Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oxidative stress and the ageing endocrine system

Abstract

Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

Key Points

  • Reactive oxygen species (ROS) are an inescapable by-product of oxidative metabolism and are believed to be involved in ageing, but they are also essential for several physiological functions

  • Data indicate that the endocrine system is involved in the modulation of oxidative stress through the production of several hormones

  • Oxidative stress also seems to have a role in the ageing of the endocrine system and in the pathogenesis of several endocrine diseases

  • How oxidative stress causes ageing in endocrine tissues is unclear; in some tissues, inflammation is probably the link between the two processes

  • ROS can induce inflammation directly by acting on transcription factors such as nuclear factor κB and indirectly by modulating other processes such as cellular senescence, mitochondrial dysfunction and microRNA production

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram showing the potential role of oxidative stress in the progressive dysfunction of the hypothalamic–pituitary–adrenal (HPA) axis observed with ageing.
Figure 2: Schematic representation of thyroid hormone synthesis in thyrocytes.
Figure 3: Potential role of ROS on testicular physiology and testicular ageing.
Figure 4: Schematic representation of the connections between oxidative stress and inflammation and their modification during ageing.

Similar content being viewed by others

References

  1. Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).

    Article  CAS  PubMed  Google Scholar 

  2. Hertoghe, T. The “multiple hormone deficiency” theory of ageing: is human senescence caused mainly by multiple hormone deficiencies? Ann. NY Acad. Sci. 1057, 448–465 (2005).

    Article  PubMed  Google Scholar 

  3. Vitale, G. et al. Low circulating IGF-I bioactivity is associated with human longevity: Findings in centenarians' offspring. Ageing (Albany NY) 4, 580–589 (2012).

    CAS  Google Scholar 

  4. McCann, S. M., Mastronardi, C., de Laurentiis, A. & Rettori, V. The nitric oxide theory of ageing revisited. Ann. NY Acad. Sci. 1057, 64–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Kondo, T., Ohshima, T. & Ishida, Y. Age-dependent expression of 8-hydroxy-2'-deoxyguanosine in human pituitary gland. Histochem. J. 33, 647–651 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Rodrigues Siqueira, I., Fochesatto, C., da Silva Torres, I. L., Dalmaz, C. & Alexandre Netto, C. Ageing affects oxidative state in hippocampus, hypothalamus and adrenal glands of Wistar rats. Life Sci. 78, 271–278 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Nessi, A. C., De Hoz, G., Tanoira, C., Guaraglia, E. & Consens, G. Pituitary physiological and ultrastructural changes during ageing. Endocrine 3, 711–716 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Argüelles, S., Cano, M., Machado, A. & Ayala, A. Effect of ageing and oxidative stress on elongation factor-2 in hypothalamus and hypophysis. Mech. Ageing Dev. 132, 55–64 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Garrido P. Ageing and stress: past hypotheses, present approaches and perspectives. Ageing Dis. 2, 80–99 (2011).

    Google Scholar 

  10. Aguilera, G. HPA axis responsiveness to stress: implications for healthy ageing. Exp. Gerontol. 46, 90–95 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Jacobson, L. & Sapolsky, R. M. The role of the hippocampus in feedback regulation of the hypothalamic–pituitary-adrenocortical axis. Endocr. Rev. 12, 118–134 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Berardelli, R. et al. Role of mineralocorticoid receptors on the hypothalamus–pituitary-adrenal axis in humans. Endocrine 43, 51–58 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Rothman, S. M. & Mattson, M. P. Adverse stress, hippocampal networks, and Alzheimer's disease. Neuromolecular Med. 12, 56–70 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Sapolsky, R. M., Krey, L. C. & McEwen, B. S. The neuroendocrinology of stress and ageing: the glucocorticoid cascade hypothesis. Endocr. Rev. 7, 284–301 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. Conrad, C. D. Chronic stress-induced hippocampal vulnerability: the glucocorticoid vulnerability hypothesis. Rev. Neurosci. 19, 395–411 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kobayashi, N. et al. Elevation by oxidative stress and ageing of hypothalamic–pituitary-adrenal activity in rats and its prevention by vitamin E. J. Clin. Biochem. Nutr. 45, 207–213 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Costantini, D., Marasco, V. & Møller, A. P. A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J. Comp. Physiol. B. 181, 447–456 (2011).

    CAS  PubMed  Google Scholar 

  18. Sato, H., Takahashi, T., Sumitani, K., Takatsu, H. & Urano, S. Glucocorticoid generates ROS to induce oxidative injury in the hippocampus, leading to impairment of cognitive function of rats. J. Clin. Biochem. Nutr. 47, 224–232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Angioni, S. et al. Corticotropin-releasing hormone modulates cytokines release in cultured human peripheral blood mononuclear cells. Life Sci. 53, 1735–1742 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Genedani, S. et al. Influence of f-MLP, ACTH(1–24) and CRH on in vitro chemotaxis of monocytes from centenarians. Neuroimmunomodulation 15, 285–289 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Franceschi, C. et al. The network and the remodeling theories of aging: historical background and new perspectives. Exp. Gerontol. 35, 879–896 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Messarah, M., Saoudi, M., Boumendjel, A., Boulakoud, M. S. & Feki, A. E. Oxidative stress induced by thyroid dysfunction in rat erythrocytes and heart. Environ. Toxicol. Pharmacol. 31, 33–41 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Nishizawa, H. et al. Enhanced oxidative stress in GH-transgenic rat and acromegaly in humans. Growth Horm. IGF Res. 22, 64–68 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Meng, D., Shi, X., Jiang, B. H. & Fang J. Insulin-like growth factor-I (IGF-I) induces epidermal growth factor receptor transactivation and cell proliferation through reactive oxygen species. Free Radic. Biol. Med. 42, 1651–1660 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Conti, E. et al. IGF-1 and atherothrombosis: relevance to pathophysiology and therapy. Clin. Sci. (Lond.) 120, 377–402 (2011).

    Article  CAS  Google Scholar 

  26. Higashi, Y., Sukhanov, S., Anwar, A., Shai, S. Y. & Delafontaine, P. IGF-1, oxidative stress and atheroprotection. Trends Endocrinol. Metab. 21, 245–254 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span-from yeast to humans. Science 328, 321–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bonafe, M. et al. Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of lifespan control. J. Clin. Endocrinol. Metab. 88, 3299–3304 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Colao, A. et al. Insulin-like growth factor deficiency determines increased intima-media thickness at common carotid arteries in adult patients with growth hormone deficiency. Clin. Endocrinol. 61, 360–366 (2004).

    Article  CAS  Google Scholar 

  30. Galderisi, M. et al. Positive association between circulating free IGF-1 levels and coronary flow reserve in arterial systemic hypertension. Am. J. Hypertens. 15, 766–772 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Galderisi, M. et al. Inverse association between free insulin-like growth factor-1 and isovolumic relaxation in arterial systemic hypertension. Hypertension 38, 840–845 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Sherlock, M. et al. Mortality in patients with pituitary disease. Endocr. Rev. 31, 301–342 (2010).

    Article  PubMed  Google Scholar 

  33. Kireev, R. A. et al. Effect of exogenous administration of melatonin and growth hormone on pro-antioxidant functions of the liver in aging male rats. J. Pineal. Res. 42, 64–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Reiter, R. J. The pineal gland and melatonin in relation to aging: a summary of the theories and of the data. Exp. Gerontol. 30, 199–212 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Reiter, R. J., Guerrero, J. M., Garcia, J. J. & Acuña-Castroviejo, D. Reactive oxygen intermediates, molecular damage, and aging. Relation to melatonin. Ann. NY Acad. Sci. 20, 410–424 (1998).

    Article  Google Scholar 

  36. Fong, P. Thyroid iodide efflux: a team effort? J. Physiol. 589, 5929–5939 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ohye, H. & Sugawara, M. Dual oxidase, hydrogen peroxide and thyroid diseases. Exp. Biol. Med. (Maywood) 235, 424–433 (2010).

    Article  CAS  Google Scholar 

  38. Schweizer, U., Chiu, J. & Köhrle J. Peroxides and peroxide-degrading enzymes in the thyroid. Antioxid. Redox Signal. 10, 1577–1592 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Mariotti, S. et al. Complex alteration of thyroid function in healthy centenarians. J. Clin. Endocrinol. Metab. 77, 1130–1134 (1993).

    CAS  PubMed  Google Scholar 

  40. Mariotti, S., Franceschi, C., Cossarizza, A. & Pinchera, A. The aging thyroid. Endocr. Rev. 16, 686–715 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Pinchera, A. et al. Thyroid autoimmunity and ageing. Horm. Res. 43, 64–68 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Corsonello, A. et al. A cross-section analysis of FT3 age-related changes in a group of old and oldest-old subjects, including centenarians' relatives, shows that a down-regulated thyroid function has a familial component and is related to longevity. Age Ageing 39, 723–727 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rozing, M. P. et al. Familial longevity is associated with decreased thyroid function. J. Clin. Endocrinol. Metab. 95, 4979–4984 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Mitrou, P., Raptis, S. A. & Dimitriadis, G. Thyroid disease in older people. Maturitas 70, 5–9 (2011).

    Article  PubMed  Google Scholar 

  45. Burek, C. L. & Rose, N. R. Autoimmune thyroiditis and ROS. Autoimmun. Rev. 7, 530–537 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Zarkovic M. The role of oxidative stress on the pathogenesis of Graves' disease. J. Thyroid Res. 2012, 302537 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Cloos, P. A. & Christgau, S. Post-translational modifications of proteins: implications for ageing, antigen recognition, and autoimmunity. Biogerontology 5, 139–158 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Duthoit, C. et al. Hydrogen peroxide-induced production of a 40 kDa immunoreactive thyroglobulin fragmentin human thyroid cells: the onset of thyroid autoimmunity? Biochem. J. 360, 557–562 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zheng, R. Q. et al. Expression of intercellular adhesion molecule-1 and lymphocyte function-associated antigen-3 on human thyroid epithelial cells in Graves' and Hashimoto's diseases. J. Autoimmun. 3, 727–736 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. Schomburg, L. Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nat. Rev. Endocrinol. 8, 160–171 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Duntas, L. H. Selenium and the thyroid: a close-knit connection. J. Clin. Endocrinol. Metab. 95, 5180–5188 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Akbaraly, T. N. et al. Plasma selenium over time and cognitive decline in the elderly. Epidemiology 18, 52–58 (2007).

    Article  PubMed  Google Scholar 

  53. Lassoued, S. et al. A comparative study of the oxidative profile in Graves' disease, Hashimoto's thyroiditis, and papillary thyroid cancer. Biol. Trace Elem. Res. 138, 107–115 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, D. et al. Total oxidant/antioxidant status in sera of patients with thyroid cancers. Endocr. Relat. Cancer 18, 773–782 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Du, Z. X., Zhang, H. Y., Meng, X., Guan, Y. & Wang, H. Q. Role of oxidative stress and intracellular glutathione in the sensitivity to apoptosis induced by proteasome inhibitor in thyroid cancer cells. BMC Cancer 9, 56–67 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Laatikainen, L. E. et al. Extracellular superoxide dismutase is a thyroid differentiation marker down-regulated in cancer. Endocr. Relat. Cancer 17, 785–796 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Erdamar, H. et al. Increased lipid peroxidation and impaired enzymatic antioxidant defense mechanism in thyroid tissue with multinodular goiter and papillary carcinoma. Clin. Biochem. 43, 650–654 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Karger, S. et al. Distinct pattern of oxidative DNA damage and DNA repair in follicular thyroid tumours. J. Mol. Endocrinol. 48, 193–202 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Xing, M. Oxidative stress: a new risk factor for thyroid cancer. Endocr. Relat. Cancer 19, C7–C11 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Paschke, R. Molecular pathogenesis of nodular goiter. Langenbecks Arch. Surg. 396, 1127–1136 (2011).

    Article  PubMed  Google Scholar 

  61. Aslan, M. et al. Evaluation of oxidative status in patients with hyperthyroidism. Endocrine 40, 285–289 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Morini, P., Casalino, E., Sblano, C. & Landriscina, C. The response of rat liver lipid peroxidation, antioxidant enzyme activities and glutathione concentration to the thyroid hormone. Int. J. Biochem. 23, 1025–1030 (1991).

    Article  CAS  PubMed  Google Scholar 

  63. Komosinska-Vassev, K. et al. Free radical activity and antioxidant defence mechanisms in patients with hyperthyroidism due to Graves' disease during therapy. Clin. Chim. Acta 300, 107–117 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Wilson, R. et al. Free radicals and Graves' disease: the effect of therapy. Clin. Endocrinol. 30, 429–433 (1989).

    Article  CAS  Google Scholar 

  65. Reers, C. et al. Impaired islet turnover in human donor pancreata with ageing. Eur. J. Endocrinol. 160, 185–191 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Defronzo, R. A. Glucose intolerance and ageing. Diabetes Care 4, 493–501 (1981).

    Article  CAS  PubMed  Google Scholar 

  67. Robertson, R. P. Beta-cell deterioration during diabetes: what's in the gun? Trends Endocrinol. Metab. 20, 388–393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rains, J. L. & Jain, S. K. Oxidative stress, insulin signaling, and diabetes. Free Radic. Biol. Med. 50, 567–575 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Li, N., Stojanovski, S. & Maechler, P. Mitochondrial hormesis in pancreatic β cells: does uncoupling protein 2 play a role? Oxid. Med. Cell. Longev. 2012, 740849 (2012).

    PubMed  PubMed Central  Google Scholar 

  70. Pi, J. & Collins, S. Reactive oxygen species and uncoupling protein 2 in pancreatic β-cell function. Diabetes Obes. Metab. 12 (Suppl. 2), 141–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Pi, J. et al. Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes 56, 1783–1791 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Supale, S., Li, N., Brun, T. & Maechler, P. Mitochondrial dysfunction in pancreatic β cells. Trends Endocrinol. Metab. 23, 477–487 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Newsholme, P. et al. Reactive oxygen and nitrogen species generation, antioxidant defenses, and β-cell function: a critical role for amino acids. J. Endocrinol. 214, 11–20 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Rashidi, A., Kirkwood, T. B. & Shanley, D. P. Metabolic evolution suggests an explanation for the weakness of antioxidant defences in beta-cells. Mech. Ageing Dev. 130, 216–221 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Ma, Z. A., Zhao, Z. & Turk, J. Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp. Diabetes Res. 2012, 703538 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Maiese, K., Morhan, S. D. & Chong, Z. Z. Oxidative stress biology and cell injury during type 1 and type 2 diabetes mellitus. Curr. Neurovasc. Res. 4, 63–71 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maedler K. et al. Ageing correlates with decreased beta-cell proliferative capacity and enhanced sensitivity to apoptosis: a potential role for Fas and pancreatic duodenal homeobox-1. Diabetes 55, 2455–2462 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Behrman, H. R., Kodaman, P. H., Preston, S. L. & Gao, S. Oxidative stress and the ovary. J. Soc. Gynecol. Investig. 8, S40–S42 (2001).

    CAS  PubMed  Google Scholar 

  79. Agarwal, A., Aponte-Mellado, A., Premkumar, B. J., Shaman, A. & Gupta, S. The effects of oxidative stress on female reproduction: a review. Reprod. Biol. Endocrinol. 10, 49 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hanukoglu, I. Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells. Drug Metab. Rev. 38, 171–196 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Shkolnik, K. et al. Reactive oxygen species are indispensable in ovulation. Proc. Natl Acad. Sci. USA 108, 1462–1467 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Al-Gubory, K. H., Garrel, C., Faure, P. & Sugino, N. Roles of antioxidant enzymes in corpus luteum rescue from reactive oxygen species-induced oxidative stress. Reprod. Biomed. Online [online], (2012).

  83. Broekmans, F. J., Soules, M. R. & Fauser, B. C. Ovarian ageing: mechanisms and clinical consequences. Endocr. Rev. 30, 465–493 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Tarin, J. J. Aetiology of age-associated aneuploidy: a mechanism based on the 'free radical theory of ageing'. Hum. Reprod. 10, 1563–1565 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Tatone, C. et al. Age-dependent changes in the expression of superoxide dismutases and catalase are associated with ultrastructural modifications in human granulosa cells. Mol. Hum. Reprod. 12, 655–660 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Wiener-Megnazi, Z. et al. Oxidative stress indices in follicular fluid as measured by the thermochemiluminescence assay correlate with outcome parameters in in vitro fertilization. Fertil. Steril. 82, 1171–1176 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Das, S. et al. Reactive oxygen species level in follicular fluid—embryo quality marker in IVF? Hum. Reprod. 21, 2403–2407 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Tatone, C. et al. Cellular and molecular aspects of ovarian follicle ageing. Hum. Reprod. Update 14, 131–142 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Tatone, C. et al. Female reproductive dysfunction during ageing: role of methylglyoxal in the formation of advanced glycation endproducts in ovaries of reproductively-aged mice. J. Biol. Regul. Homeost. Agents 24, 63–72 (2010).

    CAS  PubMed  Google Scholar 

  90. Wen, Y. et al. Relationship of glycation, antioxidant status and oxidative stress to vascular endothelial damage in diabetes. Diabetes Obes. Metab. 4, 305–308 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Hartog, J. W., Voors, A. A., Bakker, S. J., Smit, A. J. & van Veldhuisen, D. J. Advanced glycation end-products (AGEs) and heart failure: pathophysiology and clinical implications. Eur. J. Heart Fail. 9, 1146–1155 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Duleba, A. J., Dokras, A. Is PCOS an inflammatory process? Fertil. Steril. 97, 7–12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gonzalez, F., Rote, N. S., Minium, J. & Kirwan, J. P. Reactive oxygen species-induced oxidative stress in the development of insulin resistance and hyperandrogenism in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 91, 336–340 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Chan, D. W. et al. Loss of MK3 mediated by oxidative stress enhances tumorigenicity and chemiluminescence of ovarian cancer cells. Carcinogenesis 29, 1742–1750 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Pylväs, M., Puistola, U., Laatio, L., Kauppila, S. & Karihtala, P. Elevated serum 8-OHdG is associated with poor prognosis in epithelial ovarian cancer. Anticancer Res. 31, 1411–1415 (2011).

    PubMed  Google Scholar 

  96. Pearce, C. L. et al. Ovarian Cancer Association Consortium. Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case–control studies. Lancet Oncol. 13, 385–394 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Munksgaard, P. S. & Blaakaer, J. The association between endometriosis and ovarian cancer: a review of histological, genetic and molecular alterations. Gynecol. Oncol. 124, 164–169 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Tai, P. & Ascoli, M. Reactive oxygen species (ROS) play a critical role in the cAMP-induced activation of Ras and the phosphorylation of ERK1/2 in Leydig cells. Mol. Endocrinol. 25, 885–893 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Griveau, J. F. & Le Lannou, D. Reactive oxygen species and human spermatozoa. Int. J. Androl. 20, 61–69 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Aitken, R. J., Jones, K. T. & Robertson, S. A. Reactive oxygen species and sperm function-in sickness and in health. J. Androl. 33, 1096–1106 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Aitken, R. J. & Roman, S. D. Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell. Longev. 1, 15–24 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Snyder, P. J. Effects of age on testicular function and consequences of testosterone treatment. J. Clin. Endocrinol. Metab. 86, 2369–2372 (2001).

    CAS  PubMed  Google Scholar 

  103. Chen, H., Hardy, M. P., Huhtaniemi, I. & Zirkin, B. R. Age-related decreased Leydig cell testosterone production in the Brown Norway rat. J. Androl. 15, 551–557 (1994).

    CAS  PubMed  Google Scholar 

  104. Chen, H. et al. Age-related increase in mitochondrial superoxide generation in the testosterone-producing cells of Brown Norway rat testes: relationship to reduced steroidogenic function? Exp. Gerontol. 36, 1361–1373 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Cao, L., Leers-Sucheta, S. & Azharm S. Ageing alters the functional expression of enzymatic and non-enzymatic anti-oxidant defense systems in testicular rat Leydig cells. J. Steroid. Biochem. Mol. Biol. 88, 61–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Weir, C. P. & Robaire, B. Spermatozoa have decreased antioxidant enzymatic capacity and increased reactive oxygen species production during ageing in the Brown Norway rat. J. Androl. 28, 229–240 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Lee, S. Y. et al. ROS inhibit the expression of testicular steroidogenic enzyme genes via the suppression of Nur77 transactivation. Free Radic. Biol. Med. 47, 1591–1600 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Hales, D. B., Diemer, T. & Hales, K. H. Role of cytokines in testicular function. Endocrine 10, 201–217 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Gautam, D. K., Misro, M., Chaki, S. P. & Sehgal, N. H2O2 at physiological concentrations modulates Leydig cell function inducing oxidative stress and apoptosis. Apoptosis 11, 39–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Nakamura, B. N. et al. Knockout of the transcription factor NRF2 disrupts spermatogenesis in an age-dependent manner. Free Radic. Biol. Med. 49, 1368–1379 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. de Lamirande E., Jiang, H., Zini, A., Kodama, H. & Gagnon C. Reactive oxygen species and sperm physiology. Rev. Reprod. 2, 48–54 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Vina, J. et al. Females live longer than males: role of oxidative stress. Curr. Pharm. Des. 17, 3959–3965 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Borrás, C. et al. Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free Radic. Biol. Med. 34, 546–552 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Shiota, M., Yokomizo, A. & Naito, S. Oxidative stress and androgen receptor signaling in the development and progression of castration-resistant prostate cancer. Free Radic. Biol. Med. 51, 1320–1328 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Knoops, A. J., van der Graaf, Y., Mali, W. P. & Geerlings, M. I. Age-related changes in hypothalamic–pituitary-adrenal axis activity in patients with manifest arterial disease. Endocrine 37, 231–238 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Traub, M. L. & Santoro, N. Reproductive aging and its consequences for general health. Ann. NY Acad. Sci. 1204, 179–187 (2010).

    Article  PubMed  Google Scholar 

  117. Azhar, S., Cao, L. & Reaven, E. Alteration of the adrenal antioxidant defense system during aging in rats. J. Clin. Invest. 96, 1414–1424 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Abidi, P., Leers-Sucheta, S., Cortez, Y., Han, J. & Azhar, S. Evidence that age-related changes in p38 MAP kinase contribute to the decreased steroid production by the adrenocortical cells from old rats. Aging Cell 7, 168–178 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Medicherla, R., Leers-Sucheta, S., Luo, Y. & Azhar, S. Impaired activation of AP-1 and altered expression of constitutive proteins in rat adrenal during aging. Mech. Ageing Dev. 122, 1169–1186 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Medicherla, R., Leers-Sucheta, S., Luo, Y. & Azhar, S. Age-dependent modulation of NF-kappaB expression in rat adrenal gland. Mech. Ageing Dev. 123, 1211–1227 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Fantuzzi, G. Adipose tissue, adipokines, and inflammation. J. Allergy Clin. Immunol. 115, 911–919 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Fried, S. K., Bunkin, D. A. & Greenberg, A. S. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J. Clin. Endocrinol. Metab. 83, 847–850 (1998).

    CAS  PubMed  Google Scholar 

  123. Fain, J. N., Madan, A. K., Hiler, M. L., Cheema, P. & Bahouth, S. W. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 145, 2273–2282 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Hotamisligil, G. S., Arner, P., Caro, J. F., Atkinson, R. L. & Spiegelman, B. M. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Invest. 95, 2409–2415 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kern, P. A. et al. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J. Clin. Invest. 95, 2111–2119 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gerhardt, C. C., Romero, I. A., Cancello, R., Camoin, L. & Strosberg, A. D. Chemokines control fat accumulation and leptin secretion by cultured human adipocytes. Mol. Cell. Endocrinol. 175, 81–92 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Bruun, J. M., Lihn, A. S., Pedersen, S. B. & Richelsen, B. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J. Clin. Endocrinol. Metab. 90, 2282–2289 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Christiansen, T., Richelsen, B. & Bruun, J. M. Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects. Int. J. Obes. (Lond.) 29, 146–150 (2005).

    Article  CAS  Google Scholar 

  129. Ouchi, N., Parker, J. L., Lugus, J. J. & Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85–97 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fantuzzi, G. Adiponectin and inflammation: consensus and controversy. J. Allergy Clin. Immunol. 121, 326–330 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Hotamisligil, G. S., Murray, D. L., Choy, L. N. & Spiegelman, B. M. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc. Natl Acad. Sci. USA 91, 4854–4858 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ostan, R. et al. Metabolic syndrome in the offspring of centenarians: focus on prevalence, components, and adipokines. Age http://dx.doi.org/10.1007/s11357-012-9483-x.

  133. Furukawa, S. et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114, 1752–1761 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sakurai, T. et al. Exercise training decreases expression of inflammation-related adipokines through reduction of oxidative stress in rat white adipose tissue. Biochem. Biophys. Res. Commun. 379, 605–609 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Younce, C. & Kolattukudy, P. MCP-1 induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy. Cell Physiol. Biochem. 30, 307–320 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. de Ferranti, S. & Mozaffarian, D. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin. Chem. 54, 945–955 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Pi, J. et al. Deficiency in the nuclear factor E2-related factor-2 transcription factor results in impaired adipogenesis and protects against diet-induced obesity. J. Biol. Chem. 285, 9292–9300 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hulsmans, M., De Keyzer, D. & Holvoet, P. MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis. FASEB J. 25, 2515–2527 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Arner, E. et al. Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes 61, 1986–1993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kim, Y. J., Hwang, S. J., Bae, Y. C. & Jung, J. S. MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells 27, 3093–3102 (2009).

    CAS  PubMed  Google Scholar 

  141. Olivieri, F. et al. Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech. Ageing Dev. 133, 675–685 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Gregor, M. F. & Hotamisligil, G. S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Cao, H. et al. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134, 933–944 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kunešová, M. et al. Fatty acid composition of adipose tissue triglycerides after weight loss and weight maintenance. The Diogenes Study. Physiol. Res. 61, 597–607 (2013).

    Google Scholar 

  145. Jackson, A. S., Janssen, I., Sui, X., Church, T. S. & Blair, S. N. Longitudinal changes in body composition associated with healthy ageing: men, aged 20–96 years. Br. J. Nutr. 107, 1085–1091 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Zamboni, M., Mazzali, G., Fantin, F., Rossi, A. & Di Francesco, V. Sarcopenic obesity: a new category of obesity in the elderly. Nutr. Metab. Cardiovasc. Dis. 18, 388–395 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Pedersen, B. K. & Febbraio, M. A. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol. Rev. 88, 1379–1406 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Welc, S. S. & Clanton, T. L. The regulation of IL-6 implicates skeletal muscle as an integrative stress sensor and endocrine organ. Exp. Physiol. http://dx.doi.org/10.1113/expphysiol.2012.068189.

  149. Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Mattson, M. P. Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Exp. Gerontol. 44, 625–633 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mattson, M. P. Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders. Antioxid. Redox Signal. 8, 1997–2006 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Guéraud, F. et al. Chemistry and biochemistry of lipid peroxidation products. Free Radic. Res. 44, 1098–1124 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Blagosklonny, M. V. Aging: ROS or TOR. Cell Cycle 7, 3344–3354 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Cabreiro, F. et al. Increased life span from overexpression of superoxide dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage. Free Radic. Biol. Med. 51, 1575–1582 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Salmon, A. B., Richardson, A. & Pérez, V. I. Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic. Biol. Med. 48, 642–655 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Ristow, M. & Schmeisser, S. Extending life span by increasing oxidative stress. Free Radic. Biol. Med. 51, 327–336 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Mecocci, P. et al. Plasma antioxidants and longevity: a study on healthy centenarians. Free Radic. Biol. Med. 28, 1243–1248 (2000).

    Article  CAS  PubMed  Google Scholar 

  158. Rizvi, S. I. & Maurya, P. K. Alterations in antioxidant enzymes during aging in humans. Mol. Biotechnol. 37, 58–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Kasapovic, J., Pejic, S., Todorovic, A., Stojiljkovic, V. & Pajovic, S. B. Antioxidant status and lipid peroxidation in the blood of breast cancer patients of different ages. Cell. Biochem. Funct. 26, 723–730 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Sarsour, E. H., Kumar, M. G., Chaudhuri, L., Kalen, A. L. & Goswami. P. C. Redox control of the cell cycle in health and disease. Antioxid. Redox Signal. 11, 2985–3011 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ray, P. D., Huang, B. W. & Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 24, 981–990 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bjelakovic, G., Nikolova, D., Gluud, L. L., Simonetti, R. G. & Gluud, C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297, 842–857 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. NY Acad. Sci. 908, 244–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  164. Franceschi, C. et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech. Aging Dev. 128, 92–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Salvioli, S. et al. Immune system, cell senescence, aging and longevity—Inflamm-aging reappraised. Curr. Pharm. Des. http://dx.doi.org/10.2174/1381612811319090015.

  166. De Martinis, M., Franceschi, C., Monti, D. & Ginaldi, L. Inflammation markers predicting frailty and mortality in the elderly. Exp. Mol. Pathol. 80, 219–227 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Salvioli, S. et al. Inflamm-aging, cytokines and aging: state of the art, new hypotheses on the role of mitochondria and new perspectives from systems biology. Curr. Pharm. Des. 12, 3161–3171 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Freund, A., Orjalo, A. V., Desprez, P. Y. & Campisi, J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med. 16, 238–246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Unterluggauer, H., Hampel, B., Zwerschke, W. & Jansen-Durr, P. Senescence associated cell death of human endothelial cells: the role of oxidative stress. Exp. Gerontol. 38, 1149–1160 (2003).

    Article  CAS  PubMed  Google Scholar 

  170. Barzilai, A., Rotman, G. & Shiloh, Y. ATM deficiency and oxidative stress: a new dimension of defective response to DNA damage. DNA Repair (Amst.) 1, 3–25 (2002).

    Article  CAS  Google Scholar 

  171. Rodier, F. & Campisi, J. Four faces of cellular senescence. J. Cell Biol. 192, 547–556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Martin, O. A., Redon, C. E., Dickey, J. S., Nakamura, A. J. & Bonner, W. M. Para-inflammation mediates systemic DNA damage in response to tumor growth. Commun. Integr. Biol. 4, 78–81 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ivanov, V. N. et al. Radiation-induced bystander signaling pathways in human fibroblasts: a role for interleukin-33 in the signal transmission. Cell Signal. 22, 1076–1087 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Dieriks, B., De Vos, W. H., Derradji, H., Baatout, S. & Van Oostveldt, P. Medium-mediated DNA repair response after ionizing radiation is correlated with the increase of specific cytokines in human fibroblasts. Mutat. Res. 687, 40–48 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Bonafé, M., Storci, G. & Franceschi, C. Inflamm-aging of the stem cell niche: breast cancer as a paradigmatic example: breakdown of the multi-shell cytokine network fuels cancer in aged people. Bioessays 34, 40–49 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Bejma, J. & Ji, L. L. Aging and acute exercise enhance free radical generation in rat skeletal muscle. J. Appl. Physiol. 87, 465–470 (1999).

    Article  CAS  PubMed  Google Scholar 

  178. De Martinis, M., Franceschi, C., Monti, D. & Ginaldi, L. Inflamm-ageing and lifelong antigenic load as major determinants of ageing rate and longevity. FEBS Lett. 579, 2035–2039 (2005).

    Article  CAS  PubMed  Google Scholar 

  179. Gan, W. et al. Age-dependent increases in the oxidative damage of DNA, RNA, and their metabolites in normal and senescence-accelerated mice analyzed by LC-MS/MS: urinary 8-oxoguanosine as a novel biomarker of aging. Free Radic. Biol. Med. 52, 1700–1707 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Studebaker, A. W. et al. Fibroblasts isolated from common sites of breast cancer metastasis enhance cancer cell growth rates and invasiveness in an interleukin-6-dependent manner. Cancer Res. 68, 9087–9095 (2008).

    Article  CAS  PubMed  Google Scholar 

  181. Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739 (2002).

    Article  CAS  PubMed  Google Scholar 

  182. Olivieri, F. et al. Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. Int. J. Cardiol. http://dx.doi.org/10.1016/j.ijcard.2012.01.075.

  183. Entringer, S., Buss, C. & Wadhwa, P. D. Prenatal stress, telomere biology, and fetal programming of health and disease risk. Sci. Signal. 5, pt12 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Ershler, W. B. Interleukin-6: a cytokine for gerontologists. J. Am. Geriatr. Soc. 41, 176–181 (1993).

    Article  CAS  PubMed  Google Scholar 

  185. Gerli, R. et al. Chemokines, sTNF-Rs and sCD30 serum levels in healthy aged people and centenarians. Mech. Aging Dev. 121, 37–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  186. Coppola, R., Mari, D., Lattuada, A. & Franceschi, C. Von Willebrand factor in Italian centenarians. Haematologica 88, 39–43 (2003).

    CAS  PubMed  Google Scholar 

  187. Passeri, G. et al. Low vitamin D status, high bone turnover, and bone fractures in centenarians. J. Clin. Endocrinol. Metab. 88, 5109–5115 (2003).

    Article  CAS  PubMed  Google Scholar 

  188. Gangemi, S. et al. Age-related modifications in circulating IL-15 levels in humans. Mediators Inflamm. 2005, 245–247 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Biagi, E. et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5, e10667 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Paolisso, G. et al. Low insulin resistance and preserved beta-cell function contribute to human longevity but are not associated with TH-INS genes. Exp. Gerontol. 37, 149–156 (2001).

    Article  CAS  PubMed  Google Scholar 

  191. Gessert, C. E., Elliott, B. A. & Haller, I. V. Dying of old age: an examination of death certificates of Minnesota centenarians. J. Am. Geriatr. Soc. 50, 1561–1565 (2002).

    Article  PubMed  Google Scholar 

  192. Pavlidis. N., Stanta, G. & Audisio, R. A. Cancer prevalence and mortality in centenarians: A systematic review. Crit. Rev. Oncol. Hematol. 83, 145–152 (2012).

    Article  PubMed  Google Scholar 

  193. Rose-John, S. IL-6 Trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci. 8, 1237–1247 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  195. Bauernfeind, F. et al. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J. Immunol. 187, 613–617 (2011).

    Article  CAS  PubMed  Google Scholar 

  196. Rubartelli, A., Gattorno, M., Netea, M. G. & Dinarello, C. A. Interplay between redox status and inflammasome activation. Trends Immunol. 32, 559–566 (2011).

    Article  CAS  PubMed  Google Scholar 

  197. Wenzel, M. et al. Cytosolic DNA triggers mitochondrial apoptosis via DNA damage signaling proteins independently of AIM2 and RNA polymerase III. J. Immunol. 188, 394–403 (2012).

    Article  CAS  PubMed  Google Scholar 

  198. Duan, X. et al. Differential roles for the interferon-inducible IFI16 and AIM2 innate immune sensors for cytosolic DNA in cellular senescence of human fibroblasts. Mol. Cancer Res. 9, 589–602 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Davis, B. K., Wen, H. & Ting, J. P. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 29, 707–735 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Duntas, L. H. & Biondi, B. The interconnections between obesity, thyroid function, and autoimmunity: the multifold role of leptin. Thyroid http://dx.doi.org/10.1089/thy.2011.0499.

  201. Sohal, R. S. & Sohal, B. H. Hydrogen peroxide release by mitochondria increases during aging. Mech. Ageing Dev. 57, 187–202 (1991).

    Article  CAS  PubMed  Google Scholar 

  202. Salminen, A. et al. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res. Rev. 7, 83–105 (2008).

    Article  CAS  PubMed  Google Scholar 

  203. Sohal, R. S. & Orr, W. C. The redox stress hypothesis of aging. Free Radic. Biol. Med. 52, 539–555 (2012).

    Article  CAS  PubMed  Google Scholar 

  204. Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    Article  CAS  PubMed  Google Scholar 

  205. Sedelnikova, O. A. et al. Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat. Cell Biol. 6, 168–170 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research leading to these results has been funded by the European Union's Seventh Framework Programme (FP7/2007-2011) under grant agreement number 259679 (“IDEAL”) to C. Franceschi and by a grant from the Roberto and Cornelia Pallotti legacy for cancer research (Bologna, Italy) to S. Salvioli.

Author information

Authors and Affiliations

Authors

Contributions

G. Vitale and S. Salvioli researched data for the article. All authors contributed to discussion of the content, writing the article and reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Claudio Franceschi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitale, G., Salvioli, S. & Franceschi, C. Oxidative stress and the ageing endocrine system. Nat Rev Endocrinol 9, 228–240 (2013). https://doi.org/10.1038/nrendo.2013.29

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.29

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing