Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stem cell therapy for type 1 diabetes mellitus

Abstract

The use of stem cells in regenerative medicine holds great promise for the cure of many diseases, including type 1 diabetes mellitus (T1DM). Any potential stem-cell-based cure for T1DM should address the need for β-cell replacement, as well as control of the autoimmune response to cells which express insulin. The ex vivo generation of β cells suitable for transplantation to reconstitute a functional β-cell mass has used pluripotent cells from diverse sources, as well as organ-specific facultative progenitor cells from the liver and the pancreas. The most effective protocols to date have produced cells that express insulin and have molecular characteristics that closely resemble bona fide insulin-secreting cells; however, these cells are often unresponsive to glucose, a characteristic that should be addressed in future protocols. The use of mesenchymal stromal cells or umbilical cord blood to modulate the immune response is already in clinical trials; however, definitive results are still pending. This Review focuses on current strategies to obtain cells which express insulin from different progenitor sources and highlights the main pathways and genes involved, as well as the different approaches for the modulation of the immune response in patients with T1DM.

Key Points

  • A definitive cure for type 1 diabetes mellitus (T1DM) will address both the β-cell deficit and the autoimmune response to cells that express insulin

  • Cells that express insulin have been obtained through differentiation of stem cells of either embryonic or adult origin, as well as genetically reprogrammed and transdifferentiated cells

  • The most effective differentiation protocols for the derivation of cells that express insulin recapitulate normal embryonic development

  • Knowledge of the transcription factors that regulate development of the embryonic pancreas has aided the evaluation of different strategies used to obtain β cells

  • Clinical trials have used bone marrow-derived mesenchymal stromal cells and umbilical cord blood cells to suppress the immune response in patients with T1DM

  • Even though challenges remain, the possibility of an effective stem-cell therapy for T1DM is a realistic goal for the foreseeable future

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of insulin-expressing cells from pluripotent cells.
Figure 2: Strategies to obtain β cells from organ-specific stem or progenitor cells.

References

  1. Atkinson, M. A. & Eisenbarth, G. S. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 358, 221–229 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Nathan, D. M. Finding new treatments for diabetes–how many, how fast, how good? N. Engl. J Med. 356, 437–440 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Nathan, D. M. Long-term complications of diabetes mellitus. N. Engl. J. Med. 328, 1676–1685 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Shapiro, A. M. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Ryan, E. A. et al. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes 50, 710–719 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Ricordi, C. & Strom, T. B. Clinical islet transplantation: advances and immunological challenges. Nat. Rev. Immunol. 4, 259–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Sibley, R. K., Sutherland, D. E., Goetz, F. & Michael, A. F. Recurrent diabetes mellitus in the pancreas iso- and allograft. A light and electron microscopic and immunohistochemical analysis of four cases. Lab. Invest. 53, 132–144 (1985).

    CAS  PubMed  Google Scholar 

  8. Alarcón, C., Serna, J., Pérez-Villamil, B. & de Pablo, F. Synthesis and differentially regulated processing of proinsulin in developing chick pancreas, liver and neuroretina. FEBS Lett. 436, 361–366 (1998).

    Article  PubMed  Google Scholar 

  9. Devaskar, S. U. et al. Insulin gene expression and insulin synthesis in mammalian neuronal cells. J. Biol. Chem. 269, 8445–8454 (1994).

    CAS  PubMed  Google Scholar 

  10. Hanahan, D. Peripheral-antigen-expressing cells in thymic medulla: factors in self-tolerance and autoimmunity. Curr. Opin. Immunol. 10, 656–662 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Halban, P. A., Kahn, S. E., Lernmark, A. & Rhodes, C. J. Gene and cell-replacement therapy in the treatment of type 1 diabetes: how high must the standards be set? Diabetes 50, 2181–2191 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. McLean, A. B. et al. Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells 25, 29–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Gadue, P., Huber, T. L., Paddison, P. J. & Keller, G. M. Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc. Natl Acad. Sci. USA 103, 16806–16811 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yasunaga, M. et al. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat. Biotechnol. 23, 1542–1550 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Tada, S. et al. Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 132, 4363–4374 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Kubo, A. et al. Development of definitive endoderm from embryonic stem cells in culture. Development 131, 1651–1662 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. D'Amour, K. A. et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23, 1534–1541 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Asahina, K. et al. Expression of the liver-specific gene Cyp7a1 reveals hepatic differentiation in embryoid bodies derived from mouse embryonic stem cells. Genes Cells 9, 1297–1308 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Haegel, H. et al. Lack of beta-catenin affects mouse development at gastrulation. Development 121, 3529–3537 (1995).

    CAS  PubMed  Google Scholar 

  20. Liu, P. et al. Requirement for Wnt3 in vertebrate axis formation. Nat. Genet. 22, 361–365 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Conlon, F. L. et al. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120, 1919–1928 (1994).

    CAS  PubMed  Google Scholar 

  22. Brennan, J. et al. Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411, 965–969 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Borowiak, M. et al. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 4, 348–358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lau, J., Kawahira, H. & Hebrok, M. Hedgehog signaling in pancreas development and disease. Cell Mol. Life Sci. 63, 642–652 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Stafford, D., Hornbruch, A., Mueller, P. R. & Prince, V. E. A conserved role for retinoid signaling in vertebrate pancreas development. Dev. Genes Evol. 214, 432–441 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, S. et al. A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat. Chem. Biol. 5, 258–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Kroon, E. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26, 443–452 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. D'Amour, K. A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol. 24, 1392–1401 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Jiang, J. et al. Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25, 1940–1953 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Eshpeter, A. et al. In vivo characterization of transplanted human embryonic stem cell-derived pancreatic endocrine islet cells. Cell Prolif. 41, 843–858 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shiraki, N. et al. Guided differentiation of embryonic stem cells into Pdx1-expressing regional-specific definitive endoderm. Stem Cells 26, 874–885 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Naujok, O. et al. Changes in gene expression and morphology of mouse embryonic stem cells on differentiation into insulin-producing cells in vitro and in vivo. Diabetes Metab. Res. Rev. 25, 464–476 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. Induced pluripotent stem cells generated without viral integration. Science 322, 945–949 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huangfu, D. et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat. Biotechnol. 26, 1269–1275 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T. & Yamanaka, S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949–953 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Giorgetti, A. et al. Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell 5, 353–357 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Haase, A. et al. Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell 5, 434–441 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Tateishi, K. et al. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J. Biol. Chem. 283, 31601–31607 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Maehr, R. et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc. Natl Acad. Sci. USA 106, 15768–15773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chao, K. C., Chao, K. F., Fu, Y. S. & Liu, S. H. Islet-like clusters derived from mesenchymal stem cells in Wharton's Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One 3, e1451 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Denner, L. et al. Directed engineering of umbilical cord blood stem cells to produce C-peptide and insulin. Cell Prolif. 40, 367–380 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hess, D. et al. Bone marrow-derived stem cells initiate pancreatic regeneration. Nat. Biotechnol. 21, 763–770 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Oh, S. H. et al. Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab. Invest. 84, 607–617 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Ianus, A., Holz, G. G., Theise, N. D. & Hussain, M. A. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J. Clin. Invest. 111, 843–850 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boumaza, I. et al. Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J. Autoimmun. 32, 33–42 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Lee, R. H. et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc. Natl Acad. Sci. USA 103, 17438–17443 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sordi, V. et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106, 419–427 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Estrada, E. J. et al. Combined treatment of intrapancreatic autologous bone marrow stem cells and hyperbaric oxygen in type 2 diabetes mellitus. Cell Transplant. 17, 1295–1304 (2008).

    Article  PubMed  Google Scholar 

  50. Lee, R. H. et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5, 54–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wisniewski, H. G. & Vilcek, J. Cytokine-induced gene expression at the crossroads of innate immunity, inflammation and fertility: TSG-6 and PTX3/TSG-14. Cytokine Growth Factor Rev. 15, 129–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Wisniewski, H. G. et al. TNF/IL-1-inducible protein TSG-6 potentiates plasmin inhibition by inter-alpha-inhibitor and exerts a strong anti-inflammatory effect in vivo. J. Immunol. 156, 1609–1615 (1996).

    CAS  PubMed  Google Scholar 

  53. Milner, C. M., Higman, V. A. & Day, A. J. TSG-6: a pluripotent inflammatory mediator? Biochem. Soc. Trans. 34, 446–450 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Getting, S. J. et al. The link module from human TSG-6 inhibits neutrophil migration in a hyaluronan- and inter-alpha-inhibitor-independent manner. J. Biol. Chem. 277, 51068–51076 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Bonner-Weir, S. & Weir, G. C. New sources of pancreatic beta-cells. Nat. Biotechnol. 23, 857–861 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Suzuki, A., Nakauchi, H. & Taniguchi, H. Prospective isolation of multipotent pancreatic progenitors using flow-cytometric cell sorting. Diabetes 53, 2143–2152 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Seaberg, R. M. et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat. Biotechnol. 22, 1115–1124 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Ramiya, V. K. et al. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat. Med. 6, 278–282 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Bonner-Weir, S. & Sharma, A. Pancreatic stem cells. J. Pathol. 197, 519–526 (2002).

    Article  PubMed  Google Scholar 

  60. Breault, D. T. et al. Generation of mTert-GFP mice as a model to identify and study tissue progenitor cells. Proc. Natl Acad. Sci. USA 105, 10420–10425 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Carlone, D. L., Bonner-Weir, S. & Breault, D. T. Identification of putative pancreatic progenitor/stem cells using mTert-GFP mice. 5th ISSCR Annual Meeting 60 (2007).

  62. Duncan, A. W., Dorrell, C. & Grompe, M. Stem cells and liver regeneration. Gastroenterology 137, 466–481 (2009).

    Article  PubMed  Google Scholar 

  63. Day, R. M. Epithelial stem cells and tissue engineered intestine. Curr. Stem Cell Res. Ther. 1, 113–120 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Sharma, A. et al. The homeodomain protein IDX-1 increases after an early burst of proliferation during pancreatic regeneration. Diabetes 48, 507–513 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Inada, A. et al. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc. Natl Acad. Sci. USA 105, 19915–19919 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu, X. et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132, 197–207 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Kikugawa, R. et al. Differentiation of COPAS-sorted non-endocrine pancreatic cells into insulin-positive cells in the mouse. Diabetologia 52, 645–652 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bulotta, A. et al. Cultured pancreatic ductal cells undergo cell cycle re-distribution and beta-cell-like differentiation in response to glucagon-like peptide-1. J. Mol. Endocrinol. 29, 347–360 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Zhou, J., Wang, X., Pineyro, M. A. & Egan, J. M. Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon- and insulin-producing cells. Diabetes 48, 2358–2366 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Zhou, J., Pineyro, M. A., Wang, X., Doyle, M. E. & Egan, J. M. Exendin-4 differentiation of a human pancreatic duct cell line into endocrine cells: involvement of PDX-1 and HNF3beta transcription factors. J. Cell. Physiol. 192, 304–314 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Mashima, H., Shibata, H., Mine, T. & Kojima, I. Formation of insulin-producing cells from pancreatic acinar AR42J cells by hepatocyte growth factor. Endocrinology 137, 3969–3976 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Mashima, H. et al. Betacellulin and activin A coordinately convert amylase-secreting pancreatic AR42J cells into insulin-secreting cells. J. Clin. Invest. 97, 1647–1654 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hardikar, A. A., Marcus-Samuels, B., Geras-Raaka, E., Raaka, B. M. & Gershengorn, M. C. Human pancreatic precursor cells secrete FGF2 to stimulate clustering into hormone-expressing islet-like cell aggregates. Proc. Natl Acad. Sci. USA 100, 7117–7122 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Noguchi, H., Bonner-Weir, S., Wei, F. Y., Matsushita, M. & Matsumoto, S. BETA2/NeuroD protein can be transduced into cells due to an arginine- and lysine-rich sequence. Diabetes 54, 2859–2866 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Noguchi, H., Kaneto, H., Weir, G. C. & Bonner-Weir, S. PDX-1 protein containing its own antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells. Diabetes 52, 1732–1737 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Noguchi, H. et al. Induction of pancreatic stem/progenitor cells into insulin-producing cells by adenoviral-mediated gene transfer technology. Cell Transplant. 15, 929–938 (2006).

    Article  PubMed  Google Scholar 

  77. Bonner-Weir, S. et al. In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl Acad. Sci. USA 97, 7999–8004 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gao, R., Ustinov, J., Korsgren, O. & Otonkoski, T. In vitro neogenesis of human islets reflects the plasticity of differentiated human pancreatic cells. Diabetologia 48, 2296–2304 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Suarez-Pinzon, W. L., Lakey, J. R. & Rabinovitch, A. Combination therapy with glucagon-like peptide-1 and gastrin induces beta-cell neogenesis from pancreatic duct cells in human islets transplanted in immunodeficient diabetic mice. Cell Transplant. 17, 631–640 (2008).

    Article  PubMed  Google Scholar 

  80. Suarez-Pinzon, W. L., Lakey, J. R., Brand, S. J. & Rabinovitch, A. Combination therapy with epidermal growth factor and gastrin induces neogenesis of human islet {beta}-cells from pancreatic duct cells and an increase in functional {beta}-cell mass. J. Clin. Endocrinol. Metab. 90, 3401–3409 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Hao, E. et al. Beta-cell differentiation from nonendocrine epithelial cells of the adult human pancreas. Nat. Med. 12, 310–316 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Yatoh, S. et al. Differentiation of affinity-purified human pancreatic duct cells to beta-cells. Diabetes 56, 1802–1809 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Gu, G., Dubauskaite, J. & Melton, D. A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457 (2002).

    CAS  PubMed  Google Scholar 

  84. Rooman, I. et al. Expression of the Notch signaling pathway and effect on exocrine cell proliferation in adult rat pancreas. Am. J. Pathol. 169, 1206–1214 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hall, P. A. & Lemoine, N. R. Rapid acinar to ductal transdifferentiation in cultured human exocrine pancreas. J. Pathol. 166, 97–103 (1992).

    Article  CAS  PubMed  Google Scholar 

  86. Baeyens, L. et al. In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia 48, 49–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Means, A. L. et al. Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates. Development 132, 3767–3776 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Minami, K. et al. Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc. Natl Acad. Sci. USA 102, 15116–15121 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J. & Melton, D. A. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455, 627–632 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zaret, K. S. & Grompe, M. Generation and regeneration of cells of the liver and pancreas. Science 322, 1490–1494 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lemaigre, F. & Zaret, K. S. Liver development update: new embryo models, cell lineage control, and morphogenesis. Curr. Opin. Genet. Dev. 14, 582–590 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Wilson, M. E., Scheel, D. & German, M. S. Gene expression cascades in pancreatic development. Mech. Dev. 120, 65–80 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Nagaya, M., Katsuta, H., Kaneto, H., Bonner-Weir, S. & Weir, G. C. Adult mouse intrahepatic biliary epithelial cells induced in vitro to become insulin-producing cells. J. Endocrinol. 201, 37–47 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Kojima, H. et al. NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat. Med. 9, 596–603 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Ferber, S. et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat. Med. 6, 568–572 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Ber, I. et al. Functional, persistent, and extended liver to pancreas transdifferentiation. J. Biol. Chem. 278, 31950–31957 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Sapir, T. et al. Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells. Proc. Natl Acad. Sci. USA 102, 7964–7969 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zalzman, M., Anker-Kitai, L. & Efrat, S. Differentiation of human liver-derived, insulin-producing cells toward the beta-cell phenotype. Diabetes 54, 2568–2575 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Zalzman, M. et al. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells. Proc. Natl Acad. Sci. USA 100, 7253–7258 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Keymeulen, B. et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N. Engl. J. Med. 352, 2598–2608 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Herold, K. C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Raz, I. et al. Beta-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial. Lancet 358, 1749–1753 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Saudek, F. et al. Polyclonal anti-T-cell therapy for type 1 diabetes mellitus of recent onset. Rev. Diabet. Stud. 1, 80–88 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Trounson, A. New perspectives in human stem cell therapeutic research. BMC Med. 7, 29 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Haller, M. J. et al. Autologous umbilical cord blood infusion for type 1 diabetes. Exp. Hematol. 36, 710–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Voltarelli, J. C. et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 297, 1568–1576 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Couri, C. E. et al. C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 301, 1573–1579 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Nathan, D. M. Progress in diabetes research--what's next. JAMA 301, 1599–1601 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Viener, H. B. T. et al. Changes in regulatory T cells following autologous umbilical cord blood transfusion in children with type 1 diabetes. In Diabetes 67th American Diabetes Association Scientific Sessions, A82 (2007).

  110. Haller, M. V. H. et al. Insulin requirements, HbA1c and stimulated C-peptide following autologous umbilical cord blood transfusion in children with type 1 diabetes. In Diabetes 67th American Diabetes Association Scientific Sessions A82 (2007).

  111. Ende, N., Chen, R. & Reddi, A. S. Effect of human umbilical cord blood cells on glycemia and insulitis in type 1 diabetic mice. Biochem. Biophys. Res. Commun. 325, 665–669 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Han, P., Hodge, G., Story, C. & Xu, X. Phenotypic analysis of functional T-lymphocyte subtypes and natural killer cells in human cord blood: relevance to umbilical cord blood transplantation. Br. J. Haematol. 89, 733–740 (1995).

    Article  CAS  PubMed  Google Scholar 

  113. Fruchtman, S. Stem cell transplantation. Mt Sinai. J. Med. 70, 166–170 (2003).

    PubMed  Google Scholar 

  114. Kawamura, T. et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460, 1140–1144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Belmonte, J. C., Ellis, J., Hochedlinger, K. & Yamanaka, S. Induced pluripotent stem cells and reprogramming: seeing the science through the hype. Nat. Rev. Genet. 10, 878–883 (2009).

    Article  CAS  Google Scholar 

  116. Gangemi, A. et al. Islet transplantation for brittle type 1 diabetes: the UIC protocol. Am. J. Transplant. 8, 1250–1261 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Shapiro, A. M. et al. International trial of the Edmonton protocol for islet transplantation. N. Engl. J. Med. 355, 1318–1330 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Lakey, J. R., Mirbolooki, M. & Shapiro, A. M. Current status of clinical islet cell transplantation. Methods Mol. Biol. 333, 47–104 (2006).

    PubMed  Google Scholar 

  119. Tam, P. P., Kanai-Azuma, M. & Kanai, Y. Early endoderm development in vertebrates: lineage differentiation and morphogenetic function. Curr. Opin. Genet. Dev. 13, 393–400 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Xanthos, J. B., Kofron, M., Wylie, C. & Heasman, J. Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis. Development 128, 167–180 (2001).

    CAS  PubMed  Google Scholar 

  121. Kimelman, D. & Griffin, K. J. Vertebrate mesendoderm induction and patterning. Curr. Opin. Genet. Dev. 10, 350–356 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Zorn, A. M., Butler, K. & Gurdon, J. B. Anterior endomesoderm specification in Xenopus by Wnt/beta-catenin and TGF-beta signalling pathways. Dev. Biol. 209, 282–297 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Stainier, D. Y. A glimpse into the molecular entrails of endoderm formation. Genes Dev. 16, 893–907 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Xiao, L., Yuan, X. & Sharkis, S. J. Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells 24, 1476–1486 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Heller, R. S. et al. Expression of Wnt, Frizzled, sFRP, and DKK genes in adult human pancreas. Gene Expr. 11, 141–147 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Heller, R. S. et al. Expression patterns of Wnts, Frizzleds, sFRPs, and misexpression in transgenic mice suggesting a role for Wnts in pancreas and foregut pattern formation. Dev. Dyn. 225, 260–270 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Deutsch, G., Jung, J., Zheng, M., Lóra, J. & Zaret, K. S. A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128, 871–881 (2001).

    CAS  PubMed  Google Scholar 

  128. Kim, S. K. & Melton, D. A. Pancreas development is promoted by cyclopamine, a hedgehog signaling inhibitor. Proc. Natl Acad. Sci. USA 95, 13036–13041 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Norgaard, G. A., Jensen, J. N. & Jensen, J. FGF10 signaling maintains the pancreatic progenitor cell state revealing a novel role of Notch in organ development. Dev. Biol. 264, 323–338 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Hart, A., Papadopoulou, S. & Edlund, H. Fgf10 maintains notch activation, stimulates proliferation, and blocks differentiation of pancreatic epithelial cells. Dev. Dyn. 228, 185–193 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Hald, J. et al. Activated Notch1 prevents differentiation of pancreatic acinar cells and attenuate endocrine development. Dev. Biol. 260, 426–437 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Apelqvist, A. et al. Notch signalling controls pancreatic cell differentiation. Nature 400, 877–881 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Jensen, J. Gene regulatory factors in pancreatic development. Dev. Dyn. 229, 176–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Gradwohl, G., Dierich, A., LeMeur, M. & Guillemot, F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl Acad. Sci. USA 97, 1607–1611 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Heremans, Y. et al. Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J. Cell. Biol. 159, 303–312 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Offield, M. F. et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983–995 (1996).

    CAS  PubMed  Google Scholar 

  137. Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371, 606–609 (1994).

    Article  CAS  PubMed  Google Scholar 

  138. Sharma, A. & Stein, R. Glucose-induced transcription of the insulin gene is mediated by factors required for beta-cell-type-specific expression. Mol. Cell. Biol. 14, 871–879 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Waeber, G., Thompson, N., Nicod, P. & Bonny, C. Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor. Mol. Endocrinol. 10, 1327–1334 (1996).

    CAS  PubMed  Google Scholar 

  140. Ahlgren, U., Jonsson, J., Jonsson, L., Simu, K. & Edlund, H. Beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev. 12, 1763–1768 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Naya, F. J., Stellrecht, C. M. & Tsai, M. J. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev. 9, 1009–1019 (1995).

    Article  CAS  PubMed  Google Scholar 

  142. Sosa-Pineda, B., Chowdhury, K., Torres, M., Oliver, G. & Gruss, P. The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature 386, 399–402 (1997).

    Article  CAS  PubMed  Google Scholar 

  143. Blyszczuk, P. et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc. Natl Acad. Sci. USA 100, 998–1003 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nishimura, W. et al. A switch from MafB to MafA expression accompanies differentiation to pancreatic beta-cells. Dev. Biol. 293, 526–539 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Aguayo-Mazzucato, C. K. A. et al. Reduced MafA Expression may contribute to the immaturity of neonatal beta cells. Diabetes 68th American Diabetes Association Scientific Sessions 1612 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Bonner-Weir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguayo-Mazzucato, C., Bonner-Weir, S. Stem cell therapy for type 1 diabetes mellitus. Nat Rev Endocrinol 6, 139–148 (2010). https://doi.org/10.1038/nrendo.2009.274

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2009.274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing