of neurons in aging and dementia: lessons from the hypothalamus. Exp. Gerontol. 46, 178–184 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Lanfranco, F. et al. Obese patients with obstructive sleep apnoea syndrome show a peculiar alteration of the corticotroph but not of the thyrotroph and lactotroph function. Clin. Endocrinol. (Oxf.) 60, 41–48 (2004).

    Article  CAS  Google Scholar 

  49. Kostoglou-Athanassiou, I., Treacher, D. F., Wheeler, M. J. & Forsling, M. L. Bright light exposure and pituitary hormone secretion. Clin. Endocrinol. (Oxf.) 48, 73–79 (1998).

    Article  CAS  Google Scholar 

  50. Naing, K. K., Dewar, J. A. & Leese, G. P. Megestrol acetate therapy and secondary adrenal suppression. Cancer 86, 1044–1049 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Sasayama, D. et al. Modulation of cortisol responses to the DEX/CRH test by polymorphisms of the interleukin-1beta gene in healthy adults. Behav. Brain Funct. 7, 23 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Aguilera, G. HPA axis responsiveness to stress: implications for healthy aging. Exp. Gerontol 46, 90–95 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Flurkey, K., Papaconstantinou, J., Miller, R. A. & Harrison, D. E. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc. Natl Acad. Sci. USA 98, 6736–6741 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Impallomeni, M., Yeo, T., Rudd, A., Carr, D. & Aber, V. Investigation of anterior pituitary function in elderly in-patients over the age of 75. Q. J. Med. 63, 505–515 (1987).

    CAS  PubMed  Google Scholar 

  55. Parker, L., Gral, T., Perrigo, V. & Skowksy, R. Decreased adrenal androgen sensitivity to ACTH during aging. Metabolism 30, 601–604 (1981).

    Article  CAS  PubMed  Google Scholar 

  56. Schwartz, W. B., Bennett, W., Curelop, S. & Bartler, F. C. A syndrome of renal sodium loss and hyponatremia probably resulting from inappropriate secretion of antidiuretic hormone. Am. J. Med. 23, 529–542 (1957).

    Article  CAS  PubMed  Google Scholar 

  57. Bollanti, L., Riondino, G. & Strollo, F. Endocrine paraneoplastic syndromes with special reference to the elderly. Endocrine 14, 151–157 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Diringer, M. N. & Zazulia, A. R. Hyponatremia in neurologic patients: consequences and approaches to treatment. Neurologist 12, 117–126 (2006).

    Article  PubMed  Google Scholar 

  59. Davy, K. P. & Seals, D. R. Total blood volume in healthy young and older men. J. Appl. Physiol. 76, 2059–2062 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Phillips, P. A. et al. Reduced thirst after water deprivation in healthy elderly men. N. Engl. J. Med. 311, 753–759 (1984).

    Article  CAS  PubMed  Google Scholar 

  61. Weidmann, P., De Myttenaere-Bursztein, S., Maxwell, M. H. & de, Lima, J. Effect on aging on plasma renin and aldosterone in normal man. Kidney Int. 8(5), 325–333 (1975).

    Article  CAS  PubMed  Google Scholar 

  62. Rowe, J. W., Minaker, K. L., Sparrow, D. & Robertson, G. L. Age-related failure of volume-pressure-mediated vasopressin release. J. Clin. Endocrinol. Metab. 54, 661–664 (1982).

    Article  CAS  PubMed  Google Scholar 

  63. Tian, Y., Serino, R. & Verbalis, J. G. Downregulation of renal vasopressin V2 receptor and aquaporin-2 expression parallels age-associated defects in urine concentration. Am. J. Physiol. Renal Physiol. 287, F797–F805 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Helderman, J. H. et al. The response of arginine vasopressin to intravenous ethanol and hypertonic saline in man: the impact of aging. J. Gerontol. 33, 39–47 (1978).

    Article  CAS  PubMed  Google Scholar 

  65. Sherlock, M. et al. The incidence and pathophysiology of hyponatraemia after subarachnoid haemorrhage. Clin. Endocrinol. (Oxf.) 64, 250–254 (2006).

    Article  Google Scholar 

  66. Coupland, C. et al. Antidepressant use and risk of adverse outcomes in older people: population based cohort study. BMJ 343, d4551 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Iwasaki, Y. et al. Osmoregulation of plasma vasopressin in myxedema. J. Clin. Endocrinol. Metab. 70, 534–539 (1990).

    Article  CAS  PubMed  Google Scholar 

  68. Ayus, J. C. & Arieff, A. I. Chronic hyponatremic encephalopathy in postmenopausal women: association of therapies with morbidity and mortality. JAMA 281, 2299–2304 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Torres, A. C., Wickham, E. P. & Biskobing, D. M. Tolvaptan for the management of syndrome of inappropriate antidiuretic hormone secretion: lessons learned in titration of dose. Endocr. Pract. 17, e97–e100 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Veldhuis, J. D., Roemmich, J. N., Richmond, E. J. & Bowers, C. Y. Somatotropic and gonadotropic axes linkages in infancy, childhood, and the puberty-adult transition. Endocr. Rev. 27, 101–140 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Broglio, F. et al. The endocrine response to ghrelin as a function of gender in humans in young and elderly subjects. J. Clin. Endocrinol. Metab. 88, 1537–1542 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Greenwood, F. C., Landon, J. & Stamp, T. C. The plasma sugar, free fatty acid, cortisol, and growth hormone response to insulin. I. In control subjects. J. Clin. Invest. 45, 429–436 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Arvat, E. et al. Age-related variations in the neuroendocrine control, more than impaired receptor sensitivity, cause the reduction in the GH-releasing activity of GHRP's in human aging. Pituitary 1, 51–58 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Weltman, A. et al. Relationship between age, percentage body fat, fitness, and 24-hour growth hormone release in healthy young adults: effects of gender. J. Clin. Endocrinol. Metab. 78, 543–548 (1994).

    CAS  PubMed  Google Scholar 

  75. Giustina, A. & Veldhuis, J. D. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr. Rev. 19, 717–797 (1998).

    CAS  PubMed  Google Scholar 

  76. Veldhuis, J. D., Roelfsema, F., Keenan, D. M. & Pincus, S. M. Gender, age, body mass index and IGF-I individually and jointly determine distinct GH dynamics: analyses in one hundred healthy adults. J. Clin. Endocrinol. Metab. 96, 115–121 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Aimaretti, G. et al. Diagnostic reliability of a single IGF-I measurement in 237 adults with total anterior hypopituitarism and severe GH deficiency. Clin. Endocrinol. (Oxf.) 59, 56–61 (2003).

    Article  CAS  Google Scholar 

  78. Aimaretti, G. et al. Enhancement of the peripheral sensitivity to growth hormone in adults with GH deficiency. Eur. J. Endocrinol. 145, 267–272 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Barzilai, N., Huffman, D. M., Muzumdar, R. H. & Bartke, A. The critical role of metabolic pathways in aging. Diabetes 61, 1315–1322 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Brill, K. T. et al. Single and combined effects of growth hormone and testosterone administration on measures of body composition, physical performance, mood, sexual function, bone turnover, and muscle gene expression in healthy older men. J. Clin. Endocrinol. Metab. 87, 5649–5657 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Blackman, M. R. et al. Growth hormone and sex steroid administration in healthy aged women and men: a randomized controlled trial. JAMA 288, 2282–2292 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Fernholm, R. et al. Growth hormone replacement therapy improves body composition and increases bone metabolism in elderly patients with pituitary disease. J. Clin. Endocrinol. Metab. 85, 4104–4112 (2000).

    CAS  PubMed  Google Scholar 

  83. Hoffman, A. R. et al. Efficacy and tolerability of an individualized dosing regimen for adult growth hormone replacement therapy in comparison with fixed body weight-based dosing. J. Clin. Endocrinol. Metab. 89, 3224–3233 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Bowers, C. Y. et al. Sustained elevation of pulsatile growth hormone (GH) secretion and insulin-like growth factor I (IGF-I), IGF-binding protein-3 (IGFBP-3), and IGFBP-5 concentrations during 30-day continuous subcutaneous infusion of GH-releasing peptide-2 in older men and women. J. Clin. Endocrinol. Metab. 89, 2290–2300 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Anawalt, B. D. & Merriam, G. R. Neuroendocrine aging in men. Andropause and somatopause. Endocrinol. Metab. Clin. North Am. 30, 647–669 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Mukherjee, A., Ryder, W. D., Jostel, A. & Shalet, S. M. Prolactin deficiency is independently associated with reduced insulin-like growth factor I status in severely growth hormone-deficient adults. J. Clin. Endocrinol. Metab. 91, 2520–2525 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Veldhuis, J. D., Evans, W. S. & Stumpf, P. G. Mechanisms subserving estradiol's induction of increased prolactin concentrations: evidence for amplitude modulation of spontaneous prolactin secretory bursts. Am. J. Obstet. Gynecol. 161, 1149–1158 (1989).

    Article  CAS  PubMed  Google Scholar 

  88. Yamaji, T., Shimamoto, K., Ishibashi, M., Kosaka, K. & Orimo, H. Effect of age and sex on circulating and pituitary prolactin levels in human. Acta Endocrinol. (Copenh.) 83, 711–719 (1976).

    Article  CAS  Google Scholar 

  89. Kruger, T. H. et al. Serial neurochemical measurement of cerebrospinal fluid during the human sexual response cycle. Eur. J. Neurosci. 24, 3445–3452 (2006).

    Article  PubMed  Google Scholar 

  90. Quigley, M. E., Ropert, J. F. & Yen, S. S. Acute prolactin release triggered by feeding. J. Clin. Endocrinol. Metab. 52, 1043–1045 (1981).

    Article  CAS  PubMed  Google Scholar 

  91. Kok, P., Roelfsema, F., Frölich, M., Meinders, A. E. & Pijl, H. Prolactin release is enhanced in proportion to excess visceral fat in obese women. J. Clin. Endocrinol. Metab. 89, 4445–4449 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Arnetz, B. B., Lahnborg, G. & Eneroth, P. Age-related differences in the pituitary prolactin response to thyrotropin-releasing hormone. Life Sci. 39, 135–139 (1986).

    Article  CAS  PubMed  Google Scholar 

  93. Veldhuis, J. D., Iranmanesh, A., Johnson, M. L. & Lizarralde, G. Twenty-four hour rhythms in plasma concentrations of adenohypophyseal hormones are generated by distinct amplitude and/or frequency modulation of underlying pituitary secretory bursts. J. Clin. Endocrinol. Metab. 71, 1616–1623 (1990).

    Article  CAS  PubMed  Google Scholar 

  94. Roelfsema, F., Pijl, H., Keenan, D. M. & Veldhuis, J. D. Prolactin secretion in healthy adults is determed by gender, age and body mass index. PLoS ONE 7, e31305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Iranmanesh, A., Mulligan, T. & Veldhuis, J. D. Mechanisms subserving the physiological nocturnal relative hypoprolactinemia of healthy older men: dual decline in prolactin secretory burst mass and basal release with preservation of pulse duration, frequency, and interpulse interval. J. Clin. Endocrinol. Metab. 84, 1083–1090 (1999).

    CAS  PubMed  Google Scholar 

  96. Blackman, M. R., Kowatch, M. A., Wehmann, R. E. & Harman, S. M. Basal serum prolactin levels and prolactin responses to constant infusions of thyrotropin releasing hormone in healthy aging men. J. Gerontol. 41, 699–705 (1986).

    Article  CAS  PubMed  Google Scholar 

  97. Tworoger, S. S., Eliassen, A. H., Rosner, B., Sluss, P. & Hankinson, S. E. Plasma prolactin concentrations and risk of postmenopausal breast cancer. Cancer Res. 64, 6814–6819 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Berinder, K., Akre, O., Granath, F. & Hulting, A. L. Cancer risk in hyperprolactinemia patients: a population-based cohort study. Eur. J. Endocrinol. 165, 209–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. McCudden, C. R., Sharpless, J. L. & Grenache, D. G. Comparison of multiple methods for identification of hyperprolactinemia in the presence of macroprolactin. Clin. Chim. Acta 411, 155–160 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Frieze, T. W., Mong, D. P. & Koops, M. K. “Hook effect” in prolactinomas: case report and review of literature. Endocr. Pract. 8, 296–303 (2002).

    Article  PubMed  Google Scholar 

  101. Tenover, J. S. et al. Decreased serum inhibin levels in normal elderly men: evidence for a decline in Sertoli cell function with aging. J. Clin. Endocrinol. Metab. 67, 455–459 (1988).

    Article  CAS  PubMed  Google Scholar 

  102. Nieschlag, E., Lammers, U., Freischem, C. W., Langer, K. & Wickings, E. J. Reproductive functions in young fathers and grandfathers. J. Clin. Endocrinol. Metab. 55, 676–681 (1982).

    Article  CAS  PubMed  Google Scholar 

  103. Sowers, M. R. et al. Anti-mullerian hormone and inhibin B in the definition of ovarian aging and the menopause transition. J. Clin. Endocrinol. Metab. 93, 3478–3483 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tenover, J. S., Matsumoto, A. M., Plymate, S. R. & Bremner, W. J. The effects of aging in normal men on bioavailable testosterone and luteinizing hormone secretion: response to clomiphene citrate. J. Clin. Endocrinol. Metab. 65, 1118–1126 (1987).

    Article  CAS  PubMed  Google Scholar 

  105. Veldhuis, J. D., Urban, R. J., Lizarralde, G., Johnson, M. L. & Iranmanesh, A. Attenuation of luteinizing hormone secretory burst amplitude is a proximate basis for the hypoandrogenism of healthy aging in men. J. Clin. Endocrinol. Metab. 75, 707–713 (1992).

    CAS  PubMed  Google Scholar 

  106. Lasaga, M. & Debeljuk, L. Tachykinins and the hypothalamo-pituitary-gonadal axis: An update. Peptides 32, 1972–1978 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Rance, N. E. Menopause and the human hypothalamus: evidence for the role of kisspeptin/neurokinin B neurons in the regulation of estrogen negative feedback. Peptides 30, 111–122 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Downs, J. L. & Wise, P. M. The role of the brain in female reproductive aging. Mol. Cell Endocrinol. 299, 32–38 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Gill, S., Sharpless, J. L., Rado, K. & Hall, J. E. Evidence that GnRH decreases with gonadal steroid feedback but increases with age in postmenopausal women. J. Clin. Endocrinol. Metab. 87, 2290–2296 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Jindatip, D., Fujiwara, K., Kouki, T. & Yashiro, T. Transmission and scanning electron microscopy study of the characteristics and morphology of pericytes and novel desmin-immunopositive perivascular cells before and after castration in rat anterior pituitary gland. Anat. Sci. Int. 87, 165–173 (2012).

    Article  PubMed  Google Scholar 

  111. Keenan, D. M. & Veldhuis, J. D. Age-dependent regression analysis of male gonadal axis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1215–R1227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bonavera, J. J., Swerdloff, R. S., Sinha Hakim, A. P., Lue, Y. H. & Wang, C. Aging results in attenuated gonadotropin releasing hormone-luteinizing hormone axis responsiveness to glutamate receptor agonist N-methyl-D-aspartate. J. Neuroendocrinol. 10, 93–99 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Zwart, A. D., Urban, R. J., Odell, W. D. & Veldhuis, J. D. Contrasts in the gonadotropin-releasing dose-response relationships for luteinizing hormone, follicle-stimulating hormone, and alpha-subunit release in young versus older men: appraisal with high-specificity immunoradiometric assay and deconvolution analysis. Eur. J. Endocrinol. 135, 399–406 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Loreti, N. et al. Carbohydrate complexity and proportion of serum FSH isoforms reflect pituitary-ovarian activity in perimenopausal women and depot medroxyprogesterone acetate users. Clin. Endocrinol. (Oxf.) 71, 558–565 (2009).

    Article  CAS  Google Scholar 

  115. Keenan, D. M., Evans, W. S. & Veldhuis, J. D. Control of LH secretory-burst frequency and interpulse-interval regularity in women. Am. J. Physiol. Endocrinol. Metab. 285, E938–E948 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Keenan, D. M. et al. An ensemble model of the male gonadal axis: illustrative application in aging men. Endocrinol. 147, 2817–2828 (2006).

    Article  CAS  Google Scholar 

  117. Mulligan, T., Iranmanesh, A., Kerzner, R., Demers, L. W. & Veldhuis, J. D. Two-week pulsatile gonadotropin releasing hormone infusion unmasks dual (hypothalamic and Leydig-cell) defects in the healthy aging male gonadotropic axis. Eur. J. Endocrinol. 141, 257–266 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Pincus, S. M., Veldhuis, J. D., Mulligan, T., Iranmanesh, A. & Evans, W. S. Effects of age on the irregularity of LH and FSH serum concentrations in women and men. Am. J. Physiol. 273, E989–E995 (1997).

    CAS  PubMed  Google Scholar 

  119. Pincus, S. M. et al. Older males secrete luteinizing hormone and testosterone more irregularly, and jointly more asynchronously, than younger males. Proc. Natl Acad. Sci. USA 93, 14100–14105 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Veldhuis, J. D., Zwart, A. D. & Iranmanesh, A. Neuroendocrine mechanisms by which selective Leydig-cell castration unleashes increased pulsatile LH release. Am. J. Physiol. 272, R464–R474 (1997).

    CAS  PubMed  Google Scholar 

  121. North American Menopause Society. The 2012 hormone therapy position statement of: The North American Menopause Society. Menopause 19, 257–271 (2012).

  122. Shoupe, D. Individualizing hormone therapy to minimize risk: accurate assessment of risks and benefits. Womens Health (Lond. Engl.) 7, 475–485 (2011).

    Article  CAS  Google Scholar 

  123. Kyle, C. V. Griffin, J. Jarrett, A & Odell, W. D. Inability to demonstrate an ultrashort loop feedback mechanism for luteinizing hormone in humans. J. Clin Endocrinol. Metab. 69, 170–176 (1989).

    Article  CAS  PubMed  Google Scholar 

  124. Sun, L. et al. FSH directly regulates bone mass. Cell 125, 247–260 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Iqbal, J., Sun, L., Kumar, T. R., Blair, H. C. & Zaidi, M. Follicle-stimulating hormone stimulates TNF production from immune cells to enhance osteoblast and osteoclast formation. Proc. Natl Acad. Sci. USA 103, 14925–14930 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gourlay, M. L. et al. Follicle-stimulating hormone is independently associated with lean mass but not BMD in younger postmenopausal women. Bone 50, 311–316 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Gourlay, M. L., Preisser, J. S., Hammett-Stabler, C. A., Renner, J. B. & Rubin, J. Follicle-stimulating hormone and bioavailable estradiol are less important than weight and race in determining bone density in younger postmenopausal women. Osteoporos Int. 22, 2699–2708 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Archer, D. F. et al. Menopausal hot flushes and night sweats: where are we now? Climacteric 14, 515–528 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Van den Berghe, G. et al. The combined administration of GH-releasing peptide-2 (GHRP-2), TRH and GnRH to men with prolonged critical illness evokes superior endocrine and metabolic effects compared to treatment with GHRP-2 alone. Clin. Endocrinol. (Oxf.) 56, 655–669 (2002).

    Article  CAS  Google Scholar 

  130. Hall, J. E., Lavoie, H. B., Marsh, E. E. & Martin, K. A. Decrease in gonadotropin-releasing hormone (GnRH) pulse frequency with aging in postmenopausal women. J. Clin. Endocrinol. Metab. 85, 1794–1800 (2000).

    CAS  PubMed  Google Scholar 

  131. Iles, R. K., Javid, M. K., Gunn, L. K. & Chard, T. Cross-reaction with luteinizing hormone beta-core is responsible for the age-dependent increase of immunoreactive beta-core fragment of human chorionic gonadotropin in women with nonmalignant conditions. Clin. Chem. 45, 532–538 (1999).

    CAS  PubMed  Google Scholar 

  132. Kastelan, D. & Korsic, M. High prevalence rate of pituitary incidentaloma: is it associated with the age-related decline of the sex hormones levels? Med. Hypotheses 69, 307–309 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Khandelwal, D. & Tandon, N. Overt and subclinical hypothyroidism: who to treat and how. Drugs 72, 17–33 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Klein, I. & Ojamaa, K. Thyroid hormone and the cardiovascular system. N. Engl. J. Med. 344, 501–509 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Murphy, E. et al. Thyroid function within the upper normal range is associated with reduced bone mineral density and an increased risk of nonvertebral fractures in healthy euthyroid postmenopausal women. J. Clin. Endocrinol. Metab. 95, 3173–3181 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Filipsson, H. & Johannsson, G. GH replacement in adults: interactions with other pituitary hormone deficiencies and replacement therapies. Eur. J. Endocrinol. 161 (Suppl. 1), S85–S95 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Santen, R. J. et al. Postmenopausal hormone therapy: an Endocrine Society scientific statement. J. Clin. Endocrinol. Metab. 95 (7 Suppl. 1), S1–S66 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wierman, M. E. et al. Androgen therapy in women: an Endocrine Society Clinical Practice guideline. J. Clin. Endocrinol. Metab. 91, 3697–3710 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Bhasin, S. et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 95, 2536–2559 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Turner, H. E., Adams, C. B. & Wass, J. A. Pituitary tumours in the elderly: a 20 year experience. Eur. J. Endocrinol. 140, 383–389 (1999).

    Article  CAS  PubMed  Google Scholar 

  141. Benbow, S. J., Foy, P., Jones, B., Shaw, D. & MacFarlane, I. A. Pituitary tumours presenting in the elderly: management and outcome. Clin. Endocrinol. (Oxf.) 46, 657–660 (1997).

    Article  CAS  Google Scholar 

  142. Ferrante, L. et al. Surgical treatment of pituitary tumors in the elderly: clinical outcome and long-term follow-up. J. Neurooncol. 60, 185–191 (2002).

    Article  PubMed  Google Scholar 

  143. Kurosaki, M., Ludecke, D. K., Flitsch, J. & Saeger, W. Surgical treatment of clinically nonsecreting pituitary adenomas in elderly patients. Neurosurgery 47, 843–848 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Veldhuis, J. D., Keenan, D. M. & Pincus, S. M. Motivations and methods for analyzing pulsatile hormone secretion. Endocr. Rev. 29, 823–864 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Latta, F. et al. Sex differences in nocturnal growth hormone and prolactin secretion in healthy older adults: relationships with sleep EEG variables. Sleep 28, 1519–1524 (2005).

    Article  PubMed  Google Scholar 

  146. Hartl, F. & Fischer, C. Morphological changes of the human adenohypophysis and their relations to age, sex and constitution [German]. Z. Alternsforsch. 8, 301–308 (1955).

    CAS  PubMed  Google Scholar 

  147. Sonntag, W. E., Lynch, C. D., Cooney, P. T. & Hutchins, P. M. Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor 1. Endocrinology 138, 3515–3520 (1997).

    Article  CAS  PubMed  Google Scholar 

  148. Liu, S. Peptidergic innervation in pars distalis of the human anterior pituitary. Brain Res. 1008, 61–68 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Banks, W. A. Brain meets body: the blood-brain barrier as an endocrine interface. Endocrinology 153, 4111–4119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks J. Smith of the Endocrine Research Unit, Mayo Clinic, for support of manuscript preparation. Supported in part via AG019695, DK073148, AG029362, AG031763 and DK050456 (Metabolic Studies Core of the Minnesota Obesity Center) from the National Institutes of Health (Bethesda, MD). The content is solely the responsibility of the author and does not necessarily represent the official views of the National Institute on ageing or the National Institutes of Health. Certain cited studies were supported by the National Center for Research Resources and by Grant Number UL1 TR000135 from the National Center for Advancing Translational Sciences (NCTS).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Table 1

Hypothalamo-pituitary secretory reserve in aging (DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veldhuis, J. Changes in pituitary function with ageing and implications for patient care. Nat Rev Endocrinol 9, 205–215 (2013). https://doi.org/10.1038/nrendo.2013.38

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.38

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing