Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diagnosis and treatment of apolipoprotein B dyslipoproteinemias

Abstract

Conventionally, atherogenic dyslipidemias have been defined by elevated levels of triglyceride and/or LDL cholesterol. However, cholesterol and triglycerides are not metabolically and physically independent entities. Rather, they are constituents of the atherogenic apolipoprotein B (apoB) particles, which differ in their origin and their metabolic function. Moreover, the risk of vascular disease is not related to the plasma concentration of cholesterol or triglyceride per se, but to the number, composition and size of the apoB particles, within which the cholesterol and triglycerides are contained. After all, the entire apoB particle—rather than individual cholesterol or triglyceride molecules—enters and is trapped within the arterial wall, and this particle initiates and sustains the process that results in atherosclerosis. Accordingly, we suggest a change of name and focus from dyslipidemias to dyslipoproteinemias. Virtually all the atherogenic apoB dyslipoproteinemias can be specifically identified on the basis of plasma levels of cholesterol, triglyceride and apoB. Not only does this enable an accurate diagnosis in the individual, but the major familial dyslipoproteinemias can be identified as well. Here, we review the diagnostic algorithm for apoB dyslipoproteinemias and provide, for the first time, a treatment plan on the basis of a reduction of atherogenic lipoprotein particles rather than plasma lipids.

Key Points

  • The six major apolipoprotein B (apoB) dyslipoproteinemias can be specifically identified by their levels of total cholesterol, triglycerides and apoB

  • These dyslipoproteinemias can be discriminated owing to differences in the type of the apoB particle, the number of apoB particles and the composition of the apoB particles

  • The characteristic apoB phenotype of the major apoB dyslipoproteinemias is a product of their underlying pathophysiology

  • Atherogenic apoB particles—in particular, remnants and LDL particles—should be the primary target of therapy rather than plasma lipid levels

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three models of apolipoprotein B (apoB) particles.
Figure 2: Chylomicron and chylomicron remnant particles.
Figure 3: VLDL and LDL particles.
Figure 4: Diagnostic algorithm of apolipoprotein B dyslipoproteinemias.

Similar content being viewed by others

References

  1. Fredrickson, D. S., Levy, R. I. & Lees, R. S. Fat transport in lipoproteins—an integrated approach to mechanisms and disorders. N. Engl. J. Med. 276, 34–42 (1967).

    Article  CAS  PubMed  Google Scholar 

  2. Fredrickson, D. S., Levy, R. I. & Lees, R. S. Fat transport in lipoproteins—an integrated approach to mechanisms and disorders. N. Engl. J. Med. 276, 94–103 (1967).

    Article  CAS  PubMed  Google Scholar 

  3. Fredrickson, D. S., Levy, R. I. & Lees, R. S. Fat transport in lipoproteins—an integrated approach to mechanisms and disorders. N. Engl. J. Med. 276, 148–156 (1967).

    Article  CAS  PubMed  Google Scholar 

  4. Havel, J. H. & Kane, J. P. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C. R. et al.) 2705–2716 (McGraw-Hill, New York, 2001).

    Google Scholar 

  5. Elovson, J. et al. Plasma very low density lipoproteins contain a single molecule of apolipoprotein B. J. Lipid Res. 29, 1461–1473 (1988).

    CAS  PubMed  Google Scholar 

  6. Cromwell, W. C. & Barringer, T. A. Low-density lipoprotein and apolipoprotein B: clinical use in patients with coronary heart disease. Curr. Cardiol. Rep. 11, 468–475 (2009).

    Article  PubMed  Google Scholar 

  7. Kane, J. P., Hardman, D. A. & Paulus, H. E. Heterogeneity of apolipoprotein B: isolation of a new species from human chylomicrons. Proc. Natl Acad. Sci. USA 77, 2465–2469 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shen, M. M., Krauss, R. M., Lindgren, F. T. & Forte, T. M. Heterogeneity of serum low density lipoproteins in normal human subjects. J. Lipid Res. 22, 236–244 (1981).

    CAS  PubMed  Google Scholar 

  9. Teng, B. et al. Composition and distribution of low density lipoprotein fractions in hyperapobetalipoproteinemia, normolipidemia and familial hypercholesterolemia. Proc. Natl Acad. Sci. USA 80, 6662–6666 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Packard, C. J. & Shepherd, J. Lipoprotein heterogeneity and apolipoprotein B metabolism. Arterioscler. Thromb. Vasc. Biol. 17, 3542–3556 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Durrington, P. N., Bolton, C. H. & Hartog, M. Serum and lipoprotein apolipoprotein B levels in normal subjects and patients with hyperlipoproteinemia. Clin. Chim. Acta 82, 151–160 (1978).

    Article  CAS  PubMed  Google Scholar 

  12. Sniderman, A., Vu, H. & Cianflone, K. The effect of moderate hypertriglyceridemia on the relation of plasma total and LDL apoB levels. Atherosclerosis 89, 109–116 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Garvey, W. T. et al. The effects of insulin resistance and type 2 diabetes mellitus on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes 52, 453–462 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Grundy, S. M. Statin trials and goals of cholesterol-lowering therapy. Circulation 97, 1436–1439 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Teng, B., Sniderman, A. D., Soutar, A. K. & Thompson, G. R. Metabolic basis of hyperapobetalipoproteinemia. Turnover of apolipoprotein B in low density lipoprotein and its precursors and subfractions compared with normal and familial hypercholesterolemia. J. Clin. Invest. 77, 663–672 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mykkänen, L., Kuusisto, J., Haffner, S. M., Laakso, M. & Austin, M. A. LDL size and risk of coronary heart disease in elderly men and women. Arterioscler. Thromb. Vasc. Biol. 19, 2742–2748 (1999).

    Article  PubMed  Google Scholar 

  17. Stampfer, M. J. et al. A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction. JAMA 276, 882–888 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Gardner, C. D., Fortmann, S. P. & Krauss, R. M. Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. JAMA 276, 875–881 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Kamigaki, A. S. et al. Low density lipoprotein particle size and risk of early-onset myocardial infarction in women. Am. J. Epidemiol. 153, 939–945 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Austin, M. A. et al. Low-density lipoprotein particle size, triglycerides, and high-density lipoprotein cholesterol as risk factors for coronary heart disease in older Japanese-American men. Am. J. Cardiol. 86, 412–416 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Lamarche, B. et al. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Québec Cardiovascular Study. Circulation 95, 69–75 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Williams, P. T. et al. Smallest LDL particles are most strongly related to coronary disease progression in men. Arterioscler. Thromb. Vasc. Biol. 23, 314–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Campos, H., Roederer, G. O., Lussier-Cacan, S., Davignon, J. & Krauss, R. M. Predominance of large LDL and reduced HDL2 cholesterol in normolipidemic men with coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 15, 1043–1048 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Campos, H., Moye, L. A., Glasser, S. P., Stampfer, M. J. & Sacks, F. M. Low-density lipoprotein size, pravastatin treatment, and coronary events. JAMA 286, 1468–1474 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Nordestgaard, B. G. & Zilversmit, D. B. Comparison of arterial intimal clearances of LDL from diabetic and nondiabetic cholesterol-fed rabbits. Differences in intimal clearance explained by size differences. Arteriosclerosis 9, 176–183 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Björnheden, T., Babyi, A., Bondjers, G. & Wiklund, O. Accumulation of lipoprotein fractions and subfractions in the arterial wall, determined in an in vitro perfusion system. Atherosclerosis 123, 43–56 (1996).

    Article  PubMed  Google Scholar 

  27. Hurt-Camejo, E. et al. Differential uptake of proteoglycan-selected subfractions of low density lipoprotein by human macrophages. J. Lipid Res. 31, 1387–1398 (1990).

    CAS  PubMed  Google Scholar 

  28. de Graaf, J. et al. Enhanced susceptibility to in vivo oxidation of the dense low density lipoprotein subfraction in healthy subjects. Arterioscler. Thromb. 11, 298–306 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Dejager, S., Bruckert, E. & Chapman, M. J. Dense low density lipoprotein subspecies with diminished oxidative resistance predominate in combined hyperlipidemia. J. Lipid Res. 34, 295–308 (1993).

    CAS  PubMed  Google Scholar 

  30. Sniderman, A. D., Pedersen, T. & Kjekshus, J. Putting low-density lipoprotein at center stage in atherogenesis. Am. J. Cardiol. 79, 64–67 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Tabas, I., Williams, K. J. & Borén, J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116, 1832–1844 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. de Graaf, J., Couture, P. & Sniderman, A. A diagnostic algorithm for the atherogenic apolipoprotein B dyslipoproteinemias. Nat. Clin. Pract. Endocrinol. Metab. 4, 608–618 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Adult Treatment Panel III. Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults final report. Circulation 106, 3143–3421 (2002).

  34. Durrington, P. N. Hyperlipidaemia: Diagnosis and Management (Butterworth-Heinemann, Oxford, 2009).

    Google Scholar 

  35. Davidson, M. H., Toth, P. P. & Maki, K. C. (Eds) Therapeutic Lipidology (Humana Press, Totowa, New Jersey, 2007).

    Google Scholar 

  36. Ballantyne, C. M. Clinical Lipidology (Saunders Elsevier, Philadelphia, PA, 2009).

    Google Scholar 

  37. Sniderman, A. D., Zhang, X. J. & Cianflone, K. Governance of the concentration of plasma LDL: a reevaluation of the LDL receptor paradigm. Atherosclerosis 148, 215–229 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Duez, H. et al. Both intestinal and hepatic lipoprotein production are stimulated by an acute elevation of plasma free fatty acids in humans. Circulation 117, 2369–2376 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Lewis, G. F. Fatty acid regulation of very low density lipoprotein production. Curr. Opin. Lipidol. 8, 146–153 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Sniderman, A. D. & Cianflone, K. Substrate delivery as a determinant of hepatic apoB secretion. Arterioscler. Thromb. 13, 629–636 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Barter, P. J. et al. ApoB versus cholesterol in estimating cardiovascular risk and in guiding therapy: report of the thirty-person/ten-country panel. J. Intern. Med. 259, 247–258 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Goldberg, I. J. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J. Lipid Res. 37, 693–707 (1996).

    CAS  PubMed  Google Scholar 

  43. Ewald, N., Hardt, P. D. & Kloer, H. U. Severe hypertriglyceridemia and pancreatitis: presentation and management. Curr. Opin. Lipidol. 20, 497–504 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Borba, E. F., Bonfá, E., Vinagre, C. G., Ramires, J. A. & Maranhã, R. C. Chylomicron metabolism is markedly altered in systemic lupus erythematosus. Arthritis Rheum. 43, 1033–1040 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Yeh, J. H., Chen, J. H. & Chiu, H. C. Plasmapheresis for hyperlipidemic pancreatitis. J. Clin. Apher. 18, 181–185 (2003).

    Article  PubMed  Google Scholar 

  46. Shirai, K. et al. Type 1 hyperlipoproteinemia caused by lipoprotein lipase defect in lipid-interface recognition was relieved by administration of medium-chain triglyceride. Metabolism 41, 1161–1164 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Rouis, M. et al. Therapeutic response to medium-chain triglycerides and omega-3 fatty acids in a patient with the familial chylomicronemia syndrome. Arterioscler. Thromb. Vasc. Biol. 17, 1400–1406 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Sullivan, D. R., Sanders, T. A., Trayner, I. M. & Thompson, G. R. Paradoxical elevation of LDL apoprotein B levels in hypertriglyceridaemic patients and normal subjects ingesting fish oil. Atherosclerosis 61, 129–134 (1986).

    Article  CAS  PubMed  Google Scholar 

  49. Cater, N. B., Heller, H. J. & Denke, M. A. Comparison of the effects of medium-chain triacylglycerols, palm oil, and high oleic acid sunflower oil on plasma triacylglycerol fatty acids and lipid and lipoprotein concentrations in humans. Am. J. Clin. Nutr. 65, 41–45 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Tsuang, W., Navaneethan, U., Ruiz, L. Palascak, J. B. & Gelrud, A. Hypertriglyceridemic pancreatitis: presentation and management. Am. J. Gastroenterol. 104, 984–991 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Marcovina, S. M. et al. International Federation of Clinical Chemistry standardization project for measurements of apolipoproteins A-I and B. IV. Comparability of apolipoprotein B values by use of International Reference Material. Clin. Chem. 40, 586–592 (1994).

    CAS  PubMed  Google Scholar 

  52. Blom, D. J., O'Neill, F. H. & Marais, A. D. Screening for dysbetalipoproteinemia by plasma cholesterol and apolipoprotein B concentrations. Clin. Chem. 51, 904–907 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Sniderman, A. et al. Diagnosis of type III hyperlipoproteinemia from plasma total cholesterol, triglyceride, and apolipoprotein B. J. Clin. Lipidol. 1, 256–263 (2007).

    Article  PubMed  Google Scholar 

  54. Mahley, R. W., Huang, Y. & Rall, S. C. Jr. Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia). Questions, quandries and paradoxes. J. Lipid Res. 40, 1933–1949 (1999).

    CAS  PubMed  Google Scholar 

  55. Cohen, J. C., Vega, G. L. & Grundy, S. M. Hepatic lipase: new insights from genetic and metabolic studies. Curr. Opin. Lipidol. 10, 259–267 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Morganroth, J., Levy, R. I. & Fredrickson, D. S. The biochemical, clinical and genetic features of type III hyperlipoproteinemia. Ann. Intern. Med. 82, 158–174 (1975).

    Article  CAS  PubMed  Google Scholar 

  57. Blom, D. J., Byrnes, P., Jones, S. & Marais, A. D. Dysbetalipoproteinemia—clinical and pathophysiological features. S. Afr. Med. J. 92, 892–897 (2002).

    CAS  PubMed  Google Scholar 

  58. Abbott, W. G. et al. Effect of a high-carbohydrate, low-saturated-fat diet on apolipoprotein B and triglyceride metabolism in Pima Indians. J. Clin. Invest. 86, 642–650 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Melish, J., Le, N. A., Ginsberg, H., Steinberg, D. & Brown, W. V. Dissociation of apoprotein B and triglyceride production in very low-density lipoproteins. Am. J. Physiol. 239, E354–E362 (1980).

    CAS  PubMed  Google Scholar 

  60. Brunzell, J. D. et al. Plasma lipoproteins in familial combined hyperlipidaemia and monogenic hypertriglyceridaemia. J. Lipid Res. 24, 147–155 (1983).

    CAS  PubMed  Google Scholar 

  61. Julien, P. et al. Dyslipidemias associated with heterozygous lipoprotein lipase mutations in the French-Canadian population. Hum. Mutat. Suppl. 1, S148–S153 (1998).

    Article  Google Scholar 

  62. Keech, A. et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366, 1849–1861 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. The ACCORD Study Group. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. doi:10.1056/NEJMoa1001282.

  64. Hogue, J. C. et al. Differential effect of fenofibrate and atovastatin on in vivo kinetics of apolipoproteins B-100 and B-48 in subjects with type 2 diabetes mellitus with marked hypertriglyceridemia. Metabolism 57, 246–254 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Goldstein, J. L. & Brown, M. S. in The Metabolic Basis of Inherited Disease (eds Scriver, C. R. et al.) 1210–1250 (McGraw-Hill Information Services Co., New York, 1989).

    Google Scholar 

  66. Soria, L. F. et al. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc. Natl Acad. Sci. USA 86, 587–591 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gaw, A. et al. Overproduction of small very low density lipoproteins (Sf 20–60) in moderate hypercholesterolemia: relationships between apolipoprotein B kinetics and plasma lipoproteins. J. Lipid Res. 36, 158–171 (1995).

    CAS  PubMed  Google Scholar 

  68. Sniderman, A. D. Differential response of cholesterol and particle measures of atherogenic lipoproteins to LDL-lowering therapy: implications for clinical practice. J. Clin. Lipidol. 2, 36–42 (2008).

    Article  PubMed  Google Scholar 

  69. Ladenson, P. W. et al. Use of the thyroid hormone analog eprotirome in statin-treated dyslipidemia. N. Engl. J. Med. 362, 906–916 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Cortner, J., Bennett, M. J., Le, N. A. & Coates, P. M. The effect of lovastatin on very-low-density lipoprotein B production by the liver in familial combined hyperlipidemia. J. Inherit. Metab. Dis. 16, 127–134 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Veerkamp, M. J., de Graaf, J., Hendriks, J. C., Demacker, P. N. & Stalenhoef, A. F. Nomogram to diagnose familial combined hyperlipidemia based on results of a 5-year follow-up study. Circulation 109, 2980–2985 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Wiesbauer, F. et al. Familial-combined hyperlipidaemia in very young myocardial infarction survivors (< or = 40 years of age). Eur. Heart J. 30, 1073–1079 (2009).

    Article  PubMed  Google Scholar 

  73. Sniderman, A. D., Scantlebury, T, & Cianflone, K. Hypertriglyceridemic hyperapoB: the unappreciated atherogenic dyslipoproteinemia in type 2 diabetes mellitus. Ann. Intern. Med. 135, 447–459 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Sniderman, A. D. in The Therapy of Atherogenic Dyslipoproteinaemias in Therapeutic Strategies in Lipid Disorders (ed. Tonkin, A. M.) 43–57 (Clinical Publishing, Oxford, 2009).

    Google Scholar 

  75. Gotto, A. M. Jr et al. Relation between baseline and on-treatment lipid parameters and first acute major coronary events in the Air force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Circulation 101, 477–484 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. van Lennep, J. E. et al. Apolipoprotein concentrations during treatment and recurrent coronary artery disease events. Arterioscler. Thromb. Vasc. Biol. 20, 2408–2413 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Simes, R. J. et al. Relationship between lipid levels and clinical outcomes in the long-term intervention with pravastatin in the ischemic disease (LIPID) trial. To what extent is the reduction in coronary events with pravastatin explained by on-study lipid levels? Circulation 105, 1162–1169 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Otvos, J. D. et al. Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Desnity Lipoprotein Intervention Trial. Circulation 113, 1553–1555 (2006).

    Article  CAS  Google Scholar 

  79. Hayward, R. A., Hofer T. P. & Vijan, S. Narrative Review: Lack of evidence for recommended low-density lipoprotein treatment targets: a solvable problem. Ann. Intern. Med. 145, 520–530 (2006).

    Article  PubMed  Google Scholar 

  80. Pedersen, T. R. et al. Lipoprotein changes and reduction in the incidence of major coronary heart disease events in the Scandinavian Simvastatin Survival Study (4S). Circulation 97, 1453–1460 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Kastelein, J. J. et al. Lipids, apolipoproteins, and their ratios in relation to cardiovascular events with statin treatment. Circulation 117, 3002–3009 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Ray, K. K. et al. Prognostic utility of apoB/AI, total cholesterol/HDL, non-HDL cholesterol, or hs-CRP as predictors of clinical risk in patients receiving statin therapy after acute coronary syndromes: results from PROVE IT-TIMI 22. Arterioscler. Thromb. Vasc. Biol. 29, 424–430 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Brunzell, J. D. et al. Lipoprotein management in patients with cardiometabolic risk. Consensus statement from the American Diabetes Association and the American College of Cardiology Foundation. Diabetes Care 31, 811–822 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Contois, J. H. et al. Apolipoprotein B and cardiovascular disease risk: position statement from the AACC Lipoproteins and Vascular Diseases Division Working Groups on Best Practices. Clin. Chem. 55, 407–419 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Genest, J. et al. 2009 Canadian Cardiovascular Society/Canadian guidelines for the diagnosis and treatment of dyslipidemia and prevention of cardiovascular disease in the adult—2009 recommendations. Can. J. Cardiol. 25, 567–579 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sibal, L., Neely, R. D., Jones, A. & Home, P. D. Friedewald equation underestimates low-density lipoprotein cholesterol at low concentrations in young people with and without type 1 diabetes. Diabet. Med. 27, 37–45 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Grundy, S. M. et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines. J. Am. Coll. Cardiol. 44, 720–732 (2004).

    Article  PubMed  Google Scholar 

  88. Contois, J. H. et al. Reference intervals for plasma apolipoprotein B determined with a standardized commercial immunoturbidimetric assay: results from the Framingham Offspring Study. Clin. Chem. 42, 515–523 (1996).

    CAS  PubMed  Google Scholar 

  89. Bachorik, P. S., Lovejoy, K. L., Carroll, M. D. & Johnson, C. L. Apolipoprotein B and A1 distributions in the United States, 1988–1991: results of the National Health and Nutrition Examination Survey III (NHANES III). Clin. Chem. 43, 2364–2378 (1997).

    CAS  PubMed  Google Scholar 

  90. Sniderman, A. D. & Kiss, R. S. The strengths and limitations of the apoB/apoA-1 ratio to predict the risk of vascular disease: a Hegelian analysis. Curr. Atheroscler. Rep. 9, 261–265 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Sniderman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sniderman, A., Couture, P. & de Graaf, J. Diagnosis and treatment of apolipoprotein B dyslipoproteinemias. Nat Rev Endocrinol 6, 335–346 (2010). https://doi.org/10.1038/nrendo.2010.50

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.50

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing