Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism

Abstract

The discovery of fibroblast growth factor 23 (FGF-23) has expanded our understanding of phosphate and vitamin D homeostasis and provided new insights into the pathogenesis of hereditary hypophosphatemic and hyperphosphatemic disorders, as well as acquired disorders of phosphate metabolism, such as chronic kidney disease. FGF-23 is secreted by osteoblasts and osteocytes in bone and principally targets the kidney to regulate the reabsorption of phosphate, the production and catabolism of 1,25-dihydroxyvitamin D and the expression of α-Klotho, an anti-ageing hormone. Secreted FGF-23 plays a central role in complex endocrine networks involving local bone-derived factors that regulate mineralization of extracellular matrix and systemic hormones involved in mineral metabolism. Inactivating mutations of PHEX, DMP1 and ENPP1, which cause hereditary hypophosphatemic disorders and primary defects in bone mineralization, stimulate FGF23 gene transcription in osteoblasts and osteocytes, at least in part, through canonical and intracrine FGF receptor pathways. These FGF-23 regulatory pathways may enable systemic phosphate and vitamin D homeostasis to be coordinated with bone mineralization. FGF-23 also functions as a counter-regulatory hormone for 1,25-dihydroxyvitamin D in a bone–kidney endocrine loop. FGF-23, through regulation of additional genes in the kidney and extrarenal tissues, probably has broader physiological functions beyond regulation of mineral metabolism that account for the association between FGF-23 and increased mortality and morbidity in chronic kidney disease.

Key Points

  • FGF-23 is a hormone produced by osteoblasts and osteocytes in bone that causes phosphaturia and inhibits 1,25-dihydroxyvitamin D production through its binding to FGFR–α-Klotho complexes in kidney tubules

  • Primary elevations of circulating FGF-23 concentrations cause hereditary hypophosphatemic disorders and acquired hypophosphatemic disorders, and reductions in circulating FGF-23 concentrations cause familial tumoral calcinosis

  • FGF-23 is regulated by local bone-derived factors through activation of FGFR-1 pathways and by systemic factors, including 1,25-dihydroxyvitamin D and parathyroid hormone (in a context-dependent fashion) in osteoblasts

  • FGF-23 participates in several physiologically relevant endocrine axes involving 1,25-dihydroxyvitamin D or parathyroid hormone, and possibly additional hormonal networks involving secreted α-Klotho and other kidney-derived factors

  • Elevations in serum FGF-23 is an early adaptive response in chronic kidney disease, leading to maintenance of phosphate balance and development of secondary hyperparathryroidism through reductions in 1,25-dihydroxyvitamin D levels

  • Elevations of circulating FGF-23 are an unexpectedly strong predictor of mortality in patients with renal failure, as a result of mechanisms that remain to be elucidated

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A speculative model of FGF23 gene transcriptional regulation.

Similar content being viewed by others

References

  1. Ferron, M. et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142, 296–308 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Fulzele, K. et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142, 309–319 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pi, M., Wu, Y. & Quarles, L. D. GPRC6A mediates responses to osteocalcin in β-cells in vitro and pancreas in vivo. J. Bone Miner. Res. 26, 1680–1683 (2011).

    CAS  PubMed  Google Scholar 

  4. Quarles, L. D. Evidence for a bone-kidney axis regulating phosphate homeostasis. J. Clin. Invest. 112, 642–646 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Itoh, N. & Ornitz, D. M. Functional evolutionary history of the mouse Fgf gene family. Dev. Dyn. 237, 18–27 (2008).

    CAS  PubMed  Google Scholar 

  6. Stachowiak, M. K. et al. Integrative nuclear FGFR1 signaling (INFS) as a part of a universal “feed-forward-and-gate” signaling module that controls cell growth and differentiation. J. Cell. Biochem. 90, 662–691 (2003).

    CAS  PubMed  Google Scholar 

  7. Yamashita, T., Yoshioka, M. & Itoh, N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem. Biophys. Res. Commun. 277, 494–498 (2000).

    CAS  PubMed  Google Scholar 

  8. Liu, S. et al. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J. Biol. Chem. 278, 37419–37426 (2003).

    CAS  PubMed  Google Scholar 

  9. Liu, S. et al. Pathogenic role of Fgf23 in Hyp mice. Am. J. Physiol. Endocrinol. Metab. 291, E38–E49 (2006).

    CAS  PubMed  Google Scholar 

  10. Stubbs, J., Liu, S. & Quarles, L. D. Role of fibroblast growth factor 23 in phosphate homeostasis and pathogenesis of disordered mineral metabolism in chronic kidney disease. Semin. Dial. 20, 302–308 (2007).

    PubMed  Google Scholar 

  11. Kurosu, H. et al. Regulation of fibroblast growth factor-23 signaling by klotho. J. Biol. Chem. 281, 6120–6123 (2006).

    CAS  PubMed  Google Scholar 

  12. Urakawa, I. et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444, 770–774 (2006).

    CAS  PubMed  Google Scholar 

  13. Yu, X. et al. Analysis of the biochemical mechanisms for the endocrine actions of fibroblast growth factor-23. Endocrinology 146, 4647–4656 (2005).

    CAS  PubMed  Google Scholar 

  14. Li, H., Martin, A. C., David, V. & Quarles, L. D. Compound deletion of Fgfr3 and Fgfr4 partially rescues the Hyp mouse phenotype. Am. J. Physiol. Endocrinol. Metab. 300, E508–E517 (2010).

    PubMed  PubMed Central  Google Scholar 

  15. Shimada, T. et al. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am. J. Physiol. Renal Physiol. 289, F1088–F1095 (2005).

    CAS  PubMed  Google Scholar 

  16. Shimada, T. et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl Acad. Sci. USA 98, 6500–6505 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bai, X., Miao, D., Li, J., Goltzman, D. & Karaplis, A. C. Transgenic mice overexpressing human fibroblast growth factor 23 (R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders. Endocrinology 145, 5269–5279 (2004).

    CAS  PubMed  Google Scholar 

  18. Larsson, T. et al. Transgenic mice expressing fibroblast growth factor 23 under the control of the α1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology 145, 3087–3094 (2004).

    CAS  PubMed  Google Scholar 

  19. Fukumoto, S. & Yamashita, T. Fibroblast growth factor-23 is the phosphaturic factor in tumor-induced osteomalacia and may be phosphatonin. Curr. Opin. Nephrol. Hypertens. 11, 385–389 (2002).

    PubMed  Google Scholar 

  20. Shimada, T. et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Invest. 113, 561–568 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. White, K. E. et al. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int. 60, 2079–2086 (2001).

    CAS  PubMed  Google Scholar 

  22. Tomiyama, K. et al. Relevant use of Klotho in FGF19 subfamily signaling system in vivo. Proc. Natl Acad. Sci. USA 107, 1666–1671 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Beckman, M. J. et al. Human 25-hydroxyvitamin D3-24-hydroxylase, a multicatalytic enzyme. Biochemistry 35, 8465–8472 (1996).

    CAS  PubMed  Google Scholar 

  24. Hoenderop, J. G. et al. Regulation of gene expression by dietary Ca2+ in kidneys of 25-hydroxyvitamin D3–1 α-hydroxylase knockout mice. Kidney Int. 65, 531–539 (2004).

    CAS  PubMed  Google Scholar 

  25. Meyer, M. H., Dulde, E. & Meyer, R. A. Jr . The genomic response of the mouse kidney to low-phosphate diet is altered in X-linked hypophosphatemia. Physiol. Genomics 18, 4–11 (2004).

    CAS  PubMed  Google Scholar 

  26. Marsell, R. et al. Gene expression analysis of kidneys from transgenic mice expressing fibroblast growth factor-23. Nephrol. Dial. Transplant. 23, 827–833 (2008).

    PubMed  Google Scholar 

  27. Quarles, L. D. Endocrine functions of bone in mineral metabolism regulation. J. Clin. Invest. 118, 3820–3828 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Benet-Pagès, A., Orlik, P., Strom, T. M. & Lorenz-Depiereux, B. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum. Mol. Genet. 14, 385–390 (2005).

    PubMed  Google Scholar 

  29. Larsson, T. et al. Fibroblast growth factor-23 mutants causing familial tumoral calcinosis are differentially processed. Endocrinology 146, 3883–3891 (2005).

    CAS  PubMed  Google Scholar 

  30. Sitara, D. et al. Genetic ablation of vitamin D activation pathway reverses biochemical and skeletal anomalies in Fgf-23-null animals. Am. J. Pathol. 169, 2161–2170 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sitara, D. et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol. 23, 421–432 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kato, K. et al. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J. Biol. Chem. 281, 18370–18377 (2006).

    CAS  PubMed  Google Scholar 

  33. Liu, S. & Quarles, L. D. How fibroblast growth factor 23 works. J. Am. Soc. Nephrol. 18, 1637–1647 (2007).

    CAS  PubMed  Google Scholar 

  34. Brown, J. R. & Auger, K. R. Phylogenomics of phosphoinositide lipid kinases: perspectives on the evolution of second messenger signaling and drug discovery. BMC Evol. Biol. 11, 4 (2010).

    Google Scholar 

  35. Sprecher, E. Familial tumoral calcinosis: from characterization of a rare phenotype to the pathogenesis of ectopic calcification. J. Invest. Dermatol. 130, 652–660 (2010).

    CAS  PubMed  Google Scholar 

  36. Zeger, M. D. et al. Hypophosphatemic rickets in opsismodysplasia. J. Pediatr. Endocrinol. Metab. 20, 79–86 (2007).

    CAS  PubMed  Google Scholar 

  37. Moe, S. et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 69, 1945–1953 (2006).

    CAS  PubMed  Google Scholar 

  38. Liu, S., Tang, W., Zhou, J., Vierthaler, L. & Quarles, L. D. Distinct roles for intrinsic osteocyte abnormalities and systemic factors in regulation of FGF23 and bone mineralization in Hyp mice. Am. J. Physiol. Endocrinol. Metab. 293, E1636–E1644 (2007).

    CAS  PubMed  Google Scholar 

  39. Yuan, B. et al. Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia. J. Clin. Invest. 118, 722–734 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bowe, A. E. et al. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem. Biophys. Res. Commun. 284, 977–981 (2001).

    CAS  PubMed  Google Scholar 

  41. Benet-Pagès, A. et al. FGF23 is processed by proprotein convertases but not by PHEX. Bone 35, 455–462 (2004).

    PubMed  Google Scholar 

  42. Guo, R., Liu, S., Spurney, R. F. & Quarles, L. D. Analysis of recombinant Phex: an endopeptidase in search of a substrate. Am. J. Physiol. Endocrinol. Metab. 281, E837–E847 (2001).

    CAS  PubMed  Google Scholar 

  43. Quarles, L. D. & Drezner, M. K. Pathophysiology of X-linked hypophosphatemia, tumor-induced osteomalacia, and autosomal dominant hypophosphatemia: a perPHEXing problem. J. Clin. Endocrinol. Metab. 86, 494–496 (2001).

    CAS  PubMed  Google Scholar 

  44. Feng, J. Q. et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat. Genet. 38, 1310–1315 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, S. et al. Pathogenic role of Fgf23 in Dmp1-null mice. Am. J. Physiol. Endocrinol. Metab. 295, E254–E261 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu, H et al. Dentin matrix protein 1 (DMP1) signals via cell surface integrin. J. Biol. Chem. 286, 29462–29469 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Steiglitz, B. M., Ayala, M., Narayanan, K., George, A. & Greenspan, D. S. Bone morphogenetic protein-1/Tolloid-like proteinases process dentin matrix protein-1. J. Biol. Chem. 279, 980–986 (2004).

    CAS  PubMed  Google Scholar 

  48. Chaussain, C. et al. MMP2-cleavage of DMP1 generates a bioactive peptide promoting differentiation of dental pulp stem/progenitor cell. Eur. Cell. Mater. 18, 84–95 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ogbureke, K. U. & Fisher, L. W. Expression of SIBLINGs and their partner MMPs in salivary glands. J. Dent. Res. 83, 664–670 (2004).

    CAS  PubMed  Google Scholar 

  50. David, V. & Quarles, L. D. ASARM mineralization hypothesis: a bridge too far? J. Bone Miner. Res. 25, 692–694 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Bai, X. et al. Partial rescue of the Hyp phenotype by osteoblast-targeted PHEX (phosphate-regulating gene with homologies to endopeptidases on the X chromosome) expression. Mol. Endocrinol. 16, 2913–2925 (2002).

    CAS  PubMed  Google Scholar 

  52. Erben, R. G. et al. Overexpression of human PHEX under the human b-actin promoter does not fully rescue the Hyp mouse phenotype. J. Bone Miner. Res. 20, 1149–1160 (2005).

    CAS  PubMed  Google Scholar 

  53. Liu, S., Guo, R., Tu, Q. & Quarles, L. D. Overexpression of Phex in osteoblasts fails to rescue the Hyp mouse phenotype. J. Biol. Chem. 277, 3686–3697 (2002).

    CAS  PubMed  Google Scholar 

  54. Lorenz-Depiereux, B., Schnabel, D., Tiosano, D., Häusler, G. & Strom, T. M. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am. J. Hum. Genet. 86, 267–272 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Levy-Litan, V. et al. Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am. J. Hum. Genet. 86, 273–278 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen, I. P., Wang, L., Jiang, X., Aguila, H. L. & Reichenberger, E. J. A Phe377del mutation in ANK leads to impaired osteoblastogenesis and osteoclastogenesis in a mouse model for craniometaphyseal dysplasia (CMD). Hum. Mol. Genet. 20, 948–961 (2011).

    CAS  PubMed  Google Scholar 

  57. Liu, S. et al. Novel regulators of Fgf23 expression and mineralization in Hyp bone. Mol. Endocrinol. 23, 1505–1518 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Jean, G. et al. Peripheral vascular calcification in long-haemodialysis patients: associated factors and survival consequences. Nephrol. Dial. Transplant. 24, 948–955 (2009).

    CAS  PubMed  Google Scholar 

  59. White, K. E. et al. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am. J. Hum. Genet. 76, 361–367 (2005).

    CAS  PubMed  Google Scholar 

  60. Stevens, D. A. et al. Thyroid hormone activates fibroblast growth factor receptor-1 in bone. Mol. Endocrinol. 17, 1751–1766 (2003).

    CAS  PubMed  Google Scholar 

  61. Martin, A. et al. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J. 25, 2551–2562 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wohrle, S. et al. FGF receptors control vitamin D and phosphate homeostasis by mediating renal FGF23 signaling and regulating FGF23 expression in bone. J. Bone Miner. Res. 26, 2486–2497 (2011).

    CAS  PubMed  Google Scholar 

  63. Xiao, L. et al. Nuclear isoforms of fibroblast growth factor 2 are novel inducers of hypophosphatemia via modulation of FGF23 and KLOTHO. J. Biol. Chem. 285, 2834–2846 (2010).

    CAS  PubMed  Google Scholar 

  64. Nauman, E. A., Sakata, T., Keaveny, T. M., Halloran, B. P. & Bikle, D. D. bFGF administration lowers the phosphate threshold for mineralization in bone marrow stromal cells. Calcif. Tissue Int. 73, 147–152 (2003).

    CAS  PubMed  Google Scholar 

  65. Liang, H., Pun, S. & Wronski, T. J. Bone anabolic effects of basic fibroblast growth factor in ovariectomized rats. Endocrinology 140, 5780–5788 (1999).

    CAS  PubMed  Google Scholar 

  66. Uzum, A. K. et al. Effects of vitamin D replacement therapy on serum FGF23 concentrations in vitamin D-deficient women in short term. Eur. J. Endocrinol. 163, 825–831 (2010).

    CAS  PubMed  Google Scholar 

  67. Samadfam, R., Richard, C., Nguyen-Yamamoto, L., Bolivar, I. & Goltzman, D. Bone formation regulates circulating concentrations of fibroblast growth factor 23. Endocrinology 150, 4835–4845 (2009).

    CAS  PubMed  Google Scholar 

  68. Tsuji, K., Maeda, T., Kawane, T., Matsunuma, A. & Horiuchi, N. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1α,25-dihydroxyvitamin D3 synthesis in leptin-deficient mice. J. Bone Miner. Res. 25, 1711–1723 (2010).

    CAS  PubMed  Google Scholar 

  69. Brown, W. W. et al. Hypophosphatemia with elevations in serum fibroblast growth factor 23 in a child with Jansen's metaphyseal chondrodysplasia. J. Clin. Endocrinol. Metab. 94, 17–20 (2009).

    CAS  PubMed  Google Scholar 

  70. Rhee, Y. et al. Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone 49, 636–643 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Riminucci, M. et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J. Clin. Invest. 112, 683–692 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kobayashi, K. et al. Expression of FGF23 is correlated with serum phosphate level in isolated fibrous dysplasia. Life Sci. 78, 2295–2301 (2006).

    CAS  PubMed  Google Scholar 

  73. Liu, S. et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J. Am. Soc. Nephrol. 17, 1305–1315 (2006).

    CAS  PubMed  Google Scholar 

  74. Kolek, O. I. et al. 1α,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G1036–G1042 (2005).

    CAS  PubMed  Google Scholar 

  75. Mirams, M., Robinson, B. G., Mason, R. S. & Nelson, A. E. Bone as a source of FGF23: regulation by phosphate? Bone 35, 1192–1199 (2004).

    CAS  PubMed  Google Scholar 

  76. Nishida, Y. et al. Acute effect of oral phosphate loading on serum fibroblast growth factor 23 levels in healthy men. Kidney Int. 70, 2141–2147 (2006).

    CAS  PubMed  Google Scholar 

  77. Larsson, T., Nisbeth, U., Ljunggren, O., Jüppner, H. & Jonsson, K. B. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int. 64, 2272–2279 (2003).

    CAS  PubMed  Google Scholar 

  78. Moe, S. M. et al. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 257–264 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ferrari, S. L., Bonjour, J. P. & Rizzoli, R. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J. Clin. Endocrinol. Metab. 90, 1519–1524 (2005).

    CAS  PubMed  Google Scholar 

  80. Burnett, S. A. et al. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J. Bone Miner. Res. 21, 1187–1196 (2006).

    CAS  PubMed  Google Scholar 

  81. Vervloet, M. G. et al. Effects of dietary phosphate and calcium intake on fibroblast growth factor-23. Clin. J. Am. Soc. Nephrol. 6, 383–389 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Antoniucci, D. M., Yamashita, T. & Portale, A. A. Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J. Clin. Endocrinol. Metab. 91, 3144–3149 (2006).

    CAS  PubMed  Google Scholar 

  83. Perwad, F. et al. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology 146, 5358–5364 (2005).

    CAS  PubMed  Google Scholar 

  84. Ben-Dov, I. Z. et al. The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest. 117, 4003–4008 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kawata, T. et al. Parathyroid hormone regulates fibroblast growth factor-23 in a mouse model of primary hyperparathyroidism. J. Am. Soc. Nephrol. 18, 2683–2688 (2007).

    CAS  PubMed  Google Scholar 

  86. Lavi-Moshayoff, V., Wasserman, G., Meir, T., Silver, J. & Naveh-Many, T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am. J. Physiol. Renal Physiol. 299, F882–F889 (2010).

    CAS  PubMed  Google Scholar 

  87. Sato, T. et al. Total parathyroidectomy reduces elevated circulating fibroblast growth factor 23 in advanced secondary hyperparathyroidism. Am. J. Kidney Dis. 44, 481–487 (2004).

    CAS  PubMed  Google Scholar 

  88. Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997).

    CAS  PubMed  Google Scholar 

  89. Li, S. A. et al. Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice. Cell Struct. Funct. 29, 91–99 (2004).

    CAS  PubMed  Google Scholar 

  90. Rhee, Y. et al. PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling. J. Bone Miner. Res. 26, 1035–1046 (2011).

    CAS  PubMed  Google Scholar 

  91. Galitzer, H., Ben-Dov, I. Z., Silver, J. & Naveh-Many, T. Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease. Kidney Int. 77, 211–218 (2010).

    CAS  PubMed  Google Scholar 

  92. Komaba, H. & Fukagawa, M. FGF23-parathyroid interaction: implications in chronic kidney disease. Kidney Int. 77, 292–298 (2010).

    CAS  PubMed  Google Scholar 

  93. Saji, F. et al. Fibroblast growth factor 23 production in bone is directly regulated by 1α,25-dihydroxyvitamin D, but not PTH. Am. J. Physiol. Renal Physiol. 299, F1212–F1217 (2010).

    CAS  PubMed  Google Scholar 

  94. Tebben, P. J., Singh, R. J., Clarke, B. L. & Kumar, R. Fibroblast growth factor 23, parathyroid hormone, and 1α,25-dihydroxyvitamin D in surgically treated primary hyperparathyroidism. Mayo Clin. Proc. 79, 1508–1513 (2004).

    CAS  PubMed  Google Scholar 

  95. Saji, F. et al. Regulation of fibroblast growth factor 23 production in bone in uremic rats. Nephron Physiol. 111, 59–66 (2009).

    Google Scholar 

  96. Helvig, C. F. et al. Dysregulation of renal vitamin D metabolism in the uremic rat. Kidney Int. 78, 463–472 (2010).

    CAS  PubMed  Google Scholar 

  97. Clemens, T. L. & Karsenty, G. The osteoblast: an insulin target cell controlling glucose homeostasis. J. Bone Miner. Res. 26, 677–680 (2011).

    CAS  PubMed  Google Scholar 

  98. Bhandaru, M. et al. Decreased bone density and increased phosphaturia in gene-targeted mice lacking functional serum- and glucocorticoid-inducible kinase 3. Kidney Int. 80, 61–67 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Tsujikawa, H., Kurotaki, Y., Fujimori, T., Fukuda, K. & Nabeshima, Y. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol. Endocrinol. 17, 2393–2403 (2003).

    CAS  PubMed  Google Scholar 

  100. Shiraki-Iida, T. et al. Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett. 424, 6–10 (1998).

    CAS  PubMed  Google Scholar 

  101. Kuro-o, M. Klotho. Pflugers Arch. 459, 333–343 (2010).

    CAS  PubMed  Google Scholar 

  102. Weber, T. J., Liu, S., Indridason, O. S. & Quarles, L. D. Serum FGF23 levels in normal and disordered phosphorus homeostasis. J. Bone Miner. Res. 18, 1227–1234 (2003).

    CAS  PubMed  Google Scholar 

  103. Isakova, T. et al. Pilot study of dietary phosphorus restriction and phosphorus binders to target fibroblast growth factor 23 in patients with chronic kidney disease. Nephrol. Dial. Transplant. 26, 584–591 (2011).

    CAS  PubMed  Google Scholar 

  104. Oliveira, R. B. et al. Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy? Clin. J. Am. Soc. Nephrol. 5, 286–291 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Nagano, N. et al. Effect of manipulating serum phosphorus with phosphate binder on circulating PTH and FGF23 in renal failure rats. Kidney Int. 69, 531–537 (2006).

    CAS  PubMed  Google Scholar 

  106. Saito, H. et al. Circulating FGF-23 is regulated by 1α,25-dihydroxyvitamin D3 and phosphorus in vivo. J. Biol. Chem. 280, 2543–2549 (2005).

    CAS  PubMed  Google Scholar 

  107. Mori, S. et al. Direct binding of integrin αvβ3 to FGF1 plays a role in FGF1 signaling. J. Biol. Chem. 283, 18066–18075 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Guo, R. et al. Inhibition of MEPE cleavage by Phex. Biochem. Biophys. Res. Commun. 297, 38–45 (2002).

    CAS  PubMed  Google Scholar 

  109. Rowe, P. S. et al. Surface plasmon resonance (SPR) confirms that MEPE binds to PHEX via the MEPE-ASARM motif: a model for impaired mineralization in X-linked rickets (HYP). Bone 36, 33–46 (2005).

    CAS  PubMed  Google Scholar 

  110. Lu, Y. et al. Rescue of odontogenesis in Dmp1-deficient mice by targeted re-expression of DMP1 reveals roles for DMP1 in early odontogenesis and dentin apposition in vivo. Dev. Biol. 303, 191–201 (2007).

    CAS  PubMed  Google Scholar 

  111. Rached, M. T. et al. FoxO1 is a positive regulator of bone formation by favoring protein synthesis and resistance to oxidative stress in osteoblasts. Cell Metab. 11, 147–160 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Topaz, O. et al. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat. Genet. 36, 579–581 (2004).

    CAS  PubMed  Google Scholar 

  113. Ichikawa, S. et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J. Musculoskelet. Neuronal Interact. 7, 318–319 (2007).

    CAS  PubMed  Google Scholar 

  114. Wetmore, J. B. & Quarles, L. D. Calcimimetics or vitamin D analogs for suppressing parathyroid hormone in end-stage renal disease: time for a paradigm shift? Nat. Clin. Pract. Nephrol. 5, 24–33 (2009).

    CAS  PubMed  Google Scholar 

  115. Tentori, F. et al. Mortality risk among hemodialysis patients receiving different vitamin D analogs. Kidney Int. 70, 1858–1865 (2006).

    CAS  PubMed  Google Scholar 

  116. Young, E. W. et al. Magnitude and impact of abnormal mineral metabolism in hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am. J. Kidney Dis. 44 (Suppl.), 34–38 (2004).

    PubMed  Google Scholar 

  117. Razzaque, M. S., St-Arnaud, R., Taguchi, T. & Lanske, B. FGF-23, vitamin D and calcification: the unholy triad. Nephrol. Dial. Transplant. 20, 2032–2035 (2005).

    CAS  PubMed  Google Scholar 

  118. Block, G. A. et al. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J. Am. Soc. Nephrol. 15, 2208–2218 (2004).

    CAS  PubMed  Google Scholar 

  119. Gutiérrez, O. M. et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 359, 584–592 (2008).

    PubMed  PubMed Central  Google Scholar 

  120. Gutierrez, O. et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J. Am. Soc. Nephrol. 16, 2205–2215 (2005).

    CAS  PubMed  Google Scholar 

  121. Hasegawa, H. et al. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int. 78, 975–980 (2010).

    CAS  PubMed  Google Scholar 

  122. Imanishi, Y. et al. FGF-23 in patients with end-stage renal disease on hemodialysis. Kidney Int. 65, 1943–1946 (2004).

    CAS  PubMed  Google Scholar 

  123. Stubbs, J. R. & Quarles, L. D. Fibroblast growth factor 23: uremic toxin or innocent bystander in chronic kidney disease? Nephrol. News Issues 23, 33–34 (2009).

    PubMed  Google Scholar 

  124. Stubbs, J. R., Idiculla, A., Slusser, J., Menard, R. & Quarles, L. D. Cholecalciferol supplementation alters calcitriol-responsive monocyte proteins and decreases inflammatory cytokines in ESRD. J. Am. Soc. Nephrol. 21, 353–361 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Quarles, L. D. The bone and beyond: 'Dem bones' are made for more than walking. Nat. Med. 17, 428–430 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wetmore, J. B., Liu, S., Krebill, R., Menard, R. & Quarles, L. D. Effects of cinacalcet and concurrent low-dose vitamin D on FGF23 levels in ESRD. Clin. J. Am. Soc. Nephrol. 5, 110–116 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Rosen, C. J. Clinical practice. Vitamin D insufficiency. N. Engl. J. Med. 364, 248–254 (2011).

    CAS  PubMed  Google Scholar 

  128. Parker, B. D. et al. The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Ann. Intern. Med. 152, 640–648 (2010).

    PubMed  PubMed Central  Google Scholar 

  129. Fliser, D. et al. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J. Am. Soc. Nephrol. 18, 2600–2608 (2007).

    CAS  PubMed  Google Scholar 

  130. Mirza, M. A. et al. Circulating fibroblast growth factor-23 is associated with fat mass and dyslipidemia in two independent cohorts of elderly individuals. Arterioscler. Thromb. Vasc. Biol. 31, 219–227 (2011).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares associations with the following companies: Amgen (consultant, speakers bureau), KAI Pharmaceuticals (consultant).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quarles, L. Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism. Nat Rev Endocrinol 8, 276–286 (2012). https://doi.org/10.1038/nrendo.2011.218

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.218

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing