Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The pituitary tumour epigenome: aberrations and prospects for targeted therapy

Abstract

Global and gene-specific changes in the epigenome are hallmarks of most tumour types, including those of pituitary origin. In contrast to genetic mutations, epigenetic changes (aberrant DNA methylation and histone modifications) are potentially reversible. Drugs that specifically target or inhibit DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) can be used to restore the expression of epigenetically silenced genes. These drugs can potentially increase the sensitivity of tumour cells to conventional treatment modalities, such as chemotherapy and radiotherapy. Drug-induced reversal of transcriptional silencing can also be used to restore dopamine-D2-receptor-negative, hormone-refractory tumours to their previous receptor-positive, hormone-responsive status. Synergy between HDAC and DNMT inhibitors makes these pharmacological agents more therapeutically effective when administered in combination than when used alone. Studies in pituitary tumour cell lines show that drug-induced re-expression of the epigenetically silenced dopamine D2 receptor leads to an increase in apoptosis mediated by a receptor agonist. Collectively, the use of drugs to directly or indirectly reverse gene-specific epigenetic changes, in combination with conventional therapeutic interventions, has potential for the clinical management of multiple tumour types—including those of pituitary origin. Furthermore, these drugs can be used to identify epigenetically regulated genes that could be novel, tumour-specific therapeutic targets.

Key Points

  • Global and gene-specific changes to the epigenome are hallmarks of most cancer types, including pituitary tumours

  • Changes to the epigenome, such as aberrant DNA methylation and histone modifications, frequently lead to inappropriate expression or silencing of genes

  • Unlike genetic mutations, epigenetic changes are potentially reversible

  • Drug-mediated reversal of epigenetic transcriptional silencing can increase tumour sensitivity to conventional treatments

  • Proof-of-principle studies show that epigenome-targeting drugs can induce re-expression of the epigenetically silenced dopamine D2 receptor in pituitary tumour cells, and augment apoptosis through a receptor-agonist-mediated pathway

  • Novel strategies for either direct or indirect reversal of aberrant epigenetic changes might provide new therapeutic options for the clinical management of pituitary tumours

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epigenetic modifications associated with transcriptionally active and transcriptionally silent genes.
Figure 2: Interdependence of DNA methylation and histone modifications.
Figure 3: Expression of dopamine D2 receptor mRNA following treatment with zebularine or trichostatin A, alone or in combination.
Figure 4: Analysis of the D2DR promoter region by chromatin immunoprecipitation.

Similar content being viewed by others

References

  1. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33 (Suppl.), 245–254 (2003).

    CAS  PubMed  Google Scholar 

  2. Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Sharma, S., Kelly, T. K. & Jones, P. A. Epigenetics in cancer. Carcinogenesis 31, 27–36 (2010).

    CAS  PubMed  Google Scholar 

  4. Rodriguez-Paredes, M. & Esteller, M. Cancer epigenetics reaches mainstream oncology. Nat. Med. 17, 330–339 (2011).

    CAS  PubMed  Google Scholar 

  5. Fuks, F., Burgers, W. A., Brehm, A., Hughes-Davies, L. & Kouzarides, T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat. Genet. 24, 88–91 (2000).

    CAS  PubMed  Google Scholar 

  6. Fuks, F. et al. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem. 278, 4035–4040 (2003).

    CAS  PubMed  Google Scholar 

  7. Dudley, K. J., Revill, K., Clayton, R. N. & Farrell, W. E. Pituitary tumours: all silent on the epigenetics front. J. Mol. Endocrinol. 42, 461–468 (2009).

    CAS  PubMed  Google Scholar 

  8. Farrell, W. E. Pituitary tumours: findings from whole genome analyses. Endocr. Relat. Cancer 13, 707–716 (2006).

    CAS  PubMed  Google Scholar 

  9. Zhu, X. et al. Deoxyribonucleic acid methyltransferase 3B promotes epigenetic silencing through histone 3 chromatin modifications in pituitary cells. J. Clin. Endocrinol. Metab. 93, 3610–3617 (2008).

    CAS  PubMed  Google Scholar 

  10. Bird, A. P. CpG-rich islands and the function of DNA methylation. Nature 321, 209–213 (1986).

    CAS  PubMed  Google Scholar 

  11. Craig, J. M. & Bickmore, W. A. The distribution of CpG islands in mammalian chromosomes. Nat. Genet. 7, 376–382 (1994).

    CAS  PubMed  Google Scholar 

  12. Eden, A., Gaudet, F., Waghmare, A. & Jaenisch, R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300, 455 (2003).

    CAS  PubMed  Google Scholar 

  13. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    CAS  PubMed  Google Scholar 

  14. Hebbes, T. R., Thorne, A. W. & Crane-Robinson, C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7, 1395–1402 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  PubMed  Google Scholar 

  16. Al-Azzawi, H. et al. Reversal of endogenous dopamine receptor silencing in pituitary cells augments receptor-mediated apoptosis. Endocrinology 152, 364–373 (2011).

    CAS  PubMed  Google Scholar 

  17. Ezzat, S., Zhu, X., Loeper, S., Fischer, S. & Asa, S. L. Tumor-derived Ikaros 6 acetylates the Bcl-XL promoter to up-regulate a survival signal in pituitary cells. Mol. Endocrinol. 20, 2976–2986 (2006).

    CAS  PubMed  Google Scholar 

  18. Bilodeau, S. et al. Role of Brg1 and HDAC2 in GR trans-repression of the pituitary POMC gene and misexpression in Cushing disease. Genes Dev. 20, 2871–2886 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Liang, G. et al. Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc. Natl Acad. Sci. USA 101, 7357–7362 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kondo, Y. et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat. Genet. 40, 741–750 (2008).

    CAS  PubMed  Google Scholar 

  21. Berdasco, M. & Esteller, M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev. Cell. 19, 698–711 (2010).

    CAS  PubMed  Google Scholar 

  22. Fraga, M. F. & Esteller, M. Towards the human cancer epigenome: a first draft of histone modifications. Cell Cycle 4, 1377–1381 (2005).

    CAS  PubMed  Google Scholar 

  23. Egger, G., Liang, G., Aparicio, A. & Jones, P. A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457–463 (2004).

    CAS  PubMed  Google Scholar 

  24. Jones, P. A. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3, 415–428 (2002).

    CAS  PubMed  Google Scholar 

  25. Woloschak, M., Yu, A. & Post, K. D. Frequent inactivation of the p16 gene in human pituitary tumors by gene methylation. Mol. Carcinog. 19, 221–224 (1997).

    CAS  PubMed  Google Scholar 

  26. Simpson, D. J., Bicknell, J. E., McNicol, A. M., Clayton, R. N. & Farrell, W. E. Hypermethylation of the p16/CDKN2A/MTSI gene and loss of protein expression is associated with nonfunctional pituitary adenomas but not somatotrophinomas. Genes Chromosomes Cancer 24, 328–336 (1999).

    CAS  PubMed  Google Scholar 

  27. Simpson, D. J., Hibberts, N. A., McNicol, A. M., Clayton, R. N. & Farrell, W. E. Loss of pRb expression in pituitary adenomas is associated with methylation of the RB1 CpG island. Cancer Res. 60, 1211–1216 (2000).

    CAS  PubMed  Google Scholar 

  28. Simpson, D. J., Clayton, R. N. & Farrell, W. E. Preferential loss of death associated protein kinase expression in invasive pituitary tumours is associated with either CpG island methylation or homozygous deletion. Oncogene 21, 1217–1224 (2002).

    CAS  PubMed  Google Scholar 

  29. Frost, S. J., Simpson, D. J., Clayton, R. N. & Farrell, W. E. Transfection of an inducible p16/CDKN2A construct mediates reversible growth inhibition and G1 arrest in the AtT20 pituitary tumor cell line. Mol. Endocrinol. 13, 1801–1810 (1999).

    CAS  PubMed  Google Scholar 

  30. Zhao, J., Dahle, D., Zhou, Y., Zhang, X. & Klibanski, A. Hypermethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors. J. Clin. Endocrinol. Metab. 90, 2179–2186 (2005).

    CAS  PubMed  Google Scholar 

  31. Zhang, X. et al. Loss of expression of GADD45γ, a growth inhibitory gene, in human pituitary adenomas: implications for tumorigenesis. J. Clin. Endocrinol. Metab. 87, 1262–1267 (2002).

    CAS  PubMed  Google Scholar 

  32. Bahar, A., Bicknell, J. E., Simpson, D. J., Clayton, R. N. & Farrell, W. E. Loss of expression of the growth inhibitory gene GADD45γ, in human pituitary adenomas, is associated with CpG island methylation. Oncogene 23, 936–944 (2004).

    CAS  PubMed  Google Scholar 

  33. Dudley, K. J., Revill, K., Whitby, P., Clayton, R. N. & Farrell, W. E. Genome-wide analysis in a murine Dnmt1 knockdown model identifies epigenetically silenced genes in primary human pituitary tumors. Mol. Cancer. Res. 6, 1567–1574 (2008).

    CAS  PubMed  Google Scholar 

  34. Revill, K., Dudley, K. J., Clayton, R. N., McNicol, A. M. & Farrell, W. E. Loss of neuronatin expression is associated with promoter hypermethylation in pituitary adenoma. Endocr. Relat. Cancer 16, 537–548 (2009).

    CAS  PubMed  Google Scholar 

  35. Zhou, Y. et al. Activation of p53 by MEG3 non-coding RNA. J. Biol. Chem. 282, 24731–24742 (2007).

    CAS  PubMed  Google Scholar 

  36. Hayward, B. E. et al. Imprinting of the Gsα gene GNAS1 in the pathogenesis of acromegaly. J. Clin. Invest. 107, R31–R36 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bahar, A. et al. Isolation and characterization of a novel pituitary tumor apoptosis gene. Mol. Endocrinol. 18, 1827–1839 (2004).

    CAS  PubMed  Google Scholar 

  38. Abbass, S. A., Asa, S. L. & Ezzat, S. Altered expression of fibroblast growth factor receptors in human pituitary adenomas. J. Clin. Endocrinol. Metab. 82, 1160–1166 (1997).

    CAS  PubMed  Google Scholar 

  39. Zhu, X., Lee, K., Asa, S. L. & Ezzat, S. Epigenetic silencing through DNA and histone methylation of fibroblast growth factor receptor 2 in neoplastic pituitary cells. Am. J. Pathol. 170, 1618–1628 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kondo, T. et al. Epigenetically controlled fibroblast growth factor receptor 2 signaling imposes on the RAS/BRAF/mitogen-activated protein kinase pathway to modulate thyroid cancer progression. Cancer Res. 67, 546–5470 (2007).

    Google Scholar 

  41. Kondo, T., Zhu, X., Asa, S. L. & Ezzat, S. The cancer/testis antigen melanoma-associated antigen-A3/A6 is a novel target of fibroblast growth factor receptor 2-IIIb through histone H3 modifications in thyroid cancer. Clin. Cancer Res. 13, 4713–4720 (2007).

    CAS  PubMed  Google Scholar 

  42. Zhu, X., Asa, S. L. & Ezzat, S. Fibroblast growth factor 2 and estrogen control the balance of histone 3 modifications targeting MAGE-A3 in pituitary neoplasia. Clin. Cancer Res. 14, 1984–1996 (2008).

    CAS  PubMed  Google Scholar 

  43. Asa, S. L. & Ezzat, S. The pathogenesis of pituitary tumours. Nat. Rev. Cancer 2, 836–849 (2002).

    CAS  PubMed  Google Scholar 

  44. Fedele, M. et al. HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell 9, 459–471 (2006).

    CAS  PubMed  Google Scholar 

  45. Fedele, M., Pierantoni, G. M., Visone, R. & Fusco, A. E2F1 activation is responsible for pituitary adenomas induced by HMGA2 gene overexpression. Cell Div. 1, 17 (2006).

    PubMed  PubMed Central  Google Scholar 

  46. Fedele, M., Palmier, D. & Fusco A. HMGA2: a pituitary tumour subtype-specific oncogene? Mol. Cell. Endocrinol. 326, 19–24 (2010).

    CAS  PubMed  Google Scholar 

  47. Zhu, X. et al. Deoxyribonucleic acid methyltransferase 3B promotes epigenetic silencing through histone 3 chromatin modifications in pituitary cells. J. Clin. Endocrinol. Metab. 93, 3610–3617 (2008).

    CAS  PubMed  Google Scholar 

  48. Zhu, X., Asa, S. L. & Ezzat, S. Ikaros is regulated through multiple histone modifications and deoxyribonucleic acid methylation in the pituitary. Mol. Endocrinol. 21, 1205–1215 (2007).

    CAS  PubMed  Google Scholar 

  49. Wade, P. A. Methyl CpG binding proteins: coupling chromatin architecture to gene regulation. Oncogene 20, 3166–3173 (2001).

    CAS  PubMed  Google Scholar 

  50. Robertson, K. D. et al. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat. Genet. 25, 338–342 (2000).

    CAS  PubMed  Google Scholar 

  51. Rountree, M. R., Bachman, K. E. & Baylin, S. B. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat. Genet. 25, 269–277 (2000).

    CAS  PubMed  Google Scholar 

  52. Belinsky, S. A. et al. Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer. Cancer Res. 63, 7089–7093 (2003).

    CAS  PubMed  Google Scholar 

  53. Melmed, S. Pathogenesis of pituitary tumors. Nat. Rev. Endocrinol. 7, 257–266 (2011).

    CAS  PubMed  Google Scholar 

  54. Hofland, L. J., Feelders, R. A., de Herder, W. W. & Lamberts, S. W. Pituitary tumours: the sst/D2 receptors as molecular targets. Mol. Cell Endocrinol. 326, 89–98 (2010).

    CAS  PubMed  Google Scholar 

  55. Melmed, S. et al. Diagnosis and treatment of hyperprolactinemia: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 96, 273–288 (2011).

    CAS  PubMed  Google Scholar 

  56. Sherlock, M., Woods, C. & Sheppard, M. C. Medical therapy in acromegaly. Nat. Rev. Endocrinol. 7, 291–300 (2011).

    CAS  PubMed  Google Scholar 

  57. Pivonello, R. et al. Dopamine receptor expression and function in corticotroph ectopic tumors. J. Clin. Endocrinol. Metab. 92, 65–69 (2007).

    CAS  PubMed  Google Scholar 

  58. Ben-Jonathan, N. & Hnasko, R. Dopamine as a prolactin (PRL) inhibitor. Endocr. Rev. 22, 724–763 (2001).

    CAS  PubMed  Google Scholar 

  59. Ferone, D. et al. Preclinical and clinical experiences with the role of dopamine receptors in the treatment of pituitary adenomas. Eur. J. Endocrinol. 156 (Suppl. 1), S37–S43 (2007).

    CAS  PubMed  Google Scholar 

  60. Colao, A., di Sarno, A., Pivonello, R., di Somma, C. & Lombardi, G. Dopamine receptor agonists for treating prolactinomas. Expert Opin. Investig. Drugs 11, 787–800 (2002).

    CAS  PubMed  Google Scholar 

  61. Molitch, M. E. Pharmacologic resistance in prolactinoma patients. Pituitary 8, 43–52 (2005).

    CAS  PubMed  Google Scholar 

  62. Pellegrini, I., Costa, R., Grisoli, F. & Jaquet, P. Abnormal dopamine sensitivity in some human prolactinomas. Horm. Res. 31, 19–23 (1989).

    CAS  PubMed  Google Scholar 

  63. Pellegrini, I. et al. Resistance to bromocriptine in prolactinomas. J. Clin. Endocrinol. Metab. 69, 500–509 (1989).

    CAS  PubMed  Google Scholar 

  64. Filopanti, M. et al. Dopamine D2 receptor gene polymorphisms and response to cabergoline therapy in patients with prolactin-secreting pituitary adenomas. Pharmacogenomics J. 8, 357–363 (2008).

    CAS  PubMed  Google Scholar 

  65. Kelly, T. K., De Carvalho, D. D. & Jones, P. A. Epigenetic modifications as therapeutic targets. Nat. Biotechnol. 28, 1069–1078 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang, X., Lay, F., Han, H. & Jones, P. A. Targeting DNA methylation for epigenetic therapy. Trends Pharmacol. Sci. 31, 536–546 (2010).

    PubMed  PubMed Central  Google Scholar 

  67. Flotho, C. et al. The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia 23, 1019–1028 (2009).

    CAS  PubMed  Google Scholar 

  68. Gius, D. et al. Distinct effects on gene expression of chemical and genetic manipulation of the cancer epigenome revealed by a multimodality approach. Cancer Cell 6, 361–371 (2004).

    CAS  PubMed  Google Scholar 

  69. Zhu, W. G. et al. Increased expression of unmethylated CDKN2D by 5-aza-2'-deoxycytidine in human lung cancer cells. Oncogene 20, 7787–7796 (2001).

    CAS  PubMed  Google Scholar 

  70. Soengas, M. S. et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207–211 (2001).

    CAS  PubMed  Google Scholar 

  71. Komashko, V. M. & Farnham, P. J. 5-Azacytidine treatment reorganizes genomic histone modification patterns. Epigenetics 5, 229–240 (2010).

    CAS  PubMed  Google Scholar 

  72. Cortez, C. C. & Jones, P. A. Chromatin, cancer and drug therapies. Mutat. Res. 647, 44–51 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gore, S. D. et al. Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res. 66, 6361–6369 (2006).

    CAS  PubMed  Google Scholar 

  74. Karagiannis, T. C. & El-Osta, A. Clinical potential of histone deacetylase inhibitors as stand alone therapeutics and in combination with other chemotherapeutics or radiotherapy for cancer. Epigenetics 1, 121–126 (2006).

    PubMed  Google Scholar 

  75. Yang, A. S., Estecio, M. R., Garcia-Manero, G., Kantarjian, H. M. & Issa, J. P. Comment on “Chromosomal instability and tumors promoted by DNA hypomethylation” and “Induction of tumors in mice by genomic hypomethylation” (author reply). Science 302, 1153 (2003).

    CAS  PubMed  Google Scholar 

  76. Chesnokova, V. et al. Senescence mediates pituitary hypoplasia and restrains pituitary tumor growth. Cancer Res. 67, 10564–10572 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Chesnokova, V. et al. p21kip1 restrains pituitary tumor growth. Proc. Natl Acad. Sci. USA 105, 17498–17503 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Plimack, E. R., Kantarjian, H. M. & Issa, J. P. Decitabine and its role in the treatment of hematopoietic malignancies. Leuk. Lymphoma 48, 1472–1481 (2007).

    CAS  PubMed  Google Scholar 

  79. Kantarjian, H. M. et al. Results of decitabine (5-aza-2'deoxycytidine) therapy in 130 patients with chronic myelogenous leukemia. Cancer 98, 522–528 (2003).

    CAS  PubMed  Google Scholar 

  80. Cheng, J. C. et al. Preferential response of cancer cells to zebularine. Cancer Cell 6, 151–158 (2004).

    CAS  PubMed  Google Scholar 

  81. Cheng, J. C. et al. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J. Natl Cancer Inst. 95, 399–409 (2003).

    CAS  PubMed  Google Scholar 

  82. Kristensen, L. S., Nielsen, H. M. & Hansen, L. L. Epigenetics and cancer treatment. Eur. J. Pharmacol. 625, 131–142 (2009).

    PubMed  Google Scholar 

  83. Yoshida, M., Hoshikawa, Y., Koseki, K., Mori, K. & Beppu, T. Structural specificity for biological activity of trichostatin A, a specific inhibitor of mammalian cell cycle with potent differentiation-inducing activity in Friend leukemia cells. J. Antibiot. (Tokyo) 43, 1101–1106 (1990).

    CAS  Google Scholar 

  84. Mai, A. & Altucci, L. Epi-drugs to fight cancer: from chemistry to cancer treatment, the road ahead. Int. J. Biochem. Cell Biol. 41, 199–213 (2009).

    CAS  PubMed  Google Scholar 

  85. Chiba, T. et al. Identification of genes up-regulated by histone deacetylase inhibition with cDNA microarray and exploration of epigenetic alterations on hepatoma cells. J. Hepatol. 41, 436–445 (2004).

    CAS  PubMed  Google Scholar 

  86. Dannenberg, L. O. & Edenberg, H. J. Epigenetics of gene expression in human hepatoma cells: expression profiling the response to inhibition of DNA methylation and histone deacetylation. BMC Genomics 7, 181 (2006).

    PubMed  PubMed Central  Google Scholar 

  87. Cameron, E. E., Bachman, K. E., Myöhänen, S., Herman, J. G. & Baylin, S. B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet. 21, 103–107 (1999).

    CAS  PubMed  Google Scholar 

  88. Klisovic, D. D. et al. Depsipeptide (FR901228) inhibits proliferation and induces apoptosis in primary and metastatic human uveal melanoma cell lines. Invest. Ophthalmol. Vis. Sci. 44, 2390–2398 (2003).

    PubMed  Google Scholar 

  89. Rowther, F. B., Richardson, A., Clayton, R. N. & Farrell, W. E. Bromocriptine and dopamine mediate independent and synergistic apoptotic pathways in pituitary cells. Neuroendocrinology 91, 256–267 (2010).

    CAS  PubMed  Google Scholar 

  90. Scott, S. A. et al. Zebularine inhibits human acute myeloid leukemia cell growth in vitro in association with p15INK4B demethylation and re-expression. Exp. Hematol. 35, 263–273 (2007).

    CAS  PubMed  Google Scholar 

  91. Cheng, J. C. et al. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol. Cell. Biol. 24, 1270–1278 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Li, L. C., Yeh, C. C., Nojima, D. & Dahiya, R. Cloning and characterization of human estrogen receptor β promoter. Biochem. Biophys. Res. Commun. 275, 682–689 (2000).

    CAS  PubMed  Google Scholar 

  93. Lapidus, R. G. et al. Methylation of estrogen and progesterone receptor gene 5' CpG islands correlates with lack of estrogen and progesterone receptor gene expression in breast tumors. Clin. Cancer Res. 2, 805–810 (1996).

    CAS  PubMed  Google Scholar 

  94. Yang, X. et al. Transcriptional activation of estrogen receptor α in human breast cancer cells by histone deacetylase inhibition. Cancer Res. 60, 6890–6894 (2000).

    CAS  PubMed  Google Scholar 

  95. Yang, X. et al. Synergistic activation of functional estrogen receptor (ER)-α by DNA methyltransferase and histone deacetylase inhibition in human ER-α-negative breast cancer cells. Cancer Res. 61, 7025–7029 (2001).

    CAS  PubMed  Google Scholar 

  96. Walton, T. J. et al. DNA demethylation and histone deacetylation inhibition co-operate to re-express estrogen receptor β and induce apoptosis in prostate cancer cell-lines. Prostate 68, 210–222 (2008).

    CAS  PubMed  Google Scholar 

  97. Fenaux, P. et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 10, 223–232 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gore, S. D. & Hermes-DeSantis, E. R. Future directions in myelodysplastic syndrome: newer agents and the role of combination approaches. Cancer Control 15 (Suppl.), 40–49 (2008).

    PubMed  Google Scholar 

  99. Kim, M. S. et al. Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res. 63, 7291–7300 (2003).

    CAS  PubMed  Google Scholar 

  100. Karagiannis, T. C. & El-Osta, A. Modulation of cellular radiation responses by histone deacetylase inhibitors. Oncogene 25, 3885–3893 (2006).

    CAS  PubMed  Google Scholar 

  101. Dudley, K. J., Revill, K., Whitby, P., Clayton, R. N. & Farrell, W. E. Genome-wide analysis in a murine Dnmt1 knockdown model identifies epigenetically silenced genes in primary human pituitary tumors. Mol. Cancer. Res. 6, 1567–1574 (2008).

    CAS  PubMed  Google Scholar 

  102. Revill, K., Dudley, K. J., Clayton, R. N., McNicol, A. M. & Farrell, W. E. Loss of neuronatin expression is associated with promoter hypermethylation in pituitary adenoma. Endocr. Relat. Cancer 16, 537–548 (2009).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K. Yacqub-Usman, A. Richardson, C. V. Duong and W. E. Farrell researched data for the Review and all authors made substantial contributions to discussion of content. W. E. Farrell wrote and edited the article. A. Richardson and R. N. Clayton also edited the manuscript before submission.

Corresponding author

Correspondence to William E. Farrell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yacqub-Usman, K., Richardson, A., Duong, C. et al. The pituitary tumour epigenome: aberrations and prospects for targeted therapy. Nat Rev Endocrinol 8, 486–494 (2012). https://doi.org/10.1038/nrendo.2012.54

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2012.54

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing