Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transgenerational neuroendocrine disruption of reproduction

Abstract

Exposure to endocrine disrupting chemicals (EDCs) is associated with dysfunctions of metabolism, energy balance, thyroid function and reproduction, and an increased risk of endocrine cancers. These multifactorial disorders can be 'programmed' through molecular epigenetic changes induced by exposure to EDCs early in life, the expression of which may not manifest until adulthood. In some cases, EDCs have detrimental effects on subsequent generations, which indicates that traits for disease predisposition may be passed to future generations by nongenomic inheritance. This Review discusses current understanding of the epigenetic mechanisms that underlie sexual differentiation of reproductive neuroendocrine systems in mammals and summarizes the literature on transgenerational epigenetic effects of representative EDCs: vinclozolin, diethylstilbesterol, bisphenol A and polychlorinated biphenyls. The article differentiates between context-dependent epigenetic transgenerational changes—namely, those that require environmental exposure, either via the EDC itself or through behavioral or physiological differences in parents—and germline-dependent epigenetic mechanisms. These processes, albeit discrete, are not mutually exclusive and can involve similar molecular mechanisms including DNA methylation and histone modifications and may predispose exposed individuals to transgenerational disruption of reproductive processes. New insights stress the crucial need to develop a clear understanding of how EDCs may program the epigenome of exposed individuals and their descendants.

Key Points

  • The hypothalamic neuroendocrine systems develop in a sexually dimorphic manner, largely because of differences in levels of gonadal steroids

  • Environmental endocrine disrupting chemicals (EDCs) impair the function of the neuroendocrine systems that control reproduction

  • Developmental exposure to EDCs, particularly during embryonic and early postnatal periods, permanently impairs functions and predisposes individuals to disease later in life owing to altered epigenetic programming

  • The mechanisms of EDC action include effects on the epigenetic molecular machinery that controls gene expression in hypothalamic and reproductive tissues

  • Effects of EDCs may be transmitted transgenerationally through molecular changes to the germline or through context-dependent modifications to somatic cells by continued exposures to EDCs or the individual's social or environmental context

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The hypothalamic–pituitary–gonadal (HPG) axis.
Figure 2: DNA methylation and histone modifications.
Figure 3: Context-dependent epigenetic transmission.
Figure 4: Programming of methylation in the germline.
Figure 5: Transgenerational inheritance of epigenetic traits across three generations.
Figure 6: Effects of endocrine disrupting chemicals on mate preference in the F3 generation.

Similar content being viewed by others

References

  1. Weybridge, UK, Report No. EUR 17549, Environment and Climate Research Programme, DG XXI (European Commission, Brussels, 1996).

  2. Kavlock, R. J. & Ankley, G. T. A perspective on the risk assessment process for endocrine-disruptive effects on wildlife and human health. Risk Anal. 16, 731–739 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Diamanti-Kandarakis, E. et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr. Rev. 30, 293–342 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koistinen, J., Stenman, O., Haahti, H., Suonperä, M. & Paasivirta, J. Polychlorinated diphenyl ethers, dibenzo-p-dioxins, dibenzofurans and biphenyls in seals and sediment from the Gulf of Finland. Chemosphere 35, 1249–1269 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Barker, D. J., Eriksson, J. G., Forsén, T. & Osmond, C. Fetal origins of adult disease: strength of effects and biological basis. Int. J. Epidemiol. 31, 1235–1239 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Gore, A. C. Developmental programming and endocrine disruptor effects on reproductive neuroendocrine systems. Front. Neuroendocrinol. 29, 358–374 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Crews, D. et al. Transgenerational epigenetic imprints on mate preference. Proc. Natl Acad. Sci. USA 104, 5942–5946 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Crews, D., Willingham, E. & Skipper, J. K. Endocrine disruptors: present issues, future directions. Q. Rev. Biol. 75, 243–260 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Wingfield, J. C. Comparative endocrinology, environment and global change. Gen. Comp. Endocrinol. 157, 207–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Crews, D. Epigenetics and its implications for behavioral neuroendocrinology. Front. Neuroendocrinol. 29, 344–357 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cornil, C. A., Ball, G. F. & Balthazart, J. Functional significance of the rapid regulation of brain estrogen action: where do the estrogens come from? Brain Res. 1126, 2–26 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Juntti, S. A. et al. The androgen receptor governs the execution, but not programming, of male sexual and territorial behaviors. Neuron 66, 260–272 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lephart, E. D. et al. Brain aromatase cytochrome P-450 messenger RNA levels and enzyme activity during prenatal and perinatal development in the rat. Brain Res. Mol. Brain Res. 16, 187–192 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Bakker, J. et al. Alpha-fetoprotein protects the developing female mouse brain from masculinization and defeminization by estrogens. Nat. Neurosci. 9, 220–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Davis, E. C., Popper, P. & Gorski, R. A. The role of apoptosis in sexual differentiation of the rat sexually dimorphic nucleus of the preoptic area. Brain Res. 734, 10–18 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Davis, E. C., Shryne, J. E. & Gorski, R. A. A revised critical period for the sexual differentiation of the sexually dimorphic nucleus of the preoptic area in the rat. Neuroendocrinology 62, 579–585 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Davis, E. C., Shryne, J. E. & Gorski, R. A. Structural sexual dimorphisms in the anteroventral periventricular nucleus of the rat hypothalamus are sensitive to gonadal steroids perinatally, but develop peripubertally. Neuroendocrinology 63, 142–148 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Phoenix, C. H., Goy, R. W., Gerall, A. A. & Young, W. C. Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 65, 369–382 (1959).

    Article  CAS  PubMed  Google Scholar 

  19. Baccarelli, A. & Bollati, V. Epigenetics and environmental chemicals. Curr. Opin. Pediatr. 21, 243–251 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Crews, D. Epigenetic modifications of brain and behavior: theory and practice. Horm. Behav. doi:10.1016/j.yhbeh.2010.07.001

  21. Bolander, F. F. Molecular Endocrinology 3rd edn (Elsevier Academic Press, San Diego, 2004).

    Google Scholar 

  22. McCarthy, M. M. et al. The epigenetics of sex differences in the brain. J. Neurosci. 29, 12815–12823 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Westberry, J. M., Trout, A. L. & Wilson, M. E. Epigenetic regulation of estrogen receptor alpha gene expression in the mouse cortex during early postnatal development. Endocrinology 151, 731–740 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Kurian, J. R., Olesen, K. M. & Auger, A. P. Sex differences in epigenetic regulation of the estrogen receptor-alpha promoter within the developing preoptic area. Endocrinology 151, 2297–2305 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsai, H. W., Grant, P. A. & Rissman, E. F. Sex differences in histone modifications in the neonatal mouse brain. Epigenetics 4, 47–53 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Murray, E. K., Hien, A., de Vries, G. J. & Forger, N. G. Epigenetic control of sexual differentiation of the bed nucleus of the stria terminalis. Endocrinology 150, 4241–4247 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Champagne, F. A. Epigenetic mechanisms and the transgenerational effects of maternal care. Front. Neuroendocrinol. 29, 386–397 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cameron, N. M. et al. Epigenetic programming of phenotypic variations in reproductive strategies in the rat through maternal care. J. Neuroendocrinol. 20, 795–801 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Homburg, R. Androgen circle of polycystic ovary syndrome. Hum. Reprod. 24, 1548–1555 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Reik, W., Dean, W. & Walter, J. Epigenetic reprogramming in mammalian development. Science 293, 1089–1093 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Jablonka, E. & Raz, G. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q. Rev. Biol. 84, 131–176 (2009).

    Article  PubMed  Google Scholar 

  32. Gray, L. E. et al. Effects of environmental antiandrogens on reproductive development in experimental animals. Hum. Reprod. Update 7, 248–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Anway, M. D., Cupp, A. S., Uzumcu, M. & Skinner, M. K. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308, 1466–1469 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Stouder, C. & Paoloni-Giacobino, A. Transgenerational effects of the endocrine disruptor vinclozolin on the methylation pattern of imprinted genes in the mouse sperm. Reproduction 139, 373–379 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Anway, M. D., Memon, M. A., Uzumcu, M. & Skinner, M. K. Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J. Androl. 27, 868–879 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Anway, M. D., Rekow, S. S. & Skinner, M. K. Transgenerational epigenetic programming of the embryonic testis transcriptome. Genomics 91, 30–40 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Anway, M. D., Rekow, S. S. & Skinner, M. K. Comparative anti-androgenic actions of vinclozolin and flutamide on transgenerational adult onset disease and spermatogenesis. Reprod. Toxicol. 26, 100–106 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Anway, M. D., Leathers, C. & Skinner, M. K. Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology 147, 5515–5523 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Nilsson, E. E., Anway, M. D., Stanfield, J. & Skinner, M. K. Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease. Reproduction 135, 713–721 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Inawaka, K. et al. Maternal exposure to anti-androgenic compounds, vinclozolin, flutamide and procymidone, has no effects on spermatogenesis and DNA methylation in male rats of subsequent generations. Toxicol. Appl. Pharmacol. 237, 178–187 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Schneider, S., Kaufmann, W., Buesen, R. & van Ravenzwaay, B. Vinclozolin—the lack of a transgenerational effect after oral maternal exposure during organogenesis. Reprod. Toxicol. 25, 352–360 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Gore, A. C. Neuroendocrine targets of endocrine disruptors. Hormones (Athens) 9, 16–27 (2010).

    Article  Google Scholar 

  43. Skinner, M. K., Anway, M. D., Savenkova, M. I., Gore, A. C. & Crews, D. Transgenerational epigenetic programming of the brain transcriptome and anxiety behavior. PLoS ONE 3, e3745 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Herbst, A. L. The current status of the DES-exposed population. Obstet. Gynecol. Annu. 10, 267–278 (1981).

    CAS  PubMed  Google Scholar 

  45. Herbst, A. L., Ulfelder, H. & Poskanzer, D. C. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N. Engl. J. Med. 284, 878–881 (1971).

    Article  CAS  PubMed  Google Scholar 

  46. McLachlan, J. A. & Newbold, R. R. Estrogens and development. Environ. Health Perspect. 75, 25–27 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Titus-Ernstoff, L. et al. Birth defects in the sons and daughters of women who were exposed in utero to diethylstilbestrol (DES). Int. J. Androl. 33, 377–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Titus-Ernstoff, L. et al. Menstrual and reproductive characteristics of women whose mothers were exposed in utero to diethylstilbestrol (DES). Int. J. Epidemiol. 35, 862–868 (2006).

    Article  PubMed  Google Scholar 

  49. Klip, H., Burger, C. W., de Kraker, J. & van Leeuwen, F. E. Risk of cancer in the offspring of women who underwent ovarian stimulation for IVF. Hum. Reprod. 16, 2451–2458 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Blatt, J., Van Le, L., Weiner, T. & Sailer, S. Ovarian carcinoma in an adolescent with transgenerational exposure to diethylstilbestrol. J. Pediatr. Hematol. Oncol. 25, 635–636 (2003).

    Article  PubMed  Google Scholar 

  51. Newbold, R. R. et al. Proliferative lesions and reproductive tract tumors in male descendants of mice exposed developmentally to diethylstilbestrol. Carcinogenesis 21, 1355–1363 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Newbold, R. R. et al. Increased tumors but uncompromised fertility in the female descendants of mice exposed developmentally to diethylstilbestrol. Carcinogenesis 19, 1655–1663 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Walker, B. E. & Haven, M. I. Intensity of multigenerational carcinogenesis from diethylstilbestrol in mice. Carcinogenesis 18, 791–793 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Li, S. et al. Developmental exposure to diethylstilbestrol elicits demethylation of estrogen-responsive lactoferrin gene in mouse uterus. Cancer Res. 57, 4356–4359 (1997).

    CAS  PubMed  Google Scholar 

  55. Newbold, R. R., Padilla-Banks, E. & Jefferson, W. N. Adverse effects of the model environmental estrogen diethylstilbestrol are transmitted to subsequent generations. Endocrinology 147 (Suppl.), S11–S17 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Li, S. et al. Promoter CpG methylation of Hox-a10 and Hox-a11 in mouse uterus not altered upon neonatal diethylstilbestrol exposure. Mol. Carcinog. 32, 213–219 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Bromer, J. G., Wu, J., Zhou, Y. & Taylor, H. S. Hypermethylation of homeobox A10 by in utero diethylstilbestrol exposure: an epigenetic mechanism for altered developmental programming. Endocrinology 150, 3376–3382 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sato, K. et al. Neonatal exposure to diethylstilbestrol alters the expression of DNA methyltransferases and methylation of genomic DNA in the epididymis of mice. Endocr. J. 53, 331–337 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Sato, K. et al. Neonatal exposure to diethylstilbestrol alters expression of DNA methyltransferases and methylation of genomic DNA in the mouse uterus. Endocr. J. 56, 131–139 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Bredfeldt, T. G. et al. Xenoestrogen-induced regulation of EZH2 and histone methylation via estrogen receptor signaling to PI3K/AKT. Mol. Endocrinol. 24, 993–1006 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Greathouse, K. L. et al. Identification of uterine leiomyoma genes developmentally reprogrammed by neonatal exposure to diethylstilbestrol. Reprod. Sci. 15, 765–778 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Pearce, E. N. & Braverman, L. E. Environmental pollutants and the thyroid. Best Pract. Res. Clin. Endocrinol. Metab. 23, 801–813 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Vandenberg, L. N., Maffini, M. V., Sonnenschein, C., Rubin, B. S. & Soto, A. M. Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr. Rev. 30, 75–95 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Salian, S., Doshi, T. & Vanage, G. Perinatal exposure of rats to bisphenol A affects the fertility of male offspring. Life Sci. 85, 742–752 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Salian, S., Doshi, T. & Vanage, G. Impairment in protein expression profile of testicular steroid receptor coregulators in male rat offspring perinatally exposed to bisphenol A. Life Sci. 85, 11–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Ho, S. M., Tang, W. Y., Belmonte de Frausto, J. & Prins, G. S. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res. 66, 5624–5632 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yaoi, T. et al. Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A. Biochem. Biophys. Res. Commun. 376, 563–567 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Dolinoy, D. C., Huang, D. & Jirtle, R. L. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc. Natl Acad. Sci. USA 104, 13056–13061 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rosenfeld, C. S. Animal models to study environmental epigenetics. Biol. Reprod. 82, 473–488 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Palanza, P. L., Howdeshell, K. L., Parmigiani, S. & vom Saal, F. S. Exposure to a low dose of bisphenol A during fetal life or in adulthood alters maternal behavior in mice. Environ. Health Perspect. 110 (Suppl. 3), 415–422 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chung, Y. W., Nunez, A. A. & Clemens, L. G. Effects of neonatal polychlorinated biphenyl exposure on female sexual behavior. Physiol. Behav. 74, 363–370 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Salama, J., Chakraborty, T. R., Ng, L. & Gore, A. C. Effects of polychlorinated biphenyls on estrogen receptor-beta expression in the anteroventral periventricular nucleus. Environ. Health Perspect. 111, 1278–1282 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Steinberg, R. M., Juenger, T. E. & Gore, A. C. The effects of prenatal PCBs on adult female paced mating reproductive behaviors in rats. Horm. Behav. 51, 364–372 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Steinberg, R. M., Walker, D. M., Juenger, T. E., Woller, M. J. & Gore, A. C. Effects of perinatal polychlorinated biphenyls on adult female rat reproduction: development, reproductive physiology, and second generational effects. Biol. Reprod. 78, 1091–1101 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Desaulniers, D. et al. Effects of postnatal exposure to a mixture of polychlorinated biphenyls, p,p'-dichlorodiphenyltrichloroethane, and p-p'-dichlorodiphenyldichloroethene in prepubertal and adult female Sprague-Dawley rats. Int. J. Toxicol. 24, 111–127 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Desaulniers, D. et al. Effects of mixtures of polychlorinated biphenyls, methylmercury, and organochlorine pesticides on hepatic DNA methylation in prepubertal female Sprague-Dawley rats. Int. J. Toxicol. 28, 294–307 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Shimada, M. et al. Gene expression profiles in the brain of the neonate mouse perinatally exposed to methylmercury and/or polychlorinated biphenyls. Arch. Toxicol. 84, 271–286 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Walker, D. M. & Gore, A. C. in Endocrine-Disrupting Chemicals: From Basic Research to Clinical Practice Ch. 4 (ed. Gore, A. C.) 63–109 (Humana Press, New Jersey, 2007).

    Book  Google Scholar 

  79. Qiu, J. Epigenetics: unfinished symphony. Nature 441, 143–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Kavlock, R. J. et al. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ. Health Perspect. 104 (Suppl. 4), 715–740 (1996).

    PubMed  PubMed Central  Google Scholar 

  81. Bowler, P. J. The changing meaning of “evolution”. J. Hist. Ideas 36, 95–114 (1975).

    Article  CAS  PubMed  Google Scholar 

  82. Gorski, R. A., Harlan, R. E., Jacobson, C. D., Shryne, J. E. & Southam, A. M. Evidence for the existence of a sexually dimorphic nucleus in the preoptic area of the rat. J. Comp. Neurol. 193, 529–539 (1980).

    Article  CAS  PubMed  Google Scholar 

  83. Simerly, R. B., Swanson, L. W. & Gorski, R. A. The distribution of monoaminergic cells and fibers in a periventricular preoptic nucleus involved in the control of gonadotropin release: immunohistochemical evidence for a dopaminergic sexual dimorphism. Brain Res. 330, 55–64 (1985).

    Article  CAS  PubMed  Google Scholar 

  84. Ryan, B. C., Hotchkiss, A. K., Crofton, K. M. & Gray, L. E. Jr. In utero and lactational exposure to bisphenol A, in contrast to ethinyl estradiol, does not alter sexually dimorphic behavior, puberty, fertility, and anatomy of female LE rats. Toxicol. Sci. 114, 133–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Myers, J. P. et al. Why public health agencies cannot depend on good laboratory practices as a criterion for selecting data: the case of bisphenol A. Environ. Health Perspect. 117, 309–315 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to David Crews for helpful discussions and comments on this manuscript. Belinda Lehmkuhle provided expert assistance with the figures. Work described in this article was supported by NIH 1RC1 ES018139.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to researching data for the article, a substantial contribution to discussion of the content, and to writing the article and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Andrea C. Gore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, D., Gore, A. Transgenerational neuroendocrine disruption of reproduction. Nat Rev Endocrinol 7, 197–207 (2011). https://doi.org/10.1038/nrendo.2010.215

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing