Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Management of the metabolic effects of HIV and HIV drugs

Abstract

Morphologic and metabolic abnormalities, including subcutaneous adipose tissue wasting, central adipose tissue accumulation, dyslipidemia and disorders of glucose metabolism are common among HIV-infected patients receiving highly active antiretroviral therapy (HAART) and contribute to the risk of cardiovascular disease in this population. The pathogenesis of these disorders is due to complicated interactions between effects of chronic HIV infection, HAART medications and patient factors, including genetic susceptibility. HAART has transformed HIV into a chronic condition for many patients and as a result the majority of HIV-infected patients in many areas of the developed world will soon be aged ≥50 years. Given that metabolic and cardiovascular diseases increase with aging, knowledge of the optimal management of these conditions is essential for practitioners caring for HIV-infected patients, including endocrine subspecialists. This Review highlights the clinical management of these disorders, focusing on the latest evidence regarding the efficacy of treatment strategies, newly available medications and potential interactions between HAART medications and medications used to treat metabolic disorders.

Key Points

  • Subcutaneous lipoatrophy, central lipohypertrophy, dyslipidemia and insulin resistance are common among HIV-infected individuals and probably contribute to these patients' increased risk of type 2 diabetes mellitus and cardiovascular disease

  • The cause of these disorders is multifactorial and includes the effects of chronic HIV infection, direct and indirect toxicity of highly active antiretroviral therapy (HAART) and demographic, behavioral and genetic susceptibility factors

  • Aggressive treatment of modifiable cardiovascular risk factors is warranted, but interactions between HAART and medications to treat metabolic disease, such as certain statin medications, should also be considered

  • A new medication for the treatment of central lipohypertrophy is now available, tesamorelin, but more work is needed to understand its long-term benefits and risks

  • Chronic inflammation in HIV-infected individuals probably has an important role in the pathogenesis of their metabolic disease, but further investigation of this effect and effective intervention strategies are required

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A 45-year-old HIV-infected woman with a | moderate to severe facial lipoatrophy with marked adipose tissue wasting in the malar areas with extension of adipose tissue wasting to buccal and temporal areas, and b | central lipohypertrophy with a large dorsocervical fat pad.
Figure 2

Similar content being viewed by others

References

  1. Palella, F. J. Jr et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N. Engl. J. Med. 338, 853–860 (1998).

    Article  PubMed  Google Scholar 

  2. Detels, R. et al. Effectiveness of potent antiretroviral therapy on time to AIDS and death in men with known HIV infection duration. Multicenter AIDS Cohort Study Investigators. JAMA 280, 1497–1503 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Carr, A., Samaras, K., Chisholm, D. J. & Cooper, D. A. Pathogenesis of HIV-1-protease inhibitor-associated peripheral lipodystrophy, hyperlipidaemia, and insulin resistance. Lancet 351, 1881–1883 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Lichtenstein, K. A. et al. Incidence of and risk factors for lipoatrophy (abnormal fat loss) in ambulatory HIV-1-infected patients. J. Acquir. Immune Defic. Syndr. 32, 48–56 (2003).

    Article  PubMed  Google Scholar 

  5. Jacobson, D. L. et al. Prevalence of, evolution of, and risk factors for fat atrophy and fat deposition in a cohort of HIV-infected men and women. Clin. Infect. Dis. 40, 1837–1845 (2005).

    Article  PubMed  Google Scholar 

  6. Tien, P. C. & Grunfeld, C. What is HIV-associated lipodystrophy? Defining fat distribution changes in HIV infection. Curr. Opin. Infect. Dis. 17, 27–32 (2004).

    Article  PubMed  Google Scholar 

  7. Miller, J. et al. HIV lipodystrophy: prevalence, severity and correlates of risk in Australia. HIV Med. 4, 293–301 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Santos, C. P. et al. Self-perception of body changes in persons living with HIV/AIDS: prevalence and associated factors. AIDS 19 (Suppl. 4), S14–S21 (2005).

    Article  PubMed  Google Scholar 

  9. Mynarcik, D. C., McNurlan, M. A., Steigbigel, R. T., Fuhrer, J. & Gelato, M. C. Association of severe insulin resistance with both loss of limb fat and elevated serum tumor necrosis factor receptor levels in HIV lipodystrophy. J. Acquir. Immune Defic. Syndr. 25, 312–321 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Wohl, D. et al. The associations of regional adipose tissue with lipid and lipoprotein levels in HIV-infected men. J. Acquir. Immune Defic. Syndr. 48, 44–52 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vigouroux, C. et al. Serum adipocytokines are related to lipodystrophy and metabolic disorders in HIV-infected men under antiretroviral therapy. AIDS 17, 1503–1511 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Bogner, J. R. et al. Stavudine versus zidovudine and the development of lipodystrophy. J. Acquir. Immune Defic. Syndr. 27, 237–244 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Cherry, C. L. et al. Tissue-specific associations between mitochondrial DNA levels and current treatment status in HIV-infected individuals. J. Acquir. Immune Defic. Syndr. 42, 435–440 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Dubé, M. P. et al. Glucose metabolism, lipid, and body fat changes in antiretroviral-naive subjects randomized to nelfinavir or efavirenz plus dual nucleosides. AIDS 19, 1807–1818 (2005).

    Article  PubMed  Google Scholar 

  15. Haubrich, R. H. et al. Metabolic outcomes in a randomized trial of nucleoside, nonnucleoside and protease inhibitor-sparing regimens for initial HIV treatment. AIDS 23, 1109–1118 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. McComsey, G. et al. Bone and limb fat outcomes of ACTG A5224s, a substudy of ACTG A5202: a prospective, randomized, partially blinded phase III trial of ABC/3TC or TDF/FTC with EFV or ATV/r for initial treatment of HIV-1 Infection [abstract 106LB]. Presented at the Proceedings of the 17th Conference on Retroviruses & Opportunistic Infections. CROI . San Francisco. February 16–19 (2010).

  17. Lennox, J. L. et al. Raltegravir versus Efavirenz regimens in treatment-naive HIV-1-infected patients: 96-week efficacy, durability, subgroup, safety, and metabolic analyses. J. Acquir. Immune Defic. Syndr. 55, 39–48 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Drechsler, H. & Powderly, W. G. Switching effective antiretroviral therapy: a review. Clin. Infect. Dis. 35, 1219–1230 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Hulgan, T. et al. European mitochondrial DNA haplogroups and metabolic changes during antiretroviral therapy in AIDS Clinical Trials Group Study A5142. AIDS 25, 37–47 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Montes, A. H. et al. The MMP1 (-16071G/2G) single nucleotide polymorphism associates with the HAART-related lipodystrophic syndrome. AIDS 24, 2499–2506 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Martin, A. et al. Reversibility of lipoatrophy in HIV-infected patients 2 years after switching from a thymidine analogue to abacavir: the MITOX Extension Study. AIDS 18, 1029–1036 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. McComsey, G. A. et al. Improvement in lipoatrophy associated with highly active antiretroviral therapy in human immunodeficiency virus-infected patients switched from stavudine to abacavir or zidovudine: the results of the TARHEEL study. Clin. Infect. Dis. 38, 263–270 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Moyle, G. J. et al. A randomized comparative trial of tenofovir DF or abacavir as replacement for a thymidine analogue in persons with lipoatrophy. AIDS 20, 2043–2050 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Easterbrook, P. J. et al. Patterns and predictors of the use of different antiretroviral drug regimens at treatment initiation in the UK. HIV Med. 9, 47–56 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Moyle, G. J. et al. A randomized comparative trial of tenofovir DF or abacavir as replacement for a thymidine analogue in persons with lipoatrophy. AIDS 20, 2043–2050 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Martin, A. et al. Reversibility of lipoatrophy in HIV-infected patients 2 years after switching from a thymidine analogue to abacavir: the MITOX Extension Study. AIDS 18, 1029–1036 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Adams, M. et al. Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation. J. Clin. Invest. 100, 3149–3153 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arioglu, E. et al. Efficacy and safety of troglitazone in the treatment of lipodystrophy syndromes. Ann. Intern. Med. 133, 263–274 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Caron, M. et al. The HIV protease inhibitor indinavir impairs sterol regulatory element-binding protein-1 intranuclear localization, inhibits preadipocyte differentiation, and induces insulin resistance. Diabetes 50, 1378–1388 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Hadigan, C. et al. Metabolic effects of rosiglitazone in HIV lipodystrophy: a randomized, controlled trial. Ann. Intern. Med. 140, 786–794 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Carr, A. et al. No effect of rosiglitazone for treatment of HIV-1 lipoatrophy: randomised, double-blind, placebo-controlled trial. Lancet 363, 429–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Sutinen, J. et al. Rosiglitazone in the treatment of HAART-associated lipodystrophy—a randomized double-blind placebo-controlled study. Antivir. Ther. 8, 199–207 (2003).

    CAS  PubMed  Google Scholar 

  33. Mulligan, K. et al. Effects of metformin and rosiglitazone in HIV-infected patients with hyperinsulinemia and elevated waist/hip ratio. AIDS 21, 47–57 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Schindler, K. et al. The effect of rosiglitazone on insulin sensitivity, beta cell function, bone mineral density, and body composition in HIV-positive patients on highly-active antiretroviral therapy (HAART). Horm. Metab. Res. 41, 573–579 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Raboud, J. M. et al. A meta-analysis of six placebo-controlled trials of thiazolidinedione therapy for HIV lipoatrophy. HIV Clin. Trials 11, 39–50 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Slama, L. et al. Effect of pioglitazone on HIV-1-related lipodystrophy: a randomized double-blind placebo-controlled trial (ANRS 113). Antivir. Ther. 13, 67–76 (2008).

    CAS  PubMed  Google Scholar 

  37. Domingo, P. et al. Uridine metabolism in HIV-1-infected patients: effect of infection, of antiretroviral therapy and of HIV-1/ART-associated lipodystrophy syndrome. Plos ONE 5, e13896 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Walker, U. A. et al. Uridine abrogates mitochondrial toxicity related to nucleoside analogue reverse transcriptase inhibitors in HepG2 cells. Antivir. Ther. 8, 463–470 (2003).

    CAS  PubMed  Google Scholar 

  39. Sutinen, J. et al. Uridine supplementation for the treatment of antiretroviral therapy-associated lipoatrophy: a randomized, double-blind, placebo-controlled trial. Antivir. Ther. 12, 97–105 (2007).

    CAS  PubMed  Google Scholar 

  40. Calmy, A. et al. No significant effect of uridine or pravastatin treatment for HIV lipoatrophy in men who have ceased thymidine analogue nucleoside reverse transcriptase inhibitor therapy: a randomized trial. HIV Med. 11, 493–501 (2010).

    CAS  PubMed  Google Scholar 

  41. McComsey, G. A. et al. Uridine supplementation in the treatment of HIV lipoatrophy: results of ACTG 5229. AIDS 24, 2507–2515 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Mallon, P. W. et al. Effect of pravastatin on body composition and markers of cardiovascular disease in HIV-infected men—a randomized, placebo-controlled study. AIDS 20, 1003–1010 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Macallan, D. C. et al. Treatment of altered body composition in HIV-associated lipodystrophy: comparison of rosiglitazone, pravastatin, and recombinant human growth hormone. HIV Clin. Trials 9, 254–268 (2008).

    Article  PubMed  Google Scholar 

  44. Moyle, G. J., Brown, S., Lysakova, L. & Barton, S. E. Long-term safety and efficacy of poly-L-lactic acid in the treatment of HIV-related facial lipoatrophy. HIV Med. 7, 181–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Carey, D. L. et al. A randomized, multicenter, open-label study of poly-L-lactic acid for HIV-1 facial lipoatrophy. J. Acquir. Immune Defic. Syndr. 46, 581–589 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Loutfy, M. R. et al. Immediate versus delayed polyalkylimide gel injections to correct facial lipoatrophy in HIV-positive patients. AIDS 21, 1147–1155 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Guaraldi, G. et al. Surgical correction of HIV-associated facial lipoatrophy. AIDS 25, 1–12 (2011).

    Article  PubMed  Google Scholar 

  48. Guaraldi, G. et al. Facial lipohypertrophy in HIV-infected subjects who underwent autologous fat tissue transplantation. Clin. Infect. Dis. 40, e13–e15 (2005).

    Article  PubMed  Google Scholar 

  49. Magkos, F. et al. Leptin replacement improves postprandial glycemia and insulin sensitivity in human immunodeficiency virus-infected lipoatrophic men treated with pioglitazone: a pilot study. Metabolism 60, 1045–1049 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Mulligan, K. et al. The effects of recombinant human leptin on visceral fat, dyslipidemia, and insulin resistance in patients with human immunodeficiency virus-associated lipoatrophy and hypoleptinemia. J. Clin. Endocrinol. Metab. 94, 1137–1144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oral, E. A. et al. Leptin-replacement therapy for lipodystrophy. N. Engl. J. Med. 346, 570–578 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Torriani, M., Hadigan, C., Jensen, M. E. & Grinspoon, S. Psoas muscle attenuation measurement with computed tomography indicates intramuscular fat accumulation in patients with the HIV-lipodystrophy syndrome. J. Appl. Physiol. 95, 1005–1010 (2003).

    Article  PubMed  Google Scholar 

  53. Lo, J. et al. Increased epicardial adipose tissue volume in HIV-infected men and relationships to body composition and metabolic parameters. AIDS 24, 2127–2130 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Villarroya, F., Domingo, P. & Giralt, M. Lipodystrophy in HIV 1-infected patients: lessons for obesity research. Int. J. Obes. (Lond.) 31, 1763–1776 (2007).

    Article  CAS  Google Scholar 

  55. Grunfeld, C. et al. Recombinant human growth hormone to treat HIV-associated adipose redistribution syndrome: 12 week induction and 24-week maintenance therapy. J. Acquir. Immune Defic. Syndr. 45, 286–297 (2007).

    CAS  PubMed  Google Scholar 

  56. Falutz, J. et al. A placebo-controlled, dose-ranging study of a growth hormone releasing factor in HIV-infected patients with abdominal fat accumulation. AIDS 19, 1279–1287 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Alberti, K. G., Zimmet, P. & Shaw, J. Metabolic syndrome—a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 23, 469–480 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. McComsey, G. A. et al. Peripheral and central fat changes in subjects randomized to abacavir-lamivudine or tenofovir-emtricabine with atazanavir-ritonavir or efavirenz: ACTG Study A5224s. Clin. Infect. Dis. 53, 185–196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sekhar, R. V. et al. Metabolic basis of HIV-lipodystrophy syndrome. Am. J. Physiol. Endocrinol. Metab. 283, E332–E337 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Sutinen, J. et al. In the lipodystrophy associated with highly active antiretroviral therapy, pseudo-Cushing's syndrome is associated with increased regeneration of cortisol by 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue. Diabetologia 47, 1668–1671 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Koutkia, P., Canavan, B., Breu, J. & Grinspoon, S. Growth hormone (GH) responses to GH-releasing hormone-arginine testing in human immunodeficiency virus lipodystrophy. J. Clin. Endocrinol. Metab. 90, 32–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Koutkia, P., Meininger, G., Canavan, B., Breu, J. & Grinspoon, S. Metabolic regulation of growth hormone by free fatty acids, somatostatin, and ghrelin in HIV-lipodystrophy. Am. J. Physiol. Endocrinol. Metab. 286, E296–E303 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Rietschel, P. et al. Assessment of growth hormone dynamics in human immunodeficiency virus-related lipodystrophy. J. Clin. Endocrinol. Metab. 86, 504–510 (2001).

    CAS  PubMed  Google Scholar 

  64. Guallar, J. P. et al. Differential gene expression indicates that 'buffalo hump' is a distinct adipose tissue disturbance in HIV-1-associated lipodystrophy. AIDS 22, 575–584 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Yusuf, S. et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case–control study. Lancet 364, 937–952 (2004).

    Article  PubMed  Google Scholar 

  66. Meisinger, C., Döring, A., Thorand, B., Heier, M. & Löwel, H. Body fat distribution and risk of type 2 diabetes in the general population: are there differences between men and women? The MONICA/KORA Augsburg cohort study. Am. J. Clin. Nutr. 84, 483–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Hadigan, C. et al. Metabolic abnormalities and cardiovascular disease risk factors in adults with human immunodeficiency virus infection and lipodystrophy. Clin. Infect. Dis. 32, 130–139 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Ammassari, A. et al. Relationship between HAART adherence and adipose tissue alterations. J. Acquir. Immune Defic. Syndr. 31 (Suppl. 3), S140–S144 (2002).

    Article  PubMed  Google Scholar 

  69. Reynolds, N. R., Neidig, J. L., Wu, A. W., Gifford, A. L. & Holmes, W. C. Balancing disfigurement and fear of disease progression: Patient perceptions of HIV body fat redistribution. AIDS Care 18, 663–673 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Blanch, J. et al. Factors associated with severe impact of lipodystrophy on the quality of life of patients infected with HIV-1. Clin. Infect. Dis. 38, 1464–1470 (2004).

    Article  PubMed  Google Scholar 

  71. Scherzer, R. et al. Decreased limb muscle and increased central adiposity are associated with 5-year all-cause mortality in HIV infection. AIDS 25, 1405–1414 (2011).

    Article  PubMed  Google Scholar 

  72. Huang, J. S., Rietschel, P., Hadigan, C. M., Rosenthal, D. I. & Grinspoon, S. Increased abdominal visceral fat is associated with reduced bone density in HIV-infected men with lipodystrophy. AIDS 15, 975–982 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Tien, P. C. et al. Regional adipose tissue and elevations in serum aminotransferases in HIV-infected individuals. J. Aquir. Immune Defic. Syndr. 48, 169–176 (2008).

    Article  CAS  Google Scholar 

  74. Ryan, P. et al. Predictors of severe hepatic steatosis using abdominal ultrasound in HIV-infected patients. HIV Med. 10, 53–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Stanley, T. L. et al. Effects of switching from lopinavir/ritonavir to atazanavir/ritonavir on muscle glucose uptake and visceral fat in HIV-infected patients. AIDS 23, 1349–1357 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Thöni, G. J. et al. Reduction of fat accumulation and lipid disorders by individualized light aerobic training in human immunodeficiency virus infected patients with lipodystrophy and/or dyslipidemia. Diabetes Metab. 28, 397–404 (2002).

    PubMed  Google Scholar 

  77. Dolan, S. E. et al. Effects of a supervised home-based aerobic and progressive resistance training regimen in women infected with human immunodeficiency virus: a randomized trial. Arch. Intern. Med. 166, 1225–1231 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fitch, K. V. et al. Effects of a lifestyle modification program in HIV-infected patients with the metabolic syndrome. AIDS 20, 1843–1850 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Hadigan, C. et al. Metformin in the treatment of HIV lipodystrophy syndrome: A randomized controlled trial. JAMA 284, 472–477 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Kohli, R., Shevitz, A., Gorbach, S. & Wanke, C. A randomized placebo-controlled trial of metformin for the treatment of HIV lipodystrophy. HIV Med. 8, 420–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Sheth, S. H. & Larson, R. J. The efficacy and safety of insulin-sensitizing drugs in HIV-associated lipodystrophy syndrome: a meta-analysis of randomized trials. BMC Infect. Dis. 10, 183 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Seidell, J. C., Björntorp, P., Sjöström, L., Kvist, H. & Sannerstedt, R. Visceral fat accumulation in men is positively associated with insulin, glucose, and C-peptide levels, but negatively with testosterone levels. Metabolism 39, 897–901 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. Rietschel, P. et al. Prevalence of hypogonadism among men with weight loss related to human immunodeficiency virus infection who were receiving highly active antiretroviral therapy. CID 31, 1240–1244 (2000).

    Article  CAS  Google Scholar 

  84. Wunder, D. M. et al. Hypogonadism in HIV-1-infected men is common and does not resolve during antiretroviral therapy. Antivir. Ther. 12, 261–265 (2007).

    CAS  PubMed  Google Scholar 

  85. Bhasin, S. et al. Effects of testosterone supplementation on whole body and regional fat mass and distribution in human immunodeficiency virus-infected men with abdominal obesity. J. Clin. Endocrinol. Metab. 92, 1049–1057 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Schambelan, M. et al. Recombinant human growth hormone in patients with HIV-associated wasting. A randomized, placebo-controlled trial. Serostim Study Group. Ann. Intern. Med. 125, 873–882 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Kotler, D. P. et al. Effects of growth hormone on abnormal visceral adipose tissue accumulation and dyslipidemia in HIV-infected patients. J. Acquir. Immune Defic. Syndr. 35, 239–252 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Kotler, D. P. et al. Effects of growth hormone on visceral adipose tissue and dyslipidemia in HIV, an erratum. J. Acquir. Immune Defic. Syndr. 43, 378–380 (2006).

    Article  PubMed  Google Scholar 

  89. Luzi, L. et al. GH treatment reduces trunkal adiposity in HIV-infected patients with lipodystrophy: a randomized placebo-controlled study. Eur. J. Endocrinol. 153, 781–789 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Hansen, B. R. et al. Long-term high-physiological-dose growth hormone reduces intra-abdominal fat in HIV-infected patients with a neutral effect on glucose metabolism. HIV Med. 11, 266–275 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Lo, J. et al. Low-dose physiological growth hormone in patients with HIV and abdominal fat accumulation: a randomized controlled trial. JAMA 300, 509–519 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lo, J., You, S. M., Liebau, J., Lee, H. & Grinspoon, S. Effects of low-dose growth hormone withdrawal in patients with HIV. JAMA 304, 272–274 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Falutz, J. et al. Metabolic effects of a growth hormone-releasing factor in patients with HIV. N. Engl. J. Med. 357, 2359–2370 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Falutz, J. et al. Effects of tesamorelin, a growth hormone-releasing factor, in HIV-infected patients with abdominal fat accumulation: a randomized placebo-controlled trial with a safety extension. J. Acquir. Immune Defic. Syndr. 53, 311–322 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Falutz, J. et al. Effects of tesamorelin (TH9507), a growth hormone-releasing factor analog, in human immunodeficiency virus-infected patients with excess abdominal fat: a pooled analysis of two multicenter, double-blind placebo-controlled phase 3 trials with safety extension data. J. Clin. Endocrinol. Metab. 95, 4291–4304 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Renehan, A. G. et al. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 363, 1346–1353 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Clayton, P. E., Banerjee, I., Murray, P. G. & Renehan, A. G. Growth hormone, the insulin-like growth factor axis, insulin and cancer risk. Nat. Rev. Endocrinol. 7, 11–24 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Grulich, A. E., van Leeuwen, M. T., Falster, M. O. & Vajdic, C. M. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370, 59–67 (2007).

    Article  PubMed  Google Scholar 

  99. Grunfeld, C. et al. Lipids, lipoproteins, triglyceride clearance, and cytokines in human immunodeficiency virus infection and the acquired immunodeficiency syndrome. J. Clin. Endocrinol. Metab. 74, 1045–1052 (1992).

    CAS  PubMed  Google Scholar 

  100. Feingold, K. R. et al. The hypertriglyceridemia of acquired immunodeficiency syndrome is associated with an increased prevalence of low density lipoprotein subclass pattern B. J. Clin. Endocrinol. Metab. 76, 1423–1427 (1993).

    CAS  PubMed  Google Scholar 

  101. Tien, P. C. et al. HIV, HAART, and lipoprotein particle concentrations in the Women's Interagency HIV Study. AIDS 24, 2809–2817 (2010).

    Article  PubMed  Google Scholar 

  102. Baker, J. et al. High-density lipoprotein particles and markers of inflammation and thrombotic activity in patients with untreated HIV infection. J. Infect. Dis. 201, 285–292 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Riddler, S. A. et al. Impact of HIV infection and HAART on serum lipids in men. JAMA 289, 2978–2982 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Shafran, S. D., Mashinter, L. D. & Roberts, S. E. The effect of low-dose ritonavir monotherapy on fasting serum lipid concentrations. HIV Med. 6, 421–425 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Lee, G. A. et al. The metabolic effects of lopinavir/ritonavir in HIV-negative men. AIDS 18, 641–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Shikuma, C. M. et al. Metabolic effects of protease inhibitor-sparing antiretroviral regimens given as initial treatment of HIV-1 Infection (AIDS Clinical Trials Group Study A5095). J. Acquir. Immune Defic. Syndr. 44, 540–550 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. van Leth, F. et al. Nevirapine and efavirenz elicit different changes in lipid profiles in antiretroviral-therapy-naive patients infected with HIV-1. PLoS Med. 1, e19 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tungsiripat, M. et al. A pilot study to determine the impact on dyslipidemia of adding tenofovir to stable background antiretroviral therapy: ACTG 5206. AIDS 24, 1781–1784 (2010).

    Article  PubMed  Google Scholar 

  109. Dubé, M. P. et al. Guidelines for the evaluation and management of dyslipidemia in human immunodeficiency virus (HIV)-infected adults receiving antiretroviral therapy: recommendations of the HIV Medical Association of the Infectious Disease Society of America and the Adult AIDS Clinical Trials Group. Clin. Infect. Dis. 37, 613–627 (2003).

    Article  PubMed  Google Scholar 

  110. [No authors listed] Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 285, 2486–2497 (2001).

  111. Law, M. G. et al. The use of the Framingham equation to predict myocardial infarctions in HIV-infected patients: comparison with observed events in the D:A:D Study. HIV Med. 7, 218–230 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Friis-Møller, N. et al. Predicting the risk of cardiovascular disease in HIV-infected patients: the data collection on adverse effects of anti-HIV drugs study. Eur. J. Cardiovasc. Prev. Rehabil. 17, 491–501 (2010).

    Article  PubMed  Google Scholar 

  113. Gatell, J. et al. Efficacy and safety of atazanavir-based highly active antiretroviral therapy in patients with virologic suppression switched from a stable, boosted or unboosted protease inhibitor treatment regimen: the SWAN Study (AI424–097) 48-week results. Clin. Infect. Dis. 44, 1484–1492 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Parienti, J. J., Massari, V., Rey, D., Poubeau, P. & Verdon, R. Efavirenz to nevirapine switch in HIV-1-infected patients with dyslipidemia: a randomized, controlled study. Clin. Infect. Dis. 45, 263–266 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Eron, J. J. et al. Switch to a raltegravir-based regimen versus continuation of a lopinavir-ritonavir-based regimen in stable HIV-infected patients with suppressed viraemia (SWITCHMRK 1 and 2): two multicentre, double-blind, randomised controlled trials. Lancet 375, 396–407 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Martínez, E. et al. Substitution of raltegravir for ritonavir-boosted protease inhibitors in HIV-infected patients: the SPIRAL study. AIDS 24, 1697–1707 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Fisac, C. et al. Metabolic benefits 24 months after replacing a protease inhibitor with abacavir, efavirenz or nevirapine. AIDS 19, 917–925 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Calza, L. et al. Substitution of nevirapine or efavirenz for protease inhibitor versus lipid-lowering therapy for the management of dyslipidaemia. AIDS 19, 1051–1058 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Silverberg, M. J. et al. Response to newly prescribed lipid-lowering therapy in patients with and without HIV infection. Ann. Intern. Med. 150, 301–313 (2009).

    Article  PubMed  Google Scholar 

  120. Aberg, J. A. et al. A randomized trial of the efficacy and safety of fenofibrate versus pravastatin in HIV-infected subjects with lipid abnormalities: AIDS Clinical Trials Group Study 5087. AIDS Res. Hum. Retroviruses 21, 757–767 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Dubé, M. P. et al. Safety and efficacy of extended-release niacin for the treatment of dyslipidaemia in patients with HIV infection: AIDS Clinical Trials Group Study A5148. Antivir. Ther. 11, 1081–1089 (2006).

    PubMed  PubMed Central  Google Scholar 

  122. Gerber, J. G. et al. Fish oil and fenofibrate for the treatment of hypertriglyceridemia in HIV-infected subjects on antiretroviral therapy: results of ACTG A5186. J. Acquir. Immune Defic. Syndr. 47, 459–466 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gerber, M. T. et al. Niacin in HIV-infected individuals with hyperlipidemia receiving potent antiretroviral therapy. Clin. Infect. Dis. 39, 419–425 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Wohl, D. A. et al. Randomized study of the safety and efficacy of fish oil (omega-3 fatty acid) supplementation with dietary and exercise counseling for the treatment of antiretroviral therapy-associated hypertriglyceridemia. Clin. Infect. Dis. 41, 1498–1504 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Miller, J. et al. A randomized, double-blind study of gemfibrozil for the treatment of protease inhibitor-associated hypertriglyceridaemia. AIDS 16, 2195–2200 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Aslangul, E. et al. Rosuvastatin versus pravastatin in dyslipidemic HIV-1-infected patients receiving protease inhibitors: a randomized trial. AIDS 24, 77–83 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Moyle, G. J. et al. Dietary advice with or without pravastatin for the management of hypercholesterolaemia associated with protease inhibitor therapy. AIDS 15, 1503–1508 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Henry, K., Melroe, H., Huebsch, J., Hermundson, J. & Simpson, J. Atorvastatin and gemfibrozil for protease-inhibitor-related lipid abnormalities. Lancet 352, 1031–1032 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Fichtenbaum, C. J. et al. Pharmacokinetic interactions between protease inhibitors and statins in HIV seronegative volunteers: ACTG Study A5047. AIDS 16, 569–577 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Sekar, V. J. et al. Pharmacokinetic drug-drug interaction between the new HIV protease inhibitor darunavir (TMC114) and the lipid-lowering agent pravastatin [abstract 55]. Program and Abstracts of the 8th International Workshop on Pharmacology of HIV Therapy, Budapest, Hungary, April 16–18 (2007).

  131. Prezista® (darunavir) package insert (Tibotec, Raritan, NJ, 2009).

  132. Kiser, J. J. et al. Drug/Drug interaction between lopinavir/ritonavir and rosuvastatin in healthy volunteers. J. Acquir. Immune Defic. Syndr. 47, 570–578 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Hsyu, P. H., Schultz-Smith, M. D., Lillibridge, J. H., Lewis, R. H. & Kerr, B. M. Pharmacokinetic interactions between nelfinavir and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors atorvastatin and simvastatin. Antimicrob. Agents Chemother. 45, 3445–3450 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gerber, J. G. et al. Effect of efavirenz on the pharmacokinetics of simvastatin, atorvastatin, and pravastatin: results of AIDS Clinical Trials Group 5108 Study. J. Acquir. Immune Defic. Syndr. 39, 307–312 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Brown, T. T. et al. Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch. Intern. Med. 165, 1179–1184 (2005).

    Article  PubMed  Google Scholar 

  136. Bastard, J. P. et al. High incidence and risk factors for diabetes over 9-year follow-up after first generation protease inhibitor initiation in the ARNS CO8 APROCO-COPILOTE cohort. Antivir. Ther. 14 (Suppl. 2), A5 (2009).

    Google Scholar 

  137. Grunfeld, C. Insulin resistance in HIV infection: drugs, host responses, or restoration to health? Top. HIV Med. 16, 89–93 (2008).

    PubMed  Google Scholar 

  138. Blümer, R. M. et al. Zidovudine/lamivudine contributes to insulin resistance within 3 months of starting combination antiretroviral therapy. AIDS 22, 227–236 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Fleischman, A. et al. Effects of a nucleoside reverse transcriptase inhibitor, stavudine, on glucose disposal and mitochondrial function in muscle of healthy adults. Am. J. Physiol. Endocrinol. Metab. 292, E1666–E1673 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Brown, T. T. et al. Cumulative exposure to nucleoside analogue reverse transcriptase inhibitors is associated with insulin resistance markers in the Multicenter AIDS Cohort Study. AIDS 19, 1375–1383 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Brown, T. T., Tassiopoulos, K., Bosch, R. J., Shikuma, C. & McComsey, G. A. Association between systemic inflammation and incident diabetes in HIV-infected patients after initiation of antiretroviral therapy. Diabetes Care 33, 2244–2249 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Schambelan, M. et al. Management of metabolic complications associated with antiretroviral therapy for HIV-1 infection: recommendations of an International AIDS Society-USA Panel. J. Acquir. Immune Defic. Syndr. 31, 257–275 (2002).

    Article  PubMed  Google Scholar 

  143. Wohl, D. A. et al. Current concepts in the diagnosis and management of metabolic complications of HIV infection and its therapy. Clin. Infect. Dis. 43, 645–653 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. [No authors listed] Diagnosis and classification of diabetes mellitus. Diabetes Care 34 (Suppl. 1), S62–S69 (2011).

  145. Diop, M. E. et al. Inappropriately low glycated hemoglobin values and hemolysis in HIV-infected patients. AIDS Res. Hum. Retroviruses 22, 1242–1247 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Kim, P. S. et al. A1C underestimates glycemia in HIV Infection. Diabetes Care 32, 1591–1593 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Glesby, M. J. et al. Glycated haemoglobin in diabetic women with and without HIV infection: data from the Women's Interagency HIV Study. Antivir. Ther. 15, 571–577 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Fitch, K. V. et al. Effects of a lifestyle modification program in HIV-infected patients with the metabolic syndrome. AIDS 20, 1843–1850 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Hadigan, C., Rabe, J. & Grinspoon, S. Sustained benefits of metformin therapy on markers of cardiovascular risk in human immunodeficiency virus-infected patients with fat redistribution and insulin resistance. J. Clin. Endocrinol. Metab. 87, 4611–4615 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Derosa, G. Efficacy and tolerability of pioglitazone in patients with type 2 diabetes mellitus: comparison with other oral antihyperglycaemic agents. Drugs 70, 1945–1961 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. Brown, T. T. & Qaqish, R. B. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS 20, 2165–2174 (2006).

    Article  PubMed  Google Scholar 

  152. Triant, V. A., Brown, T. T., Lee, H. & Grinspoon, S. K. Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large U.S. healthcare system. J. Clin. Endocrinol. Metab. 93, 3499–3504 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Nathan, D. M. et al. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care 30, 753–759 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Triant, V. A., Lee, H., Hadigan, C. & Grinspoon, S. K. Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J. Clin. Endocrinol. Metab. 92, 2506–2512 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Worm, S. W. et al. Risk of myocardial infarction in patients with HIV infection exposed to specific individual antiretroviral drugs from the 3 major drug classes: the data collection on adverse events of anti-HIV drugs (D:A:D) study. J. Infect. Dis. 201, 318–330 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Triant, V. A., Meigs, J. B. & Grinspoon, S. K. Association of C-reactive protein and HIV infection with acute myocardial infarction. J. Acquir. Immune Defic. Syndr. 51, 268–273 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Triant, V. A. et al. Association of immunologic and virologic factors with myocardial infarction rates in a US healthcare system. J. Acquir. Immune Defic. Syndr. 55, 615–619 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Ribaudo, H. J. et al. No risk of myocardial infarction associated with initial antiretroviral treatment containing abacavir: short and long-term results from ACTG A5001/ALLRT. Clin. Infect. Dis. 52, 929–940 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Costagliola, D., Lang, S., Mary-Krause, M. & Boccara, F. Abacavir and cardiovascular risk: reviewing the evidence. Curr. HIV/AIDS Rep. 7, 127–133 (2010).

    Article  PubMed  Google Scholar 

  160. Lichtenstein, K. et al. Analysis of cardiovascular risk factors in the HIV Outpatient Study Cohort (HOPS). In the Program and Abstracts of the 13th Conference of Retroviruses and Opportunistic Infections, 735 February 5–8 (2006).

  161. Fuster, M. et al. Smoking cessation in HIV patients: rate of success and associated factors. HIV Med. 10, 614–619 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Petoumenos, K. et al. Rates of cardiovascular disease following smoking cessation in patients with HIV infection: results from the D:A:D study(*). HIV Med. 12, 412–421 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Seaberg, E. C. et al. Association between highly active antiretroviral therapy and hypertension in a large cohort of men followed from 1984 to 2003. AIDS 19, 953–960 (2005).

    Article  PubMed  Google Scholar 

  164. Chobanian, A. V. et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 42, 1206–1252 (2003).

    Article  CAS  PubMed  Google Scholar 

  165. [No authors listed] Aspirin for the prevention of cardiovascular disease: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 150, 396–404 (2009).

  166. Hunt, P. W. et al. Relationship between T cell activation and CD4+ T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy. J. Infect. Dis. 197, 126–133 (2008).

    Article  PubMed  Google Scholar 

  167. French, M. A., King, M. S., Tschampa, J. M., da Silva, B. A. & Landay, A. L. Serum immune activation markers are persistently increased in patients with HIV infection after 6 years of antiretroviral therapy despite suppression of viral replication and reconstitution of CD4+ T cells. J. Infect. Dis. 200, 1212–1215 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Shikuma, C. M. et al. Change in high-sensitivity c-reactive protein levels following initiation of efavirenz-based antiretroviral regimens in HIV-infected individuals. AIDS Res. Hum. Retroviruses 27, 461–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Brenchley, J. M. et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med. 12, 1365–1371 (2006).

    Article  CAS  PubMed  Google Scholar 

  170. Deeks, S. G. Immune dysfunction, inflammation, and accelerated aging in patients on antiretroviral therapy. Top. HIV Med. 17, 118–123 (2009).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant NIH/NCCAM K23 AT002862 to TTB and grant NIH/NIAID K24 AI078884 to MJG. Written consent for publication was obtained from the patients for the inclusion of Figures 1 and 2.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Todd T. Brown.

Ethics declarations

Competing interests

T. T. Brown declares associations with the following companies: Abbott (consultant), EMD Serono (consultant), Gilead (consultant), GlaxoSmithKline (grant/research support), Merck (grant/research support), Theratechnologies (consultant), Tibotec (consultant), ViiV Healthcare (consultant). M. J. Glesby declares associations with the following company: Pfizer (consultant, grant/research support).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, T., Glesby, M. Management of the metabolic effects of HIV and HIV drugs. Nat Rev Endocrinol 8, 11–21 (2012). https://doi.org/10.1038/nrendo.2011.151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing