Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Importance of oestrogen receptors to preserve functional β-cell mass in diabetes

Abstract

Protecting the functional mass of insulin-producing β cells of the pancreas is a major therapeutic challenge in patients with type 1 (T1DM) or type 2 diabetes mellitus (T2DM). The gonadal hormone 17β-oestradiol (E2) is involved in reproductive, bone, cardiovascular and neuronal physiology. In rodent models of T1DM and T2DM, treatment with E2 protects pancreatic β cells against oxidative stress, amyloid polypeptide toxicity, lipotoxicity and apoptosis. Three oestrogen receptors (ERs)—ERα, ERβ and the G protein-coupled ER (GPER)—have been identified in rodent and human β cells. Whereas activation of ERα enhances glucose-stimulated insulin biosynthesis, reduces islet toxic lipid accumulation and promotes β-cell survival from proapoptotic stimuli, activation of ERβ increases glucose-stimulated insulin secretion. However, activation of GPER protects β cells from apoptosis, raises glucose-stimulated insulin secretion and lipid homeostasis without affecting insulin biosynthesis. Oestrogens are also improving islet engraftment in rodent models of pancreatic islet transplantation. This Review describes developments in the role of ERs in islet insulin biosynthesis and secretion, lipid homeostasis and survival. Moreover, we discuss why and how enhancing ER action in β cells without the undesirable effect of general oestrogen therapy is a therapeutic avenue to preserve functional β-cell mass in patients with diabetes mellitus.

Key Points

  • Oestrogen prevents β-cell failure in most common rodent models of β-cell failure

  • Activation of oestrogen receptor (ER) α promotes β-cell survival, insulin biosynthesis and lipid homeostasis

  • Activation of ERβ enhances glucose-stimulated insulin secretion

  • Activation of G protein-coupled receptor ER (GPER) protects β cells from apoptosis, enhances glucose-stimulated insulin secretion and lipid homeostasis

  • The action of ERs in β cells is mediated via extranuclear ERs

  • Enhancing ER action in β cells without the undesirable effect of general oestrogen therapy is a therapeutic avenue to preserve functional β-cell mass in patients with diabetes mellitus

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crosstalk between pancreatic β cells and other organs in the regulation of glucose homeostasis.
Figure 2: Overview of ER signalling.
Figure 3: Integration of ERs with other β-cell receptors influencing β-cell mass and/or function.

Similar content being viewed by others

References

  1. Mathis, D., Vence, L. & Benoist, C. β-cell death during progression to diabetes. Nature 414, 792–798 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Davalli, A. M. et al. Vulnerability of islets in the immediate posttransplantation period. Dynamic changes in structure and function. Diabetes 45, 1161–1167 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Cattan, P. et al. Early assessment of apoptosis in isolated islets of Langerhans. Transplantation 71, 857–862 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Prentki, M. & Nolan, C. J. Islet β cell failure in type 2 diabetes. J. Clin. Invest. 116, 1802–1812 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Poitout, V. & Robertson, R. P. Glucolipotoxicity: fuel excess and β-cell dysfunction. Endocr. Rev. 29, 351–366 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Eizirik, D. L., Cardozo, A. K. & Cnop, M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr. Rev. 29, 42–61 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Deroo, B. J. & Korach, K. S. Estrogen receptors and human disease. J. Clin. Invest. 116, 561–570 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, S. & Mauvais-Jarvis, F. Minireview: estrogenic protection of β-cell failure in metabolic diseases. Endocrinology 151, 859–864 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Mauvais-Jarvis, F. Estrogen and androgen receptors: regulators of fuel homeostasis and emerging targets for diabetes and obesity. Trends Endocrinol. Metab. 22, 24–33 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Wynn, V. & Doar, J. W. Some effects of oral contraceptives on carbohydrate metabolism. Lancet 2, 715–719 (1966).

    Article  CAS  PubMed  Google Scholar 

  11. Livingstone, C. & Collison, M. Sex steroids and insulin resistance. Clin. Sci. (Lond.) 102, 151–166 (2002).

    Article  CAS  Google Scholar 

  12. Margolis, K. L. et al. Effect of oestrogen plus progestin on the incidence of diabetes in postmenopausal women: results from the Women's Health Initiative Hormone Trial. Diabetologia 47, 1175–1187 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Kanaya, A. M. et al. Glycemic effects of postmenopausal hormone therapy: the Heart and Estrogen/progestin Replacement Study. A randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 138, 1–9 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Andersson, B. et al. Estrogen replacement therapy decreases hyperandrogenicity and improves glucose homeostasis and plasma lipids in postmenopausal women with noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 82, 638–643 (1997).

    CAS  PubMed  Google Scholar 

  15. Brussaard, H. E., Gevers Leuven, J. A., Frölich, M., Kluft, C. & Krans, H. M. Short-term oestrogen replacement therapy improves insulin resistance, lipids and fibrinolysis in postmenopausal women with NIDDM. Diabetologia 40, 843–849 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Espeland, M. A. et al. Effect of postmenopausal hormone therapy on glucose and insulin concentrations. PEPI Investigators. Postmenopausal Estrogen/Progestin Interventions. Diabetes Care 21, 1589–1595 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Friday, K. E., Dong, C. & Fontenot, R. U. Conjugated equine estrogen improves glycemic control and blood lipoproteins in postmenopausal women with type 2 diabetes. J. Clin. Endocrinol. Metab. 86, 48–52 (2001).

    CAS  PubMed  Google Scholar 

  18. Crespo, C. J., Smit, E., Snelling, A., Sempos, C. T. & Andersen, R. E. Hormone replacement therapy and its relationship to lipid and glucose metabolism in diabetic and nondiabetic postmenopausal women: results from the Third National Health and Nutrition Examination Survey (NHANES III). Diabetes Care 25, 1675–1680 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Saglam, K., Polat, Z., Yilmaz, M. I., Gulec, M. & Akinci, S. B. Effects of postmenopausal hormone replacement therapy on insulin resistance. Endocrine 18, 211–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Li, C. et al. Low-dose hormone therapy and carbohydrate metabolism. Fertil. Steril. 79, 550–555 (2003).

    Article  PubMed  Google Scholar 

  21. Perera, M. et al. The effects of transdermal estradiol in combination with oral norethisterone on lipoproteins, coagulation, and endothelial markers in postmenopausal women with type 2 diabetes: a randomized, placebo-controlled study. J. Clin. Endocrinol. Metab. 86, 1140–1143 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Cagnacci, A. et al. Effects of low doses of transdermal 17β-estradiol on carbohydrate metabolism in postmenopausal women. J. Clin. Endocrinol. Metab. 74, 1396–1400 (1992).

    CAS  PubMed  Google Scholar 

  23. Lindheim, S. R. et al. The route of administration influences the effect of estrogen on insulin sensitivity in postmenopausal women. Fertil. Steril. 62, 1176–1180 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Gale, E. A. & Gillespie, K. M. Diabetes and gender. Diabetologia 44, 3–15 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Godsland, I. F. Oestrogens and insulin secretion. Diabetologia 48, 2213–2220 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, S., Navarro, G. & Mauvais-Jarvis, F. Androgen excess produces systemic oxidative stress and predisposes to β-cell failure in female mice. PLoS ONE 5, e11302 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fox, H. S. Androgen treatment prevents diabetes in nonobese diabetic mice. J. Exp. Med. 175, 1409–1412 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Pearce, R. B., Formby, B., Healy, K. & Peterson, C. M. Association of an androgen-responsive T cell phenotype with murine diabetes and Idd2. Autoimmunity 20, 247–258 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Rosmalen, J. G. et al. Sex steroids influence pancreatic islet hypertrophy and subsequent autoimmune infiltration in nonobese diabetic (NOD) and NODscid mice. Lab. Invest. 81, 231–239 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Bao, M., Yang, Y., Jun, H. S. & Yoon, J. W. Molecular mechanisms for gender differences in susceptibility to T cell-mediated autoimmune diabetes in nonobese diabetic mice. J. Immunol. 168, 5369–5375 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Puah, J. A. & Bailey, C. J. Insulinotropic effect of ovarian steroid hormones in streptozotocin diabetic female mice. Horm. Metab. Res. 17, 216–218 (1985).

    Article  CAS  PubMed  Google Scholar 

  32. Le May, C. et al. Estrogens protect pancreatic β-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc. Natl Acad. Sci. USA 103, 9232–9237 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paik, S. G., Michelis, M. A., Kim, Y. T. & Shin, S. Induction of insulin-dependent diabetes by streptozotocin. Inhibition by estrogens and potentiation by androgens. Diabetes 31, 724–729 (1982).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, S. et al. Importance of extranuclear estrogen receptor-α and membrane G protein-coupled estrogen receptor in pancreatic islet survival. Diabetes 58, 2292–2302 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maclaren, N. K., Neufeld, M., McLaughlin, J. V. & Taylor, G. Androgen sensitization of streptozotocin-induced diabetes in mice. Diabetes 29, 710–716 (1980).

    Article  CAS  PubMed  Google Scholar 

  36. Betsholtz, C. et al. Islet amyloid polypeptide (IAPP): cDNA cloning and identification of an amyloidogenic region associated with the species-specific occurrence of age-related diabetes mellitus. Exp. Cell Res. 183, 484–493 (1989).

    Article  CAS  PubMed  Google Scholar 

  37. Betsholtz, C. et al. Sequence divergence in a specific region of islet amyloid polypeptide (IAPP) explains differences in islet amyloid formation between species. FEBS Lett. 251, 261–264 (1989).

    Article  CAS  PubMed  Google Scholar 

  38. Ohagi, S., Nishi, M., Bell, G. I., Ensinck, J. W. & Steiner, D. F. Sequences of islet amyloid polypeptide precursors of an Old World monkey, the pig-tailed macaque (Macaca nemestrina), and the dog (Canis familiaris). Diabetologia 34, 555–558 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Janson, J. et al. Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proc. Natl Acad. Sci. USA 93, 7283–7288 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Geisler, J. G. et al. Estrogen can prevent or reverse obesity and diabetes in mice expressing human islet amyloid polypeptide. Diabetes 51, 2158–2169 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Kahn, S. E. et al. Oophorectomy promotes islet amyloid formation in a transgenic mouse model of Type II diabetes. Diabetologia 43, 1309–1312 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Lee, Y. et al. Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-β-cell relationships. Proc. Natl Acad. Sci. USA 91, 10878–10882 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tiano, J. P. et al. Estrogen receptor activation reduces lipid synthesis in pancreatic islets and prevents β cell failure in rodent models of type 2 diabetes. J. Clin. Invest. 121, 3331–3342 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nolan, C. J. et al. Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling. Diabetologia 49, 2120–2130 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Garris, D. R. & Garris, B. L. Estrogenic restoration of functional pancreatic islet cytoarchitecture in diabetes (db/db) mutant C57BL/KsJ mice: relationship to estradiol localization, systemic glycemia, and persistent hyperinsulinemia. Cell Tissue Res. 319, 231–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Yoshioka, M., Kayo, T., Ikeda, T. & Koizumi, A. A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 46, 887–894 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, J. et al. A mutation in the insulin 2 gene induces diabetes with severe pancreatic β-cell dysfunction in the Mody mouse. J. Clin. Invest. 103, 27–37 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Oyadomari, S. et al. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J. Clin. Invest. 109, 525–532 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Toyoshima, M. et al. Dimorphic gene expression patterns of anorexigenic and orexigenic peptides in hypothalamus account male and female hyperphagia in Akita type 1 diabetic mice. Biochem. Biophys. Res. Commun. 352, 703–708 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Hirosawa, M. et al. Ablation of estrogen receptor α (ERα) prevents upregulation of POMC by leptin and insulin. Biochem. Biophys. Res. Commun. 371, 320–323 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Kawano, K., Hirashima, T., Mori, S. & Natori, T. OLETF (Otsuka Long-Evans Tokushima Fatty) rat: a new NIDDM rat strain. Diabetes Res. Clin. Pract. 24 (Suppl.), S317–S320 (1994).

    Article  PubMed  Google Scholar 

  52. Kawano, K. et al. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 41, 1422–1428 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Funakoshi, A. et al. An animal model of congenital defect of gene expression of cholecystokinin (CCK)-A receptor. Biochem. Biophys. Res. Commun. 210, 787–796 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Shi, K., Mizuno, A., Sano, T., Ishida, K. & Shima, K. Sexual difference in the incidence of diabetes mellitus in Otsuka-Long-Evans-Tokushima-Fatty rats: effects of castration and sex hormone replacement on its incidence. Metabolism 43, 1214–1220 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Shimizu, H. et al. Orchiectomy and response to testosterone in the development of obesity in young Otsuka-Long-Evans-Tokushima Fatty (OLETF) rats. Int. J. Obes. Relat. Metab. Disord. 22, 318–324 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Efrat, S., Fleischer, N. & Hanahan, D. Diabetes induced in male transgenic mice by expression of human H-ras oncoprotein in pancreatic β cells. Mol. Cell Biol. 10, 1779–1783 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Efrat, S. Sexual dimorphism of pancreatic β-cell degeneration in transgenic mice expressing an insulin-ras hybrid gene. Endocrinology 128, 897–901 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Withers, D. J. et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391, 900–904 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Burks, D. J. et al. IRS-2 pathways integrate female reproduction and energy homeostasis. Nature 407, 377–382 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Withers, D. J. et al. Irs-2 coordinates Igf-1 receptor-mediated β-cell development and peripheral insulin signalling. Nat. Genet. 23, 32–40 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Kushner, J. A. et al. Pdx1 restores β cell function in Irs2 knockout mice. J. Clin. Invest. 109, 1193–1201 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sorenson, R. L., Brelje, T. C. & Roth, C. Effects of steroid and lactogenic hormones on islets of Langerhans: a new hypothesis for the role of pregnancy steroids in the adaptation of islets to pregnancy. Endocrinology 133, 2227–2234 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Fehmann, H. C. & Habener, J. F. Insulinotropic hormone glucagon-like peptide-I(7–37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma β TC-1 cells. Endocrinology 130, 159–166 (1992).

    Article  CAS  PubMed  Google Scholar 

  64. Holz, G. G. 4th, Kühtreiber, W. M. & Habener, J. F. Pancreatic β-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7–37). Nature 361, 362–365 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Covey, S. D. et al. The pancreatic β cell is a key site for mediating the effects of leptin on glucose homeostasis. Cell Metab. 4, 291–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Morioka, T. et al. Disruption of leptin receptor expression in the pancreas directly affects β cell growth and function in mice. J. Clin. Invest. 117, 2860–2868 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wijesekara, N. et al. Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic β cell apoptosis and increases insulin gene expression and secretion. J. Biol. Chem. 285, 33623–33631 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Holland, W. L. et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 17, 55–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Lee, N. K. et al. Endocrine regulation of energy metabolism by the skeleton. Cell 130, 456–469 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nadal, A. et al. Rapid insulinotropic effect of 17β-estradiol via a plasma membrane receptor. FASEB J. 12, 1341–1348 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Nadal, A. et al. Nongenomic actions of estrogens and xenoestrogens by binding at a plasma membrane receptor unrelated to estrogen receptor α and estrogen receptor β. Proc. Natl Acad. Sci. USA 97, 11603–11608 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ropero, A. B., Soria, B. & Nadal, A. A nonclassical estrogen membrane receptor triggers rapid differential actions in the endocrine pancreas. Mol. Endocrinol. 16, 497–505 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Quesada, I. et al. Low doses of the endocrine disruptor bisphenol-A and the native hormone 17β-estradiol rapidly activate transcription factor CREB. FASEB J. 16, 1671–1673 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Contreras, J. L. et al. 17β-Estradiol protects isolated human pancreatic islets against proinflammatory cytokine-induced cell death: molecular mechanisms and islet functionality. Transplantation 74, 1252–1259 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Kang, L. et al. Involvement of estrogen receptor variant ER-α36, not GPR30, in nongenomic estrogen signaling. Mol. Endocrinol. 24, 709–721 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Revankar, C. M., Cimino, D. F., Sklar, L. A., Arterburn, J. B. & Prossnitz, E. R. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 307, 1625–1630 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Maggiolini, M. et al. The G protein-coupled receptor GPR30 mediates c-fos up-regulation by 17β-estradiol and phytoestrogens in breast cancer cells. J. Biol. Chem. 279, 27008–27016 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Toran-Allerand, C. D. et al. ER-X: a novel, plasma membrane-associated, putative estrogen receptor that is regulated during development and after ischemic brain injury. J. Neurosci. 22, 8391–8401 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Budhiraja, R. et al. Estrogen modulates xanthine dehydrogenase/xanthine oxidase activity by a receptor-independent mechanism. Antioxid. Redox. Signal. 5, 705–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Mann, V., Huber, C., Kogianni, G., Collins, F. & Noble, B. The antioxidant effect of estrogen and selective estrogen receptor modulators in the inhibition of osteocyte apoptosis in vitro. Bone 40, 674–684 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Yue, W. et al. Effects of estrogen on breast cancer development: Role of estrogen receptor independent mechanisms. Int. J. Cancer 127, 1748–1757 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Eckhoff, D. E. et al. Suppression of the c-Jun N-terminal kinase pathway by 17β-estradiol can preserve human islet functional mass from proinflammatory cytokine-induced destruction. Surgery 134, 169–179 (2003).

    Article  PubMed  Google Scholar 

  83. Liu, S. & Mauvais-Jarvis, F. Rapid, nongenomic estrogen actions protect pancreatic islet survival. Islets 1, 273–275 (2009).

    Article  PubMed  Google Scholar 

  84. Balhuizen, A., Kumar, R., Amisten, S., Lundquist, I. & Salehi, A. Activation of G protein-coupled receptor 30 modulates hormone secretion and counteracts cytokine-induced apoptosis in pancreatic islets of female mice. Mol. Cell Endocrinol. 320, 16–24 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Kumar, R., Balhuizen, A., Amisten, S., Lundquist, I. & Salehi, A. Insulinotropic and antidiabetic effects of 17β-estradiol and the GPR30 agonist G.-1 on human pancreatic islets. Endocrinology 152, 2568–2579 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Selye, H. Correlations between the chemical structure and the pharmacological actions of the steroids. Endocrinology 30, 437–453 (1942).

    Article  CAS  Google Scholar 

  87. Szego, C. M. & Davis, J. S. Adenosine 3',5'-monophosphate in rat uterus: acute elevation by estrogen. Proc. Natl Acad. Sci. USA 58, 1711–1718 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jensen, E. & Jacobson, H. Basic guides to the mechanism of estrogen action. Recent Prog. Horm. Res. 18, 387–414 (1962).

    CAS  Google Scholar 

  89. Behl, C. et al. Neuroprotection against oxidative stress by estrogens: structure-activity relationship. Mol. Pharmacol. 51, 535–541 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Yang, W., Wang, S., Li, L., Liang, Z. & Wang, L. Genistein reduces hyperglycemia and islet cell loss in a high-dosage manner in rats with alloxan-induced pancreatic damage. Pancreas 40, 396–402 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Bologa, C. G. et al. Virtual and biomolecular screening converge on a selective agonist for GPR30. Nat. Chem. Biol. 2, 207–212 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Baquie, M. et al. The liver receptor homolog-1 (LRH-1) is expressed in human islets and protects β-cells against stress-induced apoptosis. Hum. Mol. Genet. 20, 2823–2833 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Barnes, B. O., Regan, J. F. & Nelson, W. O. Improvement in experimental diabetes following the administration of ammniotin. JAMA 101, 926–927 (1933).

    Article  Google Scholar 

  94. Nelson, W. O. & Overholser, M. D. The effect of oestrogenic hormone on experimental pancreatic diabetes in the monkey. Endocrinology 20, 473–480 (1936).

    Article  CAS  Google Scholar 

  95. Rodriguez, R. R. in On the Nature and Treatment of Diabetes (eds Leibel, B. S. & Wrenshall, G. A.) 288–307 (Excerpta Medica Foundation, 1965).

    Google Scholar 

  96. Costrini, N. V. & Kalkhoff, R. K. Relative effects of pregnancy, estradiol, and progesterone on plasma insulin and pancreatic islet insulin secretion. J. Clin. Invest. 50, 992–999 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Choi, S. B., Jang, J. S. & Park, S. Estrogen and exercise may enhance β-cell function and mass via insulin receptor substrate 2 induction in ovariectomized diabetic rats. Endocrinology 146, 4786–4794 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Alonso-Magdalena, P., Morimoto, S., Ripoll, C., Fuentes, E. & Nadal, A. The estrogenic effect of bisphenol A disrupts pancreatic β-cell function in vivo and induces insulin resistance. Environ. Health Perspect. 114, 106–112 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Wong, W. P. et al. Extranuclear estrogen receptor-α stimulates NeuroD1 binding to the insulin promoter and favors insulin synthesis. Proc. Natl Acad. Sci. USA 107, 13057–13062 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sutter-Dub, M. T. Preliminary report: effects of female sex hormones on insulin secretion by the perfused rat pancreas. J. Physiol. (Paris) 72, 795–800 (1976).

    CAS  Google Scholar 

  101. Senzen, S. Effects of ovariectomy and treatment with progesterone or oestradiol-17 β on the secretion of insulin by the perfused rat pancreas. J. Endocrinol. 78, 153–154 (1978).

    Article  CAS  PubMed  Google Scholar 

  102. Faure, A. & Sutter-Dub, M. T. Insulin secretion from isolated pancreatic islets in the female rat. Short and long term oestradiol influence. J. Physiol. (Paris) 75, 289–295 (1979).

    CAS  Google Scholar 

  103. Alonso-Magdalena, P. et al. Pancreatic insulin content regulation by the estrogen receptor ER α. PLoS ONE 3, e2069 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Horn, P. A. et al. Effect of estradiol on insulin secreting INS-1 cells overexpressing estrogen receptors. Eur. J. Endocrinol. 142, 84–91 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Magnaterra, R. et al. The effects of pregnancy steroids on adaptation of β cells to pregnancy involve the pancreatic glucose sensor glucokinase. J. Endocrinol. 155, 247–253 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Al-Majed, H. T. et al. Effect of 17β-estradiol on insulin secretion and cytosolic calcium in Min6 mouse insulinoma cells and human islets of Langerhans. Pancreas 30, 307–313 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Soriano, S. et al. Rapid regulation of K(ATP) channel activity by 17β-estradiol in pancreatic β-cells involves the estrogen receptor β and the atrial natriuretic peptide receptor. Mol. Endocrinol. 23, 1973–1982 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mårtensson, U. E. et al. Deletion of the G protein-coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice. Endocrinology 150, 687–698 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Sharma, G. & Prossnitz, E. R. Mechanisms of estradiol-induced insulin secretion by the G protein-coupled estrogen receptor GPR30/GPER in pancreatic β-cells. Endocrinology 152, 3030–3039 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. D'Eon, T. M. et al. Estrogen regulation of adiposity and fuel partitioning. Evidence of genomic and non-genomic regulation of lipogenic and oxidative pathways. J. Biol. Chem. 280, 35983–35991 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Gao, H. et al. Long-term administration of estradiol decreases expression of hepatic lipogenic genes and improves insulin sensitivity in ob/ob mice: a possible mechanism is through direct regulation of signal transducer and activator of transcription 3. Mol. Endocrinol. 20, 1287–1299 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Takada, M. et al. Effects of explosive brain death on cytokine activation of peripheral organs in the rat. Transplantation 65, 1533–1542 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Contreras, J. L. et al. Brain death significantly reduces isolated pancreatic islet yields and functionality in vitro and in vivo after transplantation in rats. Diabetes 52, 2935–2942 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Eckhoff, D. E. et al. Enhanced isolated pancreatic islet recovery and functionality in rats by 17β-estradiol treatment of brain death donors. Surgery 136, 336–345 (2004).

    Article  PubMed  Google Scholar 

  115. Liu, S., Kilic, G. & Mauvais-Jarvis, F. Estrogens improve angiogenesis during pancreatic islet transplantation. Presented at the Keystone Symposia on advances in islet biology (Whistler, Canada, 2010).

  116. Salonia, A. et al. Sexual function and endocrine profile in fertile women with type 1 diabetes. Diabetes Care 29, 312–316 (2006).

    Article  PubMed  Google Scholar 

  117. Codner, E. Estrogen and type 1 diabetes mellitus. Pediatr. Endocrinol. Rev. 6, 228–234 (2008).

    PubMed  Google Scholar 

  118. Cooke, P. S. et al. Stromal estrogen receptors mediate mitogenic effects of estradiol on uterine epithelium. Proc. Natl Acad. Sci. USA 94, 6535–6540 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Houssay, B. A., Foglia, V. G. & Rodriguez, R. R. Production or prevention of some types of experimental diabetes by oestrogens or corticosteroids. Acta Endocrinol. (Copenh.) 17, 146–164 (1954).

    CAS  Google Scholar 

  120. Goodman, M. N. & Hazelwood, R. L. Short-term effects of oestradiol benzoate in normal, hypophysectomized and alloxan-diabetic male rats. J. Endocrinol. 62, 439–449 (1974).

    Article  CAS  PubMed  Google Scholar 

  121. Yamabe, N., Kang, K. S. & Zhu, B. T. Beneficial effect of 17β-estradiol on hyperglycemia and islet β-cell functions in a streptozotocin-induced diabetic rat model. Toxicol. Appl. Pharmacol. 249, 76–85 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Ren, Z., Zou, C., Ji, H. & Zhang, Y. A. Oestrogen regulates proliferation and differentiation of human islet-derived precursor cells through oestrogen receptor α. Cell Biol. Int. 34, 523–530 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Chlebowski, R. T. et al. Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Women's Health Initiative Randomized Trial. JAMA 289, 3243–3253 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Beral, V., Bull, D. & Reeves, G. Endometrial cancer and hormone-replacement therapy in the Million Women Study. Lancet 365, 1543–1551 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Kharode, Y., Bodine, P. V., Miller, C. P., Lyttle, C. R. & Komm, B. S. The pairing of a selective estrogen receptor modulator, bazedoxifene, with conjugated estrogens as a new paradigm for the treatment of menopausal symptoms and osteoporosis prevention. Endocrinology 149, 6084–6091 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Komm, B. S. A new approach to menopausal therapy: the tissue selective estrogen complex. Reprod. Sci. 15, 984–992 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Finan, B. et al. Estrogen conjugates of GLP-1 demonstrate enhanced efficacy in diet-induced obese mice. Presented at the Keystone Symposia on type 2 diabetes, insulin resistance and metabolic dysfunction (Keystone, CO, USA, 2011).

  128. Nilsson, S. et al. Mechanisms of estrogen action. Physiol. Rev. 81, 1535–1565 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Levin, E. R. Plasma membrane estrogen receptors. Trends Endocrinol. Metab. 20, 477–482 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Verchere, C. B. et al. Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic β cell expression of human islet amyloid polypeptide. Proc. Natl Acad. Sci. USA 93, 3492–3496 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Leiter, E. H., Chapman, H. D. & Coleman, D. L. The influence of genetic background on the expression of mutations at the diabetes locus in the mouse. V. Interaction between the db gene and hepatic sex steroid sulfotransferases correlates with gender-dependent susceptibility to hyperglycemia. Endocrinology 124, 912–922 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work was supported by grants from the NIH (RO1 DK074970, P50 HD044405), the Juvenile Diabetes Research Foundation (1-2006-837), the March of Dimes (6-FY7-312) and the American Heart Association (11IRG5570010). J. P. Tiano was supported in part by NIH Training Grant T32 DK007169.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Franck Mauvais-Jarvis.

Ethics declarations

Competing interests

J. P. Tiano declares no competing interests. F. Mauvais-Jarvis declares an association with the following company: Pfizer (grant/research support).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiano, J., Mauvais-Jarvis, F. Importance of oestrogen receptors to preserve functional β-cell mass in diabetes. Nat Rev Endocrinol 8, 342–351 (2012). https://doi.org/10.1038/nrendo.2011.242

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.242

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing