Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of FOXO1 in β-cell failure and type 2 diabetes mellitus

Abstract

Over the past two decades, insulin resistance has been considered essential to the aetiology of type 2 diabetes mellitus (T2DM). However, insulin resistance does not lead to T2DM unless it is accompanied by pancreatic β-cell dysfunction, because healthy β cells can compensate for insulin resistance by increasing in number and functional output. Furthermore, β-cell mass is decreased in patients with diabetes mellitus, suggesting a primary role for β-cell dysfunction in the pathogenesis of T2DM. The dysfunction of β cells can develop through various mechanisms, including oxidative, endoplasmic reticulum or hypoxic stress, as well as via induction of cytokines; these processes lead to apoptosis, uncontrolled autophagy and failure to proliferate. Transdifferentiation between β cells and α cells occurs under certain pathological conditions, and emerging evidence suggests that β-cell dedifferentiation or transdifferentiation might account for the reduction in β-cell mass observed in patients with severe T2DM. FOXO1, a key transcription factor in insulin signalling, is implicated in these mechanisms. This Review discusses advances in our understanding of the contribution of FOXO1 signalling to the development of β-cell failure in T2DM.

Key Points

  • Hyperglycaemia induces oxidative, endoplasmic reticulum and hypoxic stress, and increases cytokine levels in β cells

  • Metabolic stress leads to apoptosis, failure to proliferate, uncontrolled autophagy and dedifferentiation of β cells

  • FOXO1 inhibits β-cell replication by upregulating expression of cell-cycle inhibitors and suppressing PDX1 transcription

  • FOXO1 inhibits β-cell neogenesis by interacting with Notch signalling and suppressing transcription of NEUROG3, the gene that encodes neurogenin-3

  • FOXO1 protects β cells against oxidative stress by upregulating expression of antioxidant enzymes

  • FOXO1 prevents dedifferentiation and maintains β-cell identity by suppressing expression of neurogenin-3

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mechanisms that underlie β-cell failure in T2DM.
Figure 2: Involvement of FoxO1 in Notch signalling and β-cell proliferation.
Figure 3: The effects of metabolic and oxidative stress on FoxO1 signalling.

Similar content being viewed by others

References

  1. Ferrannini, E. Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: problems and prospects. Endocr. Rev. 19, 477–490 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Grant, S. F. et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 38, 320–323 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Yasuda, K. et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet. 40, 1092–1097 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Miyake, K. et al. Association of TCF7L2 polymorphisms with susceptibility to type 2 diabetes in 4,087 Japanese subjects. J. Hum. Genet. 53, 174–180 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Chadt, A., Yeo, G. S. & Al-Hasani, H. Nutrition-/diet-induced changes in gene expression in pancreatic β-cells. Diabetes Obes. Metab. 14 (Suppl. 3), 57–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Butler, A. E. et al. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52, 102–110 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Kulkarni, R. N. et al. Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96, 329–339 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Ueki, K. et al. Total insulin and IGF-I resistance in pancreatic β cells causes overt diabetes. Nat. Genet. 38, 583–588 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Withers, D. J. et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391, 900–904 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Kubota, N. et al. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory β-cell hyperplasia. Diabetes 49, 1880–1889 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Hashimoto, N. et al. Ablation of PDK1 in pancreatic β cells induces diabetes as a result of loss of β cell mass. Nat. Genet. 38, 589–593 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Tuttle, R. L. et al. Regulation of pancreatic β-cell growth and survival by the serine/threonine protein kinase Akt1/PKBα. Nat. Med. 7, 1133–1137 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Daitoku, H., Sakamaki, J. & Fukamizu, A. Regulation of FoxO transcription factors by acetylation and protein–protein interactions. Biochim Biophys Acta 1813, 1954–1960 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Kitamura, T. et al. The forkhead transcription factor FoxO1 links insulin signaling to Pdx1 regulation of pancreatic β cell growth. J. Clin. Invest. 110, 1839–1847 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakae, J. et al. The forkhead transcription factor FoxO1 regulates adipocyte differentiation. Dev. Cell 4, 119–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Kops, G. J. & Burgering, B. M. Forkhead transcription factors: new insights into protein kinase B (c-Akt) signaling. J. Mol. Med. 77, 656–665 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Nakae, J., Park, B. C. & Accili, D. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J. Biol. Chem. 274, 15982–15985 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Martinez, S. C. et al. Inhibition of FoxO1 protects pancreatic islet β-cells against fatty acid and endoplasmic reticulum stress-induced apoptosis. Diabetes 57, 846–859 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Hu, M. C. et al. IκB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117, 225–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Huang, H., Regan, K. M., Lou, Z., Chen, J. & Tindall, D. J. CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science 314, 294–297 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Daitoku, H. et al. Silent information regulator 2 potentiates FoxO1-mediated transcription through its deacetylase activity. Proc. Natl Acad. Sci. USA 101, 10042–10047 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Motta, M. C. et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551–563 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Kitamura, Y. I. et al. FoxO1 protects against pancreatic β cell failure through NeuroD and MafA induction. Cell Metab. 2, 153–163 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Yamagata, K. et al. Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol. Cell 32, 221–231 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Rahier, J., Guiot, Y., Goebbels, R. M., Sempoux, C. & Henquin, J. C. Pancreatic β-cell mass in European subjects with type 2 diabetes. Diabetes Obes. Metab. 10 (Suppl. 4), 32–42 (2008).

    Article  PubMed  Google Scholar 

  28. Robertson, R. P., Harmon, J., Tran, P. O., Tanaka, Y. & Takahashi, H. Glucose toxicity in β-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52, 581–587 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Lenzen, S., Drinkgern, J. & Tiedge, M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic. Biol. Med. 20, 463–466 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Welsh, N. et al. Differences in the expression of heat-shock proteins and antioxidant enzymes between human and rodent pancreatic islets: implications for the pathogenesis of insulin-dependent diabetes mellitus. Mol. Med. 1, 806–820 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bensellam, M. et al. Glucose-induced O2 consumption activates hypoxia inducible factors 1 and 2 in rat insulin-secreting pancreatic β-cells. PLoS ONE 7, e29807 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Johansen, J. S., Harris, A. K., Rychly, D. J. & Ergul, A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc. Diabetol. 4, 5 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Izumi, T. et al. Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse. Diabetes 52, 409–416 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Marchetti, P. et al. The endoplasmic reticulum in pancreatic β cells of type 2 diabetes patients. Diabetologia 50, 2486–2494 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Back, S. H. & Kaufman, R. J. Endoplasmic reticulum stress and type 2 diabetes. Annu. Rev. Biochem. 81, 767–793 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Accili, D. et al. What ails the β-cell? Diabetes Obes. Metab. 12 (Suppl. 2), 1–3 (2010).

    Article  PubMed  Google Scholar 

  37. Matsuda, T. et al. Ablation of C/EBPβ alleviates ER stress and pancreatic β cell failure through the GRP78 chaperone in mice. J. Clin. Invest. 120, 115–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Scheuner, D. et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7, 1165–1176 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Jung, S. K., Gorski, W., Aspinwall, C. A., Kauri, L. M. & Kennedy, R. T. Oxygen microsensor and its application to single cells and mouse pancreatic islets. Anal. Chem. 71, 3642–3649 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Li, X. et al. Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes 55, 2965–2973 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Zehetner, J. et al. PVHL is a regulator of glucose metabolism and insulin secretion in pancreatic β cells. Genes Dev. 22, 3135–3146 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Akash, M. S., Shen, Q., Rehman, K. & Chen, S. Interleukin-1 receptor antagonist: a new therapy for type 2 diabetes mellitus. J. Pharm. Sci. 101, 1647–1658 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Ehses, J. A. et al. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56, 2356–2370 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Boni-Schnetzler, M. et al. Increased interleukin (IL)-1β messenger ribonucleic acid expression in β-cells of individuals with type 2 diabetes and regulation of IL-1β in human islets by glucose and autostimulation. J. Clin. Endocrinol. Metab. 93, 4065–4074 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Welsh, N. et al. Is there a role for locally produced interleukin-1 in the deleterious effects of high glucose or the type 2 diabetes milieu to human pancreatic islets? Diabetes 54, 3238–3244 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Larsen, C. M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Moran, A. et al. Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicare, randomised, double-blind, placebo-controlled trials. Lancet 381, 1905–1915 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Butler, P. C., Meier, J. J., Butler, A. E. & Bhushan, A. The replication of β cells in normal physiology, in disease and for therapy. Nat. Clin. Pract. Endocrinol. Metab. 3, 758–768 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Donath, M. Y., Gross, D. J., Cerasi, E. & Kaiser, N. Hyperglycemia-induced β-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes 48, 738–744 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Nagata, S. & Golstein, P. The Fas death factor. Science 267, 1449–1456 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Maedler, K. et al. Glucose induces β-cell apoptosis via upregulation of the Fas receptor in human islets. Diabetes 50, 1683–1690 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Mathis, D., Vence, L. & Benoist, C. β-Cell death during progression to diabetes. Nature 414, 792–798 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Withers, D. J. et al. Irs-2 coordinates Igf-1 receptor-mediated β-cell development and peripheral insulin signalling. Nat. Genet. 23, 32–40 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Kubota, N. et al. Insulin receptor substrate 2 plays a crucial role in β cells and the hypothalamus. J. Clin. Invest. 114, 917–927 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Piro, S. et al. Chronic exposure to free fatty acids or high glucose induces apoptosis in rat pancreatic islets: possible role of oxidative stress. Metabolism 51, 1340–1347 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Busch, A. K., Cordery, D., Denyer, G. S. & Biden, T. J. Expression profiling of palmitate- and oleate-regulated genes provides novel insights into the effects of chronic lipid exposure on pancreatic β-cell function. Diabetes 51, 977–987 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Kashyap, S. et al. A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes 52, 2461–2474 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Krishnamurthy, J. et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443, 453–457 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Uchida, T. et al. Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nat. Med. 11, 175–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Terauchi, Y. et al. Glucokinase and IRS-2 are required for compensatory β cell hyperplasia in response to high-fat diet-induced insulin resistance. J. Clin. Invest. 117, 246–257 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kulkarni, R. N. et al. PDX-1 haploinsufficiency limits the compensatory islet hyperplasia that occurs in response to insulin resistance. J. Clin. Invest. 114, 828–836 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gupta, R. K. et al. Expansion of adult β-cell mass in response to increased metabolic demand is dependent on HNF-4α. Genes Dev. 21, 756–769 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Okamoto, H. et al. Role of the forkhead protein FoxO1 in β cell compensation to insulin resistance. J. Clin. Invest. 116, 775–782 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Miralles, F. & Portha, B. Early development of β-cells is impaired in the GK rat model of type 2 diabetes. Diabetes 50 (Suppl. 1), S84–S88 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Butler, A. E., Janson, J., Soeller, W. C. & Butler, P. C. Increased β-cell apoptosis prevents adaptive increase in β-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes 52, 2304–2314 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Ritzel, R. A. & Butler, P. C. Replication increases β-cell vulnerability to human islet amyloid polypeptide-induced apoptosis. Diabetes 52, 1701–1708 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Mizushima, N. Autophagy: process and function. Genes Dev. 21, 2861–2873 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Hur, K. Y., Jung, H. S. & Lee, M. S. Role of autophagy in β-cell function and mass. Diabetes Obes. Metab. 12 (Suppl. 2), 20–26 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Fujitani, Y., Ueno, T. & Watada, H. Autophagy in health and disease. 4. The role of pancreatic beta-cell autophagy in health and diabetes. Am. J. Physiol. Cell Physiol. 299, C1–C6 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Yousefi, S. et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat. Cell. Biol. 8, 1124–1132 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Yu, L. et al. Autophagic programmed cell death by selective catalase degradation. Proc. Natl Acad. Sci. USA 103, 4952–4957 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ebato, C. et al. Autophagy is important in islet homeostasis and compensatory increase of β cell mass in response to high-fat diet. Cell Metab. 8, 325–332 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Ogata, M. et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell Biol. 26, 9220–9231 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yorimitsu, T., Nair, U., Yang, Z. & Klionsky, D. J. Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem. 281, 30299–30304 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Masini, M. et al. Autophagy in human type 2 diabetes pancreatic β cells. Diabetologia 52, 1083–1086 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Jayasinghe, S. A. & Langen, R. Membrane interaction of islet amyloid polypeptide. Biochim. Biophys. Acta 1768, 2002–2009 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Cooper, G. J. et al. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc. Natl Acad. Sci. USA 84, 8628–8632 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zraika, S. et al. Toxic oligomers and islet β cell death: guilty by association or convicted by circumstantial evidence? Diabetologia 53, 1046–1056 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Haataja, L., Gurlo, T., Huang, C. J. & Butler, P. C. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr. Rev. 29, 303–316 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Butler, A. E. et al. Diabetes due to a progressive defect in β-cell mass in rats transgenic for human islet amyloid polypeptide (HIP rat): a new model for type 2 diabetes. Diabetes 53, 1509–1516 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Clark, A. & Nilsson, M. R. Islet amyloid: a complication of islet dysfunction or an aetiological factor in type 2 diabetes? Diabetologia 47, 157–169 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Talchai, C., Xuan, S., Lin, H. V., Sussel, L. & Accili, D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 150, 1223–1234 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zulewski, H. et al. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50, 521–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Russ, H. A. et al. Insulin-producing cells generated from dedifferentiated human pancreatic β cells expanded in vitro. PLoS ONE 6, e25566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gershengorn, M. C. et al. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 306, 2261–2264 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Nakagawa, M., Takizawa, N., Narita, M., Ichisaka, T. & Yamanaka, S. Promotion of direct reprogramming by transformation-deficient Myc. Proc. Natl Acad. Sci. USA 107, 14152–14157 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dunning, B. E. & Gerich, J. E. The role of α-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications. Endocr. Rev. 28, 253–283 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Courtney, M. et al. In vivo conversion of adult α-cells into β-like cells: a new research avenue in the context of type 1 diabetes. Diabetes Obes. Metab. 13 (Suppl. 1), 47–52 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Collombat, P. et al. Embryonic endocrine pancreas and mature β cells acquire α and PP cell phenotypes upon Arx misexpression. J. Clin. Invest. 117, 961–970 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sosa-Pineda, B., Chowdhury, K., Torres, M., Oliver, G. & Gruss, P. The Pax4 gene is essential for differentiation of insulin-producing β cells in the mammalian pancreas. Nature 386, 399–402 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Collombat, P. et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into α and subsequently β cells. Cell 138, 449–462 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Collombat, P. et al. Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev. 17, 2591–2603 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Thorel, F. et al. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 464, 1149–1154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dhawan, S., Georgia, S., Tschen, S. I., Fan, G. & Bhushan, A. Pancreatic β cell identity is maintained by DNA methylation-mediated repression of Arx. Dev. Cell 20, 419–429 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bramswig, N. C. et al. Epigenomic plasticity enables human pancreatic α to β cell reprogramming. J. Clin. Invest. 123, 1275–1284 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Accili, D. & Arden, K. C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Kitamura, T. & Ido Kitamura, Y. Role of FoxO proteins in pancreatic β cells. Endocr. J. 54, 507–515 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Medema, R. H., Kops, G. J., Bos, J. L. & Burgering, B. M. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404, 782–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Ramaswamy, S., Nakamura, N., Sansal, I., Bergeron, L. & Sellers, W. R. A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell 2, 81–91 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Nemoto, S. & Finkel, T. Redox regulation of forkhead proteins through a p66Shc-dependent signaling pathway. Science 295, 2450–2452 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Kops, G. J. et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419, 316–321 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Kitamura, T. et al. A FoxO/Notch pathway controls myogenic differentiation and fiber type specification. J. Clin. Invest. 117, 2477–2485 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kitamura, T. et al. Regulation of pancreatic juxtaductal endocrine cell formation by FoxO1. Mol. Cell Biol. 29, 4417–4430 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kikuchi, O. et al. FoxO1 gain of function in the pancreas causes glucose intolerance, polycystic pancreas, and islet hypervascularization. PLoS ONE 7, e32249 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kobayashi, M. et al. FoxO1 as a double-edged sword in the pancreas: analysis of pancreas- and β-cell-specific FoxO1 knockout mice. Am. J. Physiol. Endocrinol. Metab. 302, E603–E613 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Zhao, Y. et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat. Cell. Biol. 12, 665–675 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Matsumoto, M., Han, S., Kitamura, T. & Accili, D. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J. Clin. Invest. 116, 2464–2472 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Nakae, J. et al. Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor FoxO1. Nat. Genet. 32, 245–253 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Kitamura, T. et al. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat. Med. 12, 534–540 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Ren, H. et al. FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell 149, 1314–1326 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kim, K. W. et al. FOXO1 in the ventromedial hypothalamus regulates energy balance. J. Clin. Invest. 122, 2578–2589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hribal, M. L., Nakae, J., Kitamura, T., Shutter, J. R. & Accili, D. Regulation of insulin-like growth factor-dependent myoblast differentiation by FoxO forkhead transcription factors. J. Cell. Biol. 162, 535–541 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kuroda, K. et al. δ-induced Notch signaling mediated by RBP-J inhibits MyoD expression and myogenesis. J. Biol. Chem. 274, 7238–7244 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Ross, D. A., Rao, P. K. & Kadesch, T. Dual roles for the Notch target gene Hes-1 in the differentiation of 3T3-L1 preadipocytes. Mol. Cell Biol. 24, 3505–3513 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Potente, M. et al. Involvement of FoxO transcription factors in angiogenesis and postnatal neovascularization. J. Clin. Invest. 115, 2382–2392 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Limbourg, F. P. et al. Essential role of endothelial Notch1 in angiogenesis. Circulation 111, 1826–1832 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hosaka, T. et al. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc. Natl Acad. Sci. USA 101, 2975–2980 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Krebs, L. T. et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 14, 1343–1352 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pajvani, U. B. et al. Inhibition of Notch signaling ameliorates insulin resistance in a FoxO1-dependent manner. Nat. Med. 17, 961–967 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Del Guerra, S. et al. Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes 54, 727–735 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Lee, C. et al. Foxa2 controls Pdx1 gene expression in pancreatic β-cells in vivo. Diabetes 51, 2546–2551 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Ahlgren, U., Jonsson, J. & Edlund, H. The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice. Development 122, 1409–1416 (1996).

    Article  CAS  PubMed  Google Scholar 

  124. Wang, J. et al. The concerted activities of Pax4 and Nkx2.2 are essential to initiate pancreatic β-cell differentiation. Dev. Biol. 266, 178–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Sussel, L. et al. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic β cells. Development 125, 2213–2221 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Gradwohl, G., Dierich, A., LeMeur, M. & Guillemot, F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl Acad. Sci. USA 97, 1607–1611 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Apelqvist, A. et al. Notch signalling controls pancreatic cell differentiation. Nature 400, 877–881 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Talchai, C., Xuan, S., Kitamura, T., DePinho, R. A. & Accili, D. Generation of functional insulin-producing cells in the gut by FoxO1 ablation. Nat. Genet. 44, 406–412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kawamori, D. et al. The forkhead transcription factor FoxO1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J. Biol. Chem. 281, 1091–1098 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitamura, T. The role of FOXO1 in β-cell failure and type 2 diabetes mellitus. Nat Rev Endocrinol 9, 615–623 (2013). https://doi.org/10.1038/nrendo.2013.157

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing