Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of oxyntomodulin and peptide tyrosine–tyrosine (PYY) in appetite control

Abstract

Oxyntomodulin and peptide tyrosine–tyrosine (PYY) are released from intestinal enteroendocrine cells in response to a meal. These circulating hormones are considered to be satiety signals, as they have been found to decrease food intake, body weight and adiposity in rodents. Their effect on energy homeostasis is mediated by the hypothalamus and brainstem, and several studies have demonstrated alterations in neuropeptide signaling within the arcuate nucleus. The weight loss that has been observed in animal models after repeated administration of oxyntomodulin and PYY has led to interest in developing these peptides as antiobesity therapies in humans. Indeed, preliminary studies have found that oxyntomodulin or PYY administration reduces food intake and body weight effectively in overweight human volunteers. This research suggests that modulation of these gut hormones could prove to be effective long-term therapies in the quest to combat the obesity epidemic.

Key Points

  • Oxyntomodulin and peptide tyrosine–tyrosine (PYY) are gut peptides that are released postprandially

  • Oxyntomodulin and PYY act as satiety signals via effects on appetite centers such as the hypothalamus and brainstem

  • Exogenous administration of oxyntomodulin or PYY3–36 reduces energy intake, adiposity and body weight in animals

  • Several studies suggest that drug therapy based on these hormones could be an effective treatment for human obesity

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oxyntomodulin and PYY3–36 act as circulating satiety signals
Figure 2: The ARC of the hypothalamus receives and integrates circulating appetite signals

Similar content being viewed by others

References

  1. Stanley S et al. (2005) Hormonal regulation of food intake. Physiol Rev 85: 1131–1158

    Article  CAS  PubMed  Google Scholar 

  2. Tatemoto K and Mutt V (1980) Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature 285: 417–418

    Article  CAS  PubMed  Google Scholar 

  3. Bataille D et al. (1981) Bioactive enteroglucagon (oxyntomodulin): present knowledge on its chemical structure and its biological activities. Peptides 2 (Suppl 2): 41–44

    Article  CAS  PubMed  Google Scholar 

  4. Batterham RL et al. (2003) Inhibition of food intake in obese subjects by peptide YY3–36 . N Engl J Med 349: 941–948

    Article  CAS  PubMed  Google Scholar 

  5. Wynne K et al. (2005) Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes 54: 2390–2395

    Article  CAS  PubMed  Google Scholar 

  6. Strader AD and Woods SC (2005) Gastrointestinal hormones and food intake. Gastroenterology 128: 175–191

    Article  CAS  PubMed  Google Scholar 

  7. Taylor RG et al. (1992) Expression of ileal glucagon and peptide tyrosine–tyrosine genes. Response to inhibition of polyamine synthesis in the presence of massive small-bowel resection. Biochem J 286: 737–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Anini Y et al. (1999) Comparison of the postprandial release of peptide YY and proglucagon-derived peptides in the rat. Pflugers Arch 438: 299–306

    Article  CAS  PubMed  Google Scholar 

  9. Schjoldager BT et al. (1988) Oxyntomodulin: a potential hormone from the distal gut. Pharmacokinetics and effects on gastric acid and insulin secretion in man. Eur J Clin Invest 18: 499–503

    Article  CAS  PubMed  Google Scholar 

  10. Adrian TE et al. (1985) Effect of peptide YY on gastric, pancreatic, and biliary function in humans. Gastroenterology 89: 494–499

    Article  CAS  PubMed  Google Scholar 

  11. Allen JM et al. (1984) Effects of peptide YY and neuropeptide Y on gastric emptying in man. Digestion 30: 255–262

    Article  CAS  PubMed  Google Scholar 

  12. Hoentjen F et al. (2001) Effect of circulating peptide YY on gallbladder emptying in humans. Scand J Gastroenterol 36: 1086–1091

    Article  CAS  PubMed  Google Scholar 

  13. Tang-Christensen M et al. (2001) Glucagon-like peptide containing pathways in the regulation of feeding behaviour. Int J Obes Relat Metab Disord 25 (Suppl 5): S42–S47

    Article  CAS  PubMed  Google Scholar 

  14. Holst JJ (1999) Glucagon-like peptide 1 (GLP-1): an intestinal hormone, signaling nutritional abundance, with an unusual therapeutic potential. Trends Endocrinol Metab 10: 229–235

    Article  CAS  PubMed  Google Scholar 

  15. Baldissera FG and Holst JJ (1984) Glucagon-related peptides in the human gastrointestinal mucosa. Diabetologia 26: 223–228

    Article  CAS  PubMed  Google Scholar 

  16. Kervran A et al. (1987) Distribution of oxyntomodulin and glucagon in the gastrointestinal tract and the plasma of the rat. Endocrinology 121: 704–713

    Article  CAS  PubMed  Google Scholar 

  17. Ghatei MA et al. (1983) Molecular forms of human enteroglucagon in tissue and plasma: plasma responses to nutrient stimuli in health and in disorders of the upper gastrointestinal tract. J Clin Endocrinol Metab 57: 488–495

    Article  CAS  PubMed  Google Scholar 

  18. Le Quellec A et al. (1992) Oxyntomodulin-like immunoreactivity: diurnal profile of a new potential enterogastrone. J Clin Endocrinol Metab 74: 1405–1409

    CAS  PubMed  Google Scholar 

  19. Glover I et al. (1983) Conformational flexibility in a small globular hormone: X-ray analysis of avian pancreatic polypeptide at 0.98-Å resolution. Biopolymers 22: 293–304

    Article  CAS  PubMed  Google Scholar 

  20. Conlon JM (2002) The origin and evolution of peptide YY (PYY) and pancreatic polypeptide (PP). Peptides 23: 269–278

    Article  PubMed  Google Scholar 

  21. Tatemoto K et al. (1982) Neuropeptide Y—a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296: 659–660

    Article  CAS  PubMed  Google Scholar 

  22. Adrian TE et al. (1985) Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 89: 1070–1077

    Article  CAS  PubMed  Google Scholar 

  23. Ekblad E and Sundler F (2002) Distribution of pancreatic polypeptide and peptide YY. Peptides 23: 251–261

    Article  CAS  PubMed  Google Scholar 

  24. Lin HC and Chey WY (2003) Cholecystokinin and peptide YY are released by fat in either proximal or distal small intestine in dogs. Regul Pept 114: 131–135

    Article  CAS  PubMed  Google Scholar 

  25. Feinle-Bisset C et al. (2005) Fat digestion is required for suppression of ghrelin and stimulation of peptide YY and pancreatic polypeptide secretion by intraduodenal lipid. Am J Physiol Endocrinol Metab 289: E948–E953

    Article  CAS  PubMed  Google Scholar 

  26. Fu-Cheng X et al. (1997) Mechanisms of peptide YY release induced by an intraduodenal meal in rats: neural regulation by proximal gut. Pflugers Arch 433: 571–579

    Article  CAS  PubMed  Google Scholar 

  27. Grandt D et al. (1994) Two molecular forms of peptide YY (PYY) are abundant in human blood: characterization of a radioimmunoassay recognizing PYY1–36 and PYY3–36 . Regul Pept 51: 151–159

    Article  CAS  PubMed  Google Scholar 

  28. Mentlein R et al. (1993) Proteolytic processing of neuropeptide Y and peptide YY by dipeptidyl peptidase IV. Regul Pept 49: 133–144

    Article  CAS  PubMed  Google Scholar 

  29. Boonacker E and Van Noorden CJ (2003) The multifunctional or moonlighting protein CD26/DPPIV. Eur J Cell Biol 82: 53–73

    Article  CAS  PubMed  Google Scholar 

  30. Zhu L et al. (2003) The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: in vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1–38). J Biol Chem 278: 22418–22423

    Article  CAS  PubMed  Google Scholar 

  31. Dakin CL et al. (2001) Oxyntomodulin inhibits food intake in the rat. Endocrinology 142: 4244–4250

    Article  CAS  PubMed  Google Scholar 

  32. Dakin CL et al. (2004) Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 145: 2687–2695

    Article  CAS  PubMed  Google Scholar 

  33. Dakin CL et al. (2002) Repeated ICV administration of oxyntomodulin causes a greater reduction in body weight gain than in pair-fed rats. Am J Physiol Endocrinol Metab 283: E1173–E1177

    Article  CAS  PubMed  Google Scholar 

  34. Challis BG et al. (2003) Acute effects of PYY3–36 on food intake and hypothalamic neuropeptide expression in the mouse. Biochem Biophys Res Commun 311: 915–919

    Article  CAS  PubMed  Google Scholar 

  35. Halatchev IG et al. (2004) Peptide YY3–36 inhibits food intake in mice through a melanocortin-4 receptor-independent mechanism. Endocrinology 145: 2585–2590

    Article  CAS  PubMed  Google Scholar 

  36. Martin NM et al. (2004) Pre-obese and obese agouti mice are sensitive to the anorectic effects of peptide YY3–36 but resistant to ghrelin. Int J Obes Relat Metab Disord 28: 886–893

    Article  CAS  PubMed  Google Scholar 

  37. Chelikani PK et al. (2005) Intravenous infusion of PYY3–36 potently inhibits food intake in rats. Endocrinology 146: 879–888

    Article  CAS  PubMed  Google Scholar 

  38. Pittner RA et al. (2004) Effects of PYY3–36 in rodent models of diabetes and obesity. Int J Obes Relat Metab Disord 28: 963–971

    Article  CAS  PubMed  Google Scholar 

  39. Riediger T et al. (2004) Peptide YY directly inhibits ghrelin-activated neurons of the arcuate nucleus and reverses fasting-induced c-Fos expression. Neuroendocrinology 79: 317–326

    Article  CAS  PubMed  Google Scholar 

  40. Talsania T et al. (2005) Peripheral exendin-4 and peptide YY3–36 synergistically reduce food intake through different mechanisms in mice. Endocrinology 146: 3748–3756

    Article  CAS  PubMed  Google Scholar 

  41. Batterham RL et al. (2002) Gut hormone PYY3–36 physiologically inhibits food intake. Nature 418: 650–654

    Article  CAS  PubMed  Google Scholar 

  42. Sileno AP et al. (2006) Lower mean weight after 14 days intravenous administration peptide YY3–36 (PYY3–36) in rabbits. Int J Obes (Lond) 30: 68–72

    Article  CAS  Google Scholar 

  43. Koegler FH et al. (2005) Peptide YY3–36 inhibits morning, but not evening, food intake and decreases body weight in rhesus macaques. Diabetes 54: 3198–3204

    Article  CAS  PubMed  Google Scholar 

  44. Boggiano MM et al. (2005) PYY3–36 as an anti-obesity drug target. Obes Rev 6: 307–322

    Article  CAS  PubMed  Google Scholar 

  45. Tschop M et al. (2004) Physiology: does gut hormone PYY3–36 decrease food intake in rodents? Nature 430: 165–167

    Article  Google Scholar 

  46. Challis BG et al. (2004) Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY3–36 . Proc Natl Acad Sci USA 101: 4695–4700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moran TH et al. (2004) Peptide YY3–36 inhibits gastric emptying and produces acute reductions in food intake in rhesus monkeys. Am J Physiol Regul Integr Comp Physiol 288: R384–R388

    Article  PubMed  CAS  Google Scholar 

  48. Abbott CR et al. (2005) The importance of acclimatisation and habituation to experimental conditions when investigating the anorectic effects of gastrointestinal hormones in the rat. Int J Obes (Lond) 30: 288–292

    Article  CAS  Google Scholar 

  49. Broadwell RD and Brightman MW (1976) Entry of peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood. J Comp Neurol 166: 257–283

    Article  CAS  PubMed  Google Scholar 

  50. Cone RD et al. (2001) The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J Obes Relat Metab Disord 25 (Suppl 5): S63–S67

    Article  CAS  PubMed  Google Scholar 

  51. Horvath TL (2005) The hardship of obesity: a soft-wired hypothalamus. Nat Neurosci 8: 561–565

    Article  CAS  PubMed  Google Scholar 

  52. Schwartz MW et al. (2000) Central nervous system control of food intake. Nature 404: 661–671

    Article  CAS  PubMed  Google Scholar 

  53. Baggio LL et al. (2004) Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology 127: 546–558

    Article  CAS  PubMed  Google Scholar 

  54. Turton MD et al. (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379: 69–72

    Article  CAS  PubMed  Google Scholar 

  55. Fehmann HC et al. (1994) Stable expression of the rat GLP-I receptor in CHO cells: activation and binding characteristics utilizing GLP-I7–36-amide, oxyntomodulin, exendin-4, and exendin9–39 . Peptides 15: 453–456

    Article  CAS  PubMed  Google Scholar 

  56. Leibowitz SF and Alexander JT (1991) Analysis of neuropeptide Y-induced feeding: dissociation of Y1 and Y2 receptor effects on natural meal patterns. Peptides 12: 1251–1260

    Article  CAS  PubMed  Google Scholar 

  57. Naveilhan P et al. (1999) Normal feeding behavior, body weight and leptin response require the neuropeptide Y Y2 receptor. Nat Med 5: 1188–1193

    Article  CAS  PubMed  Google Scholar 

  58. Abbott CR et al. (2005) Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY3–36 on food intake. Brain Res 1043: 139–144

    Article  CAS  PubMed  Google Scholar 

  59. Broberger C et al. (1997) Subtypes Y1 and Y2 of the neuropeptide Y receptor are respectively expressed in pro-opiomelanocortin- and neuropeptide-Y-containing neurons of the rat hypothalamic arcuate nucleus. Neuroendocrinology 66: 393–408

    Article  CAS  PubMed  Google Scholar 

  60. Acuna-Goycolea C and van den Pol AN (2005) Peptide YY3–36 inhibits both anorexigenic proopiomelanocortin and orexigenic neuropeptide Y neurons: implications for hypothalamic regulation of energy homeostasis. J Neurosci 25: 10510–10519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Conrad CD and McEwen BS (2000) Acute stress increases neuropeptide Y mRNA within the arcuate nucleus and hilus of the dentate gyrus. Brain Res Mol Brain Res 79: 102–109

    Article  CAS  PubMed  Google Scholar 

  62. Makino S et al. (2000) Differential regulation of neuropeptide Y mRNA expression in the arcuate nucleus and locus coeruleus by stress and antidepressants. J Neuroendocrinol 12: 387–395

    Article  CAS  PubMed  Google Scholar 

  63. Koda S et al. (2005) The role of the vagal nerve in peripheral PYY3–36-induced feeding reduction in rats. Endocrinology 146: 2369–2375

    Article  CAS  PubMed  Google Scholar 

  64. Cohen MA et al. (2003) Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab 88: 4696–4701

    Article  CAS  PubMed  Google Scholar 

  65. Wynne K et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomized controlled trial. Int J Obes [doi: 10.1038/sj.ijo.0803344]

  66. Degen L et al. (2005) Effect of peptide YY3–36 on food intake in humans. Gastroenterology 129: 1430–1436

    Article  CAS  PubMed  Google Scholar 

  67. Nastech Pharmaceutical Company Inc. (online 29 June 2004) Nastech News: Nastech announces positive phase 1-C clinical results of PYY3–36 nasal spray for obesity [http://investor.nastech.com/phoenix.zhtml?c=83674&p=irol-newsArticle&ID=586170&highlight=] (accessed 1 September 2006)

  68. Besterman HS et al. (1979) Gut hormones in tropical malabsorption. BMJ 2: 1252–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Holst JJ et al. (1979) Plasma enteroglucagon after jejunoileal bypass with 3:1 or 1:3 jejunoileal ratio. Scand J Gastroenterol 14: 205–207

    Article  CAS  PubMed  Google Scholar 

  70. Adrian TE et al. (1986) Peptide YY abnormalities in gastrointestinal diseases. Gastroenterology 90: 379–384

    Article  CAS  PubMed  Google Scholar 

  71. Naslund E et al. (1997) Gastrointestinal hormones and gastric emptying 20 years after jejunoileal bypass for massive obesity. Int J Obes Relat Metab Disord 21: 387–392

    Article  CAS  PubMed  Google Scholar 

  72. Alvarez BM et al. (2002) Peptide YY secretion in morbidly obese patients before and after vertical banded gastroplasty. Obes Surg 12: 324–327

    Article  Google Scholar 

  73. Le Roux CW et al. (2005) The putative satiety hormone PYY is raised in cardiac cachexia associated with primary pulmonary hypertension. Heart 91: 241–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Le Roux CW et al. (2006) Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology 147: 3–8

    Article  CAS  PubMed  Google Scholar 

  75. Ahituv N et al. (2006) A PYY Q62P variant linked to human obesity. Hum Mol Genet 15: 387–391

    Article  CAS  PubMed  Google Scholar 

  76. Neary NM et al. (2005) Peptide YY3–36 and glucagon-like peptide-17–36 inhibit food intake additively. Endocrinology 146: 5120–5127

    Article  CAS  PubMed  Google Scholar 

  77. Shechter Y et al. (2005) Reversible PEGylation of peptide YY3–36 prolongs its inhibition of food intake in mice. FEBS Lett 579: 2439–2444

    Article  CAS  PubMed  Google Scholar 

  78. Holst JJ (2006) Glucagon-like peptide-1: from extract to agent. The Claude Bernard Lecture 2005. Diabetologia 49: 253–260

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work on gastrointestinal peptides within the laboratory is funded by grants from the Wellcome Trust and Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R Bloom.

Ethics declarations

Competing interests

K Wynne declared she has no competing interests.

The use of oxyntomodulin for the treatment of obesity is the subject of two patent applications (WO 2003/022304 and WO 2004/06285) in the name of Imperial College Innovations, which are exclusively licensed to Thiakis Limited. SR Bloom is a Director of Thiakis Limited.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wynne, K., Bloom, S. The role of oxyntomodulin and peptide tyrosine–tyrosine (PYY) in appetite control. Nat Rev Endocrinol 2, 612–620 (2006). https://doi.org/10.1038/ncpendmet0318

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpendmet0318

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing