Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endocrine disruptors in the etiology of type 2 diabetes mellitus

Abstract

The etiology of type 2 diabetes mellitus involves the induction of insulin resistance along with the disruption of pancreatic β-cell function and the loss of β-cell mass. In addition to a genetic predisposition, lifestyle factors seem to have an important role. Epidemiological studies indicate that the increased presence of endocrine disrupting chemicals (EDCs) in the environment may also play an important part in the incidence of metabolic diseases. Widespread EDCs, such as dioxins, pesticides and bisphenol A, cause insulin resistance and alter β-cell function in animal models. These EDCs are present in human blood and can accumulate in and be released from adipocytes. After binding to cellular receptors and other targets, EDCs either imitate or block hormonal responses. Many of them act as estrogens in insulin-sensitive tissues and in β cells, generating a pregnancy-like metabolic state characterized by insulin resistance and hyperinsulinemia. Adult exposure in mice produces insulin resistance and other metabolic alterations; in addition, during pregnancy, EDCs alter glucose metabolism in female mice, as well as glucose homeostasis and endocrine pancreatic function in offspring. Although more experimental work is necessary, evidence already exists to consider exposure to EDCs as a risk factor in the etiology of type 2 diabetes mellitus and other diseases related to insulin resistance.

Key Points

  • The prevalence of type 2 diabetes mellitus (T2DM) has increased dramatically worldwide, making the disease one of the fastest growing public health problems

  • The etiology of T2DM is based on the induction of insulin resistance together with functional disruption of insulin producing β cells; genetic predisposition and environmental factors play key roles

  • Some widespread endocrine disrupting chemicals (EDCs), at concentrations found in human plasma, induce insulin resistance and alter pancreatic β-cell function in cellular and adult animal models

  • Epidemiological data indicate that exposure to EDCs is linked to an increased risk of diabetes mellitus in adults

  • Data obtained from pregnant mice and offspring indicate that short exposure to the EDC bisphenol A during pregnancy disrupts glucose homeostasis in female mice and their adult male offspring

  • Sufficient scientific evidence is available to consider the exposure to persistent organic pollutants, including bisphenol A, a risk factor for T2DM and other metabolic disorders

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pregnancy-like actions of endocrine disrupting chemicals on islet function and glucose homeostasis.

Similar content being viewed by others

References

  1. International Programme for Chemical Safety (IPCS) in Global assessment of the state-of-the-science of endocrine disruptors. Chapter 1: Executive Summary, 1–3 [online], (2010).

  2. International Programme on Chemical Safety (IPCS). Global assessment of the state-of-the-science of endocrine disruptors [online], (2010).

  3. Porta, M. et al. Distribution of blood concentrations of persistent organic pollutants in a representative sample of the population of Catalonia. Environ. Int. 36, 655–664 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Darnerud, P. O. et al. POP levels in breast milk and maternal serum and thyroid hormone levels in mother-child pairs from Uppsala, Sweden. Environ. Int. 36, 180–187 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Calafat, A. M., Wong, L. Y., Ye, X., Reidy, J. A. & Needham, L. L. Concentrations of the sunscreen agent benzophenone-3 in residents of the United States: National Health and Nutrition Examination Survey 2003–2004. Environ. Health Perspect. 116, 893–897 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vandenberg, L. N., Hauser, R., Marcus, M., Olea, N. & Welshons, W. V. Human exposure to bisphenol A (BPA). Reprod. Toxicol. 24, 139–177 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Fernandez, M. F. et al. Bisphenol-A and chlorinated derivatives in adipose tissue of women. Reprod. Toxicol. 24, 259–264 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Stahlhut, R. W., Welshons, W. V. & Swan, S. H. Bisphenol A data in NHANES suggest longer than expected half-life, substantial nonfood exposure, or both. Environ. Health Perspect. 117, 784–789 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Taylor, J. A. et al. Similarity of bisphenol A pharmacokinetics in rhesus monkeys and mice: relevance for human exposure. Environ. Health Perspect. doi:10.1289/ehp.1002514.

  10. Biddinger, S. B. & Kahn, C. R. From mice to men: insights into the insulin resistance syndromes. Annu. Rev. Physiol. 68, 123–158 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Wild, S., Roglic, G., Green, A., Sicree, R. & King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27, 1047–1053 (2004).

    Article  PubMed  Google Scholar 

  12. Reaven, G. M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37, 1595–1607 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Herman, M. A. & Kahn, B. B. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J. Clin. Invest. 116, 1767–1775 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ropero, A. B., Alonso-Magdalena, P., Quesada, I. & Nadal, A. The role of estrogen receptors in the control of energy and glucose homeostasis. Steroids 73, 874–879 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Rosen, E. D. & Spiegelman, B. M. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444, 847–853 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fritsche, L., Weigert, C., Häring, H. U. & Lehmann, R. How insulin receptor substrate proteins regulate the metabolic capacity of the liver--implications for health and disease. Curr. Med. Chem. 15, 1316–1329 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Rhodes, C. J. Type 2 diabetes—a matter of beta-cell life and death? Science 307, 380–384 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Kahn, S. E. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46, 3–19 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Beard, J. C., Ward, W. K., Halter, J. B., Wallum, B. J. & Porte, D. Jr. Relationship of islet function to insulin action in human obesity. J. Clin. Endocrinol. Metab. 65, 59–64 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Lazar, M. A. How obesity causes diabetes: not a tall tale. Science 307, 373–375 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Virtue, S. & Vidal-Puig, A. It's not how fat you are, it's what you do with it that counts. PLoS Biol. 6, e237 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Utzschneider, K. M. et al. Insulin resistance is the best predictor of the metabolic syndrome in subjects with a first-degree relative with type 2 diabetes. Obesity (Silver Spring) 18, 1781–1787 (2010).

    Article  CAS  Google Scholar 

  23. Wildman, R. P. et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004). Arch. Intern. Med. 168, 1617–1624 (2008).

    Article  PubMed  Google Scholar 

  24. Alonso-Magdalena, P., Morimoto, S., Ripoll, C., Fuentes, E. & Nadal, A. The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environ. Health Perspect. 114, 106–112 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Alonso-Magdalena, P. et al. Bisphenol A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring. Environ. Health Perspect. 118, 1243–1250 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ruzzin, J. et al. Persistent organic pollutant exposure leads to insulin resistance syndrome. Environ. Health Perspect. 118, 465–471 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Enan, E., Liu, P. C. & Matsumura, F. 2,3,7,8-Tetrachlorodibenzo-p-dioxin causes reduction of glucose transporting activities in the plasma membranes of adipose tissue and pancreas from the guinea pig. J. Biol. Chem. 267, 19785–19791 (1992).

    CAS  PubMed  Google Scholar 

  28. Novelli, M., Piaggi, S. & De Tata, V. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced impairment of glucose-stimulated insulin secretion in isolated rat pancreatic islets. Toxicol. Lett. 156, 307–314 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Kurita, H. et al. Aryl hydrocarbon receptor-mediated effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on glucose-stimulated insulin secretion in mice. J. Appl. Toxicol. 29, 689–694 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Ishida, T. et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced change in intestinal function and pathology: evidence for the involvement of arylhydrocarbon receptor-mediated alteration of glucose transportation. Toxicol. Appl. Pharmacol. 205, 89–97 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Weber, L. W. et al. Reduced activities of key enzymes of gluconeogenesis as possible cause of acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in rats. Toxicology 66, 133–144 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Nadal, A. et al. Nongenomic actions of estrogens and xenoestrogens by binding at a plasma membrane receptor unrelated to estrogen receptor alpha and estrogen receptor beta. Proc. Natl Acad. Sci. USA 97, 11603–11608 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rorsman, P. et al. The cell physiology of biphasic insulin secretion. News Physiol. Sci. 15, 72–77 (2000).

    CAS  PubMed  Google Scholar 

  34. Quesada, I. et al. Low doses of the endocrine disruptor bisphenol-A and the native hormone 17beta-estradiol rapidly activate transcription factor CREB. FASEB J. 16, 1671–1673 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Alonso-Magdalena, P. et al. Low doses of bisphenol A and diethylstilbestrol impair Ca2+ signals in pancreatic alpha-cells through a nonclassical membrane estrogen receptor within intact islets of Langerhans. Environ. Health Perspect. 113, 969–977 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Quesada, I., Tudurí, E., Ripoll, C. & Nadal, A. Physiology of the pancreatic alpha-cell and glucagon secretion: role in glucose homeostasis and diabetes. J. Endocrinol. 199, 5–19 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Ropero, A. B. et al. Bisphenol-A disruption of the endocrine pancreas and blood glucose homeostasis. Int. J. Androl. 31, 194–200 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. US Environmental Protection Agency Integrated Risk Information System [online], (2010).

  39. European Food Safety Authority Bisphenol A [online], (2010).

  40. Weltje, L., vom Saal, F. S. & Oehlmann, J. Reproductive stimulation by low doses of xenoestrogens contrasts with the view of hormesis as an adaptative response. Hum. Exp. Toxicol. 24, 431–437 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Alonso-Magdalena, P. et al. Pancreatic insulin content regulation by the estrogen receptor ER alpha. PLoS ONE 3, e2069 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Adachi, T. et al. Promoting insulin secretion in pancreatic islets by means of bisphenol A and nonylphenol via intracellular estrogen receptors. Food Chem. Toxicol. 43, 713–719 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Hugo, E. R. et al. Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ. Health Perspect. 116, 1642–1647 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Whitehead, J. P., Richards, A. A., Hickman, I. J., Macdonald, G. A. & Prins, J. B. Adiponectin—a key adipokine in the metabolic syndrome. Diabetes Obes. Metab. 8, 264–280 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Masuno, H., Iwanami, J., Kidani, T., Sakayama, K. & Honda, K. Bisphenol a accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway. Toxicol. Sci. 84, 319–327 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Wada, K. et al. Life style-related diseases of the digestive system: endocrine disruptors stimulate lipid accumulation in target cells related to metabolic syndrome. J. Pharmacol. Sci. 105, 133–137 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Phrakonkham, P. et al. Dietary xenoestrogens differentially impair 3T3-L1 preadipocyte differentiation and persistently affect leptin synthesis. J. Steroid Biochem. Mol. Biol. 110, 95–103 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Kidani, T. et al. Bisphenol A downregulates Akt signaling and inhibits adiponectin production and secretion in 3T3-L1 adipocytes. J. Atheroscler. Thromb. 17, 834–843 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Grün, F. et al. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol. Endocrinol. 20, 2141–2155 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Zuo, Z. et al. Tributyltin causes obesity and hepatic steatosis in male mice. Environ. Toxicol. 26, 79–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Jimenez-Chillaron, J. C. et al. Beta-cell secretory dysfunction in the pathogenesis of low birth weight-associated diabetes: a murine model. Diabetes 54, 702–711 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Jimenez-Chillaron, J. C. et al. Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes 58, 460–468 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Newbold, R. R., Padilla-Banks, E. & Jefferson, W. N. Adverse effects of the model environmental estrogen diethylstilbestrol are transmitted to subsequent generations. Endocrinology 147 (Suppl.), S11–S17 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Newbold, R. R., Padilla-Banks, E. & Jefferson, W. N. Environmental estrogens and obesity. Mol. Cell. Endocrinol. 304, 84–89 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rubin, B. S., Murray, M. K., Damassa, D. A., King, J. C. & Soto, A. M. Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ. Health Perspect. 109, 675–680 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rubin, B. S. & Soto, A. M. Bisphenol A: Perinatal exposure and body weight. Mol. Cell. Endocrinol. 304, 55–62 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Howdeshell, K. L., Hotchkiss, A. K., Thayer, K. A., Vandenbergh, J. G. & vom Saal, F. S. Exposure to bisphenol A advances puberty. Nature 401, 763–764 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Somm, E. et al. Perinatal exposure to bisphenol a alters early adipogenesis in the rat. Environ. Health Perspect. 117, 1549–1555 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ryan, K. K. et al. Perinatal exposure to bisphenol-a and the development of metabolic syndrome in CD-1 mice. Endocrinology 151, 2603–2612 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sharpe, R. M. & Drake, A. J. Bisphenol a and metabolic syndrome. Endocrinology 151, 2404–2407 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Kirchner, S., Kieu, T., Chow, C., Casey, S. & Blumberg, B. Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes. Mol. Endocrinol. 24, 526–539 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kuiper, G. G. et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138, 863–870 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Kuiper, G. G. et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139, 4252–4263 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Sheeler, C. Q., Dudley, M. W. & Khan, S. A. Environmental estrogens induce transcriptionally active estrogen receptor dimers in yeast: activity potentiated by the coactivator RIP140. Environ. Health Perspect. 108, 97–103 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. vom Saal, F. S. & Hughes, C. An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ. Health Perspect. 113, 926–933 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Diamanti-Kandarakis, E. et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr. Rev. 30, 293–342 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wozniak, A. L., Bulayeva, N. N. & Watson, C. S. Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-alpha-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells. Environ. Health Perspect. 113, 431–439 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ropero, A. B., Alonso-Magdalena, P., Ripoll, C., Fuentes, E. & Nadal, A. Rapid endocrine disruption: environmental estrogen actions triggered outside the nucleus. J. Steroid Biochem. Mol. Biol. 102, 163–169 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Silva, E., Kabil, A. & Kortenkamp, A. Cross-talk between non-genomic and genomic signalling pathways—distinct effect profiles of environmental estrogens. Toxicol. Appl. Pharmacol. 245, 160–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Swedenborg, E., Pongratz, I. & Gustafsson, J. A. Endocrine disruptors targeting ERbeta function. Int. J. Androl. 33, 288–297 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Barros, R. P., Machado, U. F. & Gustafsson, J. A. Estrogen receptors: new players in diabetes mellitus. Trends Mol. Med. 12, 425–431 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Nadal, A., Alonso-Magdalena, P., Soriano, S., Quesada, I. & Ropero, A. B. The pancreatic beta-cell as a target of estrogens and xenoestrogens: Implications for blood glucose homeostasis and diabetes. Mol. Cell. Endocrinol. 304, 63–68 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Sorenson, R. L. & Brelje, T. C. Prolactin receptors are critical to the adaptation of islets to pregnancy. Endocrinology 150, 1566–1569 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Nadal, A., Alonso-Magdalena, P., Soriano, S., Ropero, A. B. & Quesada, I. The role of oestrogens in the adaptation of islets to insulin resistance. J. Physiol. 587, 5031–5037 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Alonso, A. et al. 17beta-estradiol treatment is unable to reproduce p85 alpha redistribution associated with gestational insulin resistance in rats. J. Steroid Biochem. Mol. Biol. 116, 160–170 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Barros, R. P., Gabbi, C., Morani, A., Warner, M. & Gustafsson, J. A. Participation of ERalpha and ERbeta in glucose homeostasis in skeletal muscle and white adipose tissue. Am. J. Physiol. Endocrinol. Metab. 297, E124–E133 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Soriano, S. et al. Rapid regulation of K(ATP) channel activity by 17{beta}-estradiol in pancreatic {beta}-cells involves the estrogen receptor {beta} and the atrial natriuretic peptide receptor. Mol. Endocrinol. 23, 1973–1982 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wong, W. P. et al. Extranuclear estrogen receptor-alpha stimulates NeuroD1 binding to the insulin promoter and favors insulin synthesis. Proc. Natl Acad. Sci. USA 107, 13057–13062 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wetherill, Y. B. et al. In vitro molecular mechanisms of bisphenol A action. Reprod. Toxicol. 24, 178–198 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Swedenborg, E. & Pongratz, I. AhR and ARNT modulate ER signaling. Toxicology 268, 132–138 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Pascussi, J. M. et al. The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences. Annu. Rev. Pharmacol. Toxicol. 48, 1–32 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Thackaberry, E. A. et al. Insulin regulation in AhR-null mice: embryonic cardiac enlargement, neonatal macrosomia, and altered insulin regulation and response in pregnant and aging AhR-null females. Toxicol. Sci. 76, 407–417 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Bertazzi, P. A. et al. Health effects of dioxin exposure: a 20-year mortality study. Am. J. Epidemiol. 153, 1031–1044 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Henriksen, G. L., Ketchum, N. S., Michalek, J. E. & Swaby, J. A. Serum dioxin and diabetes mellitus in veterans of Operation Ranch Hand. Epidemiology 8, 252–258 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Kern, P. A., Said, S., Jackson, W. G. Jr & Michalek, J. E. Insulin sensitivity following agent orange exposure in Vietnam veterans with high blood levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin. J. Clin. Endocrinol. Metab. 89, 4665–4672 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Michalek, J. E. & Pavuk, M. Diabetes and cancer in veterans of Operation Ranch Hand after adjustment for calendar period, days of spraying, and time spent in Southeast Asia. J. Occup. Environ. Med. 50, 330–340 (2008).

    Article  PubMed  Google Scholar 

  87. Lee, D. H. et al. A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999–2002. Diabetes Care 29, 1638–1644 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Lee, D. H., Lee, I. K., Jin, S. H., Steffes, M. & Jacobs, D. R. Jr. Association between serum concentrations of persistent organic pollutants and insulin resistance among nondiabetic adults: results from the National Health and Nutrition Examination Survey 1999–2002. Diabetes Care 30, 622–628 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Lee, D. H., Lee, I. K., Porta, M., Steffes, M. & Jacobs, D. R. Jr. Relationship between serum concentrations of persistent organic pollutants and the prevalence of metabolic syndrome among non-diabetic adults: results from the National Health and Nutrition Examination Survey 1999–2002. Diabetologia 50, 1841–1851 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Lee, D. H. et al. Low dose of some persistent organic pollutants predicts type 2 diabetes: a nested case–control study. Environ. Health Perspect. 118, 1235–1242 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lang, I. A. et al. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA 300, 1303–1310 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Melzer, D., Rice, N. E., Lewis, C., Henley, W. E. & Galloway, T. S. Association of urinary bisphenol a concentration with heart disease: evidence from NHANES 2003/06. PLoS ONE 5, e8673 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kortenkamp, A., Faust, M., Scholze, M. & Backhaus, T. Low-level exposure to multiple chemicals: reason for human health concerns? Environ. Health Perspect. 115 (Suppl. 1), 106–114 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ghisari, M. & Bonefeld-Jorgensen, E. C. Effects of plasticizers and their mixtures on estrogen receptor and thyroid hormone functions. Toxicol. Lett. 189, 67–77 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Soto, A. M. & Sonnenschein, C. Environmental causes of cancer: endocrine disruptors as carcinogens. Nat. Rev. Endocrinol. 6, 363–370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors laboratories are funded by “Ministerio de Ciencia e Innovación” and “Generalitat Valenciana”. CIBERDEM is an initiative of “Instituto de Salud Carlos III”. The authors thank Elaine Vieira, Sergi Soriano, Laura Marroquí and Esther Fuentes for critical reading of the manuscript. We thank the members of our laboratories for their continuous input and discussion.

Author information

Authors and Affiliations

Authors

Contributions

P. Alonso-Magdalena and A. Nadal contributed to researching data for the article, all authors provided a substantial contribution to the discussion of content, A. Nadal wrote the article and all authors reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Angel Nadal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso-Magdalena, P., Quesada, I. & Nadal, A. Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nat Rev Endocrinol 7, 346–353 (2011). https://doi.org/10.1038/nrendo.2011.56

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.56

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing