Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Direct effects of thyroid hormones on hepatic lipid metabolism

Key Points

  • Thyroid hormones regulate hepatic lipid metabolism in a cell autonomous manner

  • Thyroid hormone receptors (THRα and THRβ) differentially regulate hepatic lipid metabolism

  • Thyroid hormone induces the expression of genes that encode proteins involved in hepatic lipogenesis

  • Thyroid hormone couples autophagy to mitochondrial fat oxidation to induce ketogenesis

  • Thyroid hormone induces reverse cholesterol transport

  • Thyroid hormone analogues and/or mimetics offer therapeutic alternatives for treatment of lipid-associated hepatic pathologies

Abstract

It has been known for a long time that thyroid hormones have prominent effects on hepatic fatty acid and cholesterol synthesis and metabolism. Indeed, hypothyroidism has been associated with increased serum levels of triglycerides and cholesterol as well as non-alcoholic fatty liver disease (NAFLD). Advances in areas such as cell imaging, autophagy and metabolomics have generated a more detailed and comprehensive picture of thyroid-hormone-mediated regulation of hepatic lipid metabolism at the molecular level. In this Review, we describe and summarize the key features of direct thyroid hormone regulation of lipogenesis, fatty acid β-oxidation, cholesterol synthesis and the reverse cholesterol transport pathway in normal and altered thyroid hormone states. Thyroid hormone mediates these effects at the transcriptional and post-translational levels and via autophagy. Given these potentially beneficial effects on lipid metabolism, it is possible that thyroid hormone analogues and/or mimetics might be useful for the treatment of metabolic diseases involving the liver, such as hypercholesterolaemia and NAFLD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thyroid hormone effects on hepatic lipid metabolism.
Figure 2: Thyroid hormone regulation of cholesterol biosynthesis and clearance.

Similar content being viewed by others

References

  1. Duntas, L. H. Thyroid disease and lipids. Thyroid 12, 287–293 (2002).

    CAS  PubMed  Google Scholar 

  2. Krotkiewski, M. Thyroid hormones and treatment of obesity. Int. J. Obes. Relat. Metab. Disord. 24, S116–S119 (2000).

    CAS  PubMed  Google Scholar 

  3. Singh, B. K. et al. Hepatic FOXO1 target genes are co-regulated by thyroid hormone via RICTOR protein deacetylation and MTORC2-AKT protein inhibition. J. Biol. Chem. 291, 198–214 (2016).

    CAS  PubMed  Google Scholar 

  4. Singh, B. K. et al. FoxO1 deacetylation regulates thyroid hormone-induced transcription of key hepatic gluconeogenic genes. J. Biol. Chem. 288, 30365–30372 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Martinez-Sanchez, N. et al. Hypothalamic effects of thyroid hormones on metabolism. Best practice and research. Clin. Endocrinol. Metabolism 28, 703–712 (2014).

    CAS  Google Scholar 

  6. Martinez-Sanchez, N. et al. Hypothalamic AMPK-ER stress-JNK1 axis mediates the central actions of thyroid hormones on energy balance. Cell. Metab. 26, 212–229 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yen, P. M. & Sinha, R. Cellular action of thyroid hormone. Endotext https://www.ncbi.nlm.nih.gov/pubmed/25905423 (updated 12 Feb 2000).

  8. Lazar, M. A. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr. Rev. 14, 184–193 (1993).

    CAS  PubMed  Google Scholar 

  9. Chamba, A. et al. Expression and function of thyroid hormone receptor variants in normal and chronically diseased human liver. J. Clin. Endocrinol. Metab. 81, 360–367 (1996).

    CAS  PubMed  Google Scholar 

  10. Baumann, C. T., Maruvada, P., Hager, G. L. & Yen, P. M. Nuclear cytoplasmic shuttling by thyroid hormone receptors. multiple protein interactions are required for nuclear retention. J. Biol. Chem. 276, 11237–11245 (2001).

    CAS  PubMed  Google Scholar 

  11. Davis, P. J., Goglia, F. & Leonard, J. L. Nongenomic actions of thyroid hormone. Nat. Rev. Endocrinol. 12, 111–121 (2016).

    CAS  PubMed  Google Scholar 

  12. Mullur, R., Liu, Y. Y. & Brent, G. A. Thyroid hormone regulation of metabolism. Physiol. Rev. 94, 355–382 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Flamant, F. et al. Thyroid hormone signaling pathways: time for a more precise nomenclature. Endocrinology 158, 2052–2057 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. Furuya, F., Hanover, J. A. & Cheng, S. Y. Activation of phosphatidylinositol 3-kinase signaling by a mutant thyroid hormone β receptor. Proc. Natl Acad. Sci. USA 103, 1780–1785 (2006).

    CAS  PubMed  Google Scholar 

  15. Lin, H. Y. et al. Identification and functions of the plasma membrane receptor for thyroid hormone analogues. Discov. Med. 11, 337–347 (2011).

    PubMed  Google Scholar 

  16. Araki, O., Ying, H., Zhu, X. G., Willingham, M. C. & Cheng, S. Y. Distinct dysregulation of lipid metabolism by unliganded thyroid hormone receptor isoforms. Mol. Endocrinol. 23, 308–315 (2009)This is an important work highlighting the distinct effects of unliganded THRs on lipid metabolism.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cable, E. E. et al. Reduction of hepatic steatosis in rats and mice after treatment with a liver-targeted thyroid hormone receptor agonist. Hepatology 49, 407–417 (2009).This article presents an interesting study showing the efficacy of liver-targeted thyroid hormone agonist in reducing NAFLD in rodent models.

    CAS  PubMed  Google Scholar 

  18. Erion, M. D. et al. Targeting thyroid hormone receptor-β agonists to the liver reduces cholesterol and triglycerides and improves the therapeutic index. Proc. Natl Acad. Sci. USA 104, 15490–15495 (2007).

    CAS  PubMed  Google Scholar 

  19. Jornayvaz, F. R. et al. Thyroid hormone receptor-α gene knockout mice are protected from diet-induced hepatic insulin resistance. Endocrinology 153, 583–591 (2012).

    CAS  PubMed  Google Scholar 

  20. Liu, Y. Y. et al. A mutant thyroid hormone receptor α antagonizes peroxisome proliferator-activated receptor α signaling in vivo and impairs fatty acid oxidation. Endocrinology 148, 1206–1217 (2007).

    CAS  PubMed  Google Scholar 

  21. Shimizu, H. et al. NCoR1 and SMRT play unique roles in thyroid hormone action in vivo. Mol. Cell. Biol. 35, 555–565 (2015).

    PubMed  PubMed Central  Google Scholar 

  22. Fonseca, T. L. et al. Perinatal deiodinase 2 expression in hepatocytes defines epigenetic susceptibility to liver steatosis and obesity. Proc. Natl Acad. Sci. USA 112, 14018–14023 (2015).

    CAS  PubMed  Google Scholar 

  23. Meyer zu Schwabedissen, H. E. et al. Hepatic organic anion transporting polypeptide transporter and thyroid hormone receptor interplay determines cholesterol and glucose homeostasis. Hepatology 54, 644–654 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mashek, D. G. Hepatic fatty acid trafficking: multiple forks in the road. Adv. Nutr. 4, 697–710 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Klieverik, L. P. et al. Thyroid hormone effects on whole-body energy homeostasis and tissue-specific fatty acid uptake in vivo. Endocrinology 150, 5639–5648 (2009).

    CAS  PubMed  Google Scholar 

  26. Santana-Farre, R. et al. Influence of neonatal hypothyroidism on hepatic gene expression and lipid metabolism in adulthood. PLOS ONE 7, e37386 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakagawa, S., Kawashima, Y., Hirose, A. & Kozuka, H. Regulation of hepatic level of fatty-acid-binding protein by hormones and clofibric acid in the rat. Biochem. J. 297, 581–584 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Czech, M. P., Tencerova, M., Pedersen, D. J. & Aouadi, M. Insulin signalling mechanisms for triacylglycerol storage. Diabetologia 56, 949–964 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Campbell, M. C., Anderson, G. W. & Mariash, C. N. Human spot 14 glucose and thyroid hormone response: characterization and thyroid hormone response element identification. Endocrinology 144, 5242–5248 (2003).

    CAS  PubMed  Google Scholar 

  30. Desvergne, B., Petty, K. J. & Nikodem, V. M. Functional characterization and receptor binding studies of the malic enzyme thyroid hormone response element. J. Biol. Chem. 266, 1008–1013 (1991).

    CAS  PubMed  Google Scholar 

  31. Zhang, Y., Yin, L. & Hillgartner, F. B. Thyroid hormone stimulates acetyl-coA carboxylase-α transcription in hepatocytes by modulating the composition of nuclear receptor complexes bound to a thyroid hormone response element. J. Biol. Chem. 276, 974–983 (2001).

    CAS  PubMed  Google Scholar 

  32. Radenne, A. et al. Hepatic regulation of fatty acid synthase by insulin and T3: evidence for T3 genomic and nongenomic actions. Am. J. Physiol. Endocrinol. Metab. 295, E884–E894 (2008).

    CAS  PubMed  Google Scholar 

  33. Wang, Y., Viscarra, J., Kim, S. J. & Sul, H. S. Transcriptional regulation of hepatic lipogenesis. Nat. Rev. Mol. Cell Biol. 16, 678–689 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hashimoto, K., Matsumoto, S., Yamada, M., Satoh, T. & Mori, M. Liver X receptor-α gene expression is positively regulated by thyroid hormone. Endocrinology 148, 4667–4675 (2007).

    CAS  PubMed  Google Scholar 

  35. Hashimoto, K. et al. Carbohydrate response element binding protein gene expression is positively regulated by thyroid hormone. Endocrinology 150, 3417–3424 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hashimoto, K. et al. Mouse sterol response element binding protein-1c gene expression is negatively regulated by thyroid hormone. Endocrinology 147, 4292–4302 (2006).

    CAS  PubMed  Google Scholar 

  37. Gnoni, G. V. et al. 3,5,3′triiodo-L-thyronine induces SREBP-1 expression by non-genomic actions in human HEP G2 cells. J. Cell. Physiol. 227, 2388–2397 (2012).

    CAS  PubMed  Google Scholar 

  38. Yao, X. et al. Regulation of fatty acid composition and lipid storage by thyroid hormone in mouse liver. Cell Biosci. 4, 38 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Hashimoto, K. et al. Human stearoyl-CoA desaturase 1 (SCD-1) gene expression is negatively regulated by thyroid hormone without direct binding of thyroid hormone receptor to the gene promoter. Endocrinology 154, 537–549 (2013).

    CAS  PubMed  Google Scholar 

  40. Dang, A. Q., Faas, F. H. & Carter, W. J. Influence of hypo- and hyperthyroidism on rat liver glycerophospholipid metabolism. Lipids 20, 897–902 (1985).

    CAS  PubMed  Google Scholar 

  41. Davidson, N. O., Powell, L. M., Wallis, S. C. & Scott, J. Thyroid hormone modulates the introduction of a stop codon in rat liver apolipoprotein B messenger RNA. J. Biol. Chem. 263, 13482–13485 (1988).

    CAS  PubMed  Google Scholar 

  42. Abrams, J. J., Grundy, S. M. & Ginsberg, H. Metabolism of plasma triglycerides in hypothyroidism and hyperthyroidism in man. J. Lipid Res. 22, 307–322 (1981).

    CAS  PubMed  Google Scholar 

  43. Babenko, N. A. Long- and short-term effects of thyroxine on sphingolipid metabolism in rat liver. Med. Sci. Monit. 11, BR131–BR138 (2005).

    CAS  PubMed  Google Scholar 

  44. Iannucci, L. F. et al. Metabolomic analysis shows differential hepatic effects of T2 and T3 in rats after short-term feeding with high fat diet. Sci. Rep. 7, 2023 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. Bucki, R., Gorska, M., Zendzian-Piotrowska, M. & Gorski, J. Effect of triiodothyronine on the content of phospholipids in the rat liver nuclei. J. Physiol. Pharmacol. 51, 535–540 (2000).

    CAS  PubMed  Google Scholar 

  46. Oppenheimer, J. H., Schwartz, H. L., Lane, J. T. & Thompson, M. P. Functional relationship of thyroid hormone-induced lipogenesis, lipolysis, and thermogenesis in the rat. J. Clin. Invest. 87, 125–132 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Quiroga, A. D. & Lehner, R. Liver triacylglycerol lipases. Biochim. Biophys. Acta 1821, 762–769 (2012).

    CAS  PubMed  Google Scholar 

  48. Kihara, S., Wolle, J., Ehnholm, C., Chan, L. & Oka, K. Regulation of hepatic triglyceride lipase by thyroid hormone in HepG2 cells. J. Lipid Res. 34, 961–970 (1993).

    CAS  PubMed  Google Scholar 

  49. Brenta, G. et al. Atherogenic lipoproteins in subclinical hypothyroidism and their relationship with hepatic lipase activity: response to replacement treatment with levothyroxine. Thyroid 26, 365–372 (2016).

    CAS  PubMed  Google Scholar 

  50. Grasselli, E. et al. Triglyceride mobilization from lipid droplets sustains the anti-steatotic action of iodothyronines in cultured rat hepatocytes. Front. Physiol. 6, 418 (2015).

    PubMed  Google Scholar 

  51. Sanchez, L. M., Chirino, A. J. & Bjorkman, P. Crystal structure of human ZAG, a fat-depleting factor related to MHC molecules. Science 283, 1914–1919 (1999).

    CAS  PubMed  Google Scholar 

  52. Simo, R. et al. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue. PLOS ONE 9, e85753 (2014).

    PubMed  PubMed Central  Google Scholar 

  53. Reiner, Z. et al. Lysosomal acid lipase deficiency — an under-recognized cause of dyslipidaemia and liver dysfunction. Atherosclerosis 235, 21–30 (2014).

    CAS  PubMed  Google Scholar 

  54. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cingolani, F. & Czaja, M. J. Regulation and functions of autophagic lipolysis. Trends Endocrinol. Metab. 27, 696–705 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sinha, R. A. et al. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. J. Clin. Invest. 122, 2428–2438 (2012).This study describes the role of autophagy in thyroid-hormone-induced ketogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tseng, Y. H. et al. Chromosome 19 open reading frame 80 is upregulated by thyroid hormone and modulates autophagy and lipid metabolism. Autophagy 10, 20–31 (2014).

    CAS  PubMed  Google Scholar 

  58. Settembre, C. & Ballabio, A. Lysosome: regulator of lipid degradation pathways. Trends Cell Biol. 24, 743–750 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, H. Y. et al. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J. Biol. Chem. 284, 31484–31492 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Takeda, T. et al. Regulation of rat hepatic peroxisomal enoyl-CoA hydratase-3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme by thyroid hormone. Biochem. Biophys. Res. Commun. 185, 211–216 (1992).

    CAS  PubMed  Google Scholar 

  61. Just, W. W., Hartl, F. U. & Schimassek, H. Rat liver peroxisomes. I. New peroxisome population induced by thyroid hormones in the liver of male rats. Eur. J. Cell Biol. 26, 249–254 (1982).

    CAS  PubMed  Google Scholar 

  62. Just, W. W. & Hartl, F. U. Rat liver peroxisomes, II. Stimulation of peroxisomal fatty-acid β-oxidation by thyroid hormones. Hoppe Seylers Z. Physiol. Chem. 364, 1541–1547 (1983).

    CAS  PubMed  Google Scholar 

  63. Iossa, S. et al. Effect of long-term high-fat feeding on energy balance and liver oxidative activity in rats. Br. J. Nutr. 84, 377–385 (2000).

    CAS  PubMed  Google Scholar 

  64. Goudonnet, H. et al. Differential action of thyroid hormones and chemically related compounds on the activity of UDP-glucuronosyltransferases and cytochrome P-450 isozymes in rat liver. Biochim. Biophys. Acta 1035, 12–19 (1990).

    CAS  PubMed  Google Scholar 

  65. Goglia, F., Liverini, G., Lanni, A., Iossa, S. & Barletta, A. Effects of 3,5,3′-triiodothyronine (T3) on rat liver peroxisomal compartment during cold exposure. Exp. Biol. 48, 135–140 (1989).

    CAS  PubMed  Google Scholar 

  66. Fringes, B. & Reith, A. Time course of peroxisome biogenesis during adaptation to mild hyperthyroidism in rat liver: a morphometric/stereologic study by electron microscopy. Lab Invest. 47, 19–26 (1982).

    CAS  PubMed  Google Scholar 

  67. Cioffi, F., Lanni, A. & Goglia, F. Thyroid hormones, mitochondrial bioenergetics and lipid handling. Curr. Opin. Endocrinol. Diabetes Obes. 17, 402–407 (2010).

    CAS  PubMed  Google Scholar 

  68. Weitzel, J. M. & Iwen, K. A. Coordination of mitochondrial biogenesis by thyroid hormone. Mol. Cell Endocrinol. 342, 1–7 (2011).

    CAS  PubMed  Google Scholar 

  69. Wrutniak-Cabello, C., Casas, F. & Cabello, G. The direct tri-lodothyronine mitochondrial pathway: science or mythology? Thyroid 10, 965–969 (2000).

    CAS  PubMed  Google Scholar 

  70. Jackson-Hayes, L. et al. A thyroid hormone response unit formed between the promoter and first intron of the carnitine palmitoyltransferase-Iα gene mediates the liver-specific induction by thyroid hormone. J. Biol. Chem. 278, 7964–7972 (2003).

    CAS  PubMed  Google Scholar 

  71. Thakran, S. et al. Role of sirtuin 1 in the regulation of hepatic gene expression by thyroid hormone. J. Biol. Chem. 288, 807–818 (2013).

    CAS  PubMed  Google Scholar 

  72. Adams, A. C. et al. Thyroid hormone regulates hepatic expression of fibroblast growth factor 21 in a PPARα-dependent manner. J. Biol. Chem. 285, 14078–14082 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Djouadi, F., Riveau, B., Merlet-Benichou, C. & Bastin, J. Tissue-specific regulation of medium-chain acyl-CoA dehydrogenase gene by thyroid hormones in the developing rat. Biochem. J. 324, 289–294 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Holness, M. J., Bulmer, K., Smith, N. D. & Sugden, M. C. Investigation of potential mechanisms regulating protein expression of hepatic pyruvate dehydrogenase kinase isoforms 2 and 4 by fatty acids and thyroid hormone. Biochem. J. 369, 687–695 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Jekabsons, M. B., Gregoire, F. M., Schonfeld-Warden, N. A., Warden, C. H. & Horwitz, B. A. T(3) stimulates resting metabolism and UCP-2 and UCP-3 mRNA but not nonphosphorylating mitochondrial respiration in mice. Am. J. Physiol. 277, E380–E389 (1999).

    CAS  PubMed  Google Scholar 

  76. Sinha, R. A. et al. Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS–AMPK–ULK1 signaling. Autophagy 11, 1341–1357 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lesmana, R. et al. Thyroid hormone stimulation of autophagy is essential for mitochondrial biogenesis and activity in skeletal muscle. Endocrinology 157, 23–38 (2016).

    CAS  PubMed  Google Scholar 

  78. Ness, G. C. Thyroid hormone. Basis for its hypocholesterolemic effect. J. Fla. Med. Assoc. 78, 383–385 (1991).

    CAS  PubMed  Google Scholar 

  79. Ness, G. C., Pendleton, L. C., Li, Y. C. & Chiang, J. Y. Effect of thyroid hormone on hepatic cholesterol 7α hydroxylase, LDL receptor, HMG-CoA reductase, farnesyl pyrophosphate synthetase and apolipoprotein A-I mRNA levels in hypophysectomized rats. Biochem. Biophys. Res. Commun. 172, 1150–1156 (1990).

    CAS  PubMed  Google Scholar 

  80. Mooradian, A. D., Wong, N. C. & Shah, G. N. Age-related changes in the responsiveness of apolipoprotein A1 to thyroid hormone. Am. J. Physiol. 271, R1602–R1607 (1996).

    CAS  PubMed  Google Scholar 

  81. Lopez, D., Abisambra Socarras, J. F., Bedi, M. & Ness, G. C. Activation of the hepatic LDL receptor promoter by thyroid hormone. Biochim. Biophys. Acta 1771, 1216–1225 (2007).

    CAS  PubMed  Google Scholar 

  82. Lagrost, L. Regulation of cholesteryl ester transfer protein (CETP) activity: review of in vitro and in vivo studies. Biochim. Biophys. Acta 1215, 209–236 (1994).

    PubMed  Google Scholar 

  83. Shin, D. J. & Osborne, T. F. Thyroid hormone regulation and cholesterol metabolism are connected through sterol regulatory element-binding protein-2 (SREBP-2). J. Biol. Chem. 278, 34114–34118 (2003).This study describes the role of SREBP2 in thyroid-hormone-regulated cholesterol metabolism.

    CAS  PubMed  Google Scholar 

  84. Moon, J. H. et al. Decreased expression of hepatic low-density lipoprotein receptor-related protein 1 in hypothyroidism: a novel mechanism of atherogenic dyslipidemia in hypothyroidism. Thyroid 23, 1057–1065 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ness, G. C. & Lopez, D. Transcriptional regulation of rat hepatic low-density lipoprotein receptor and cholesterol 7α hydroxylase by thyroid hormone. Arch. Biochem. Biophys. 323, 404–408 (1995).

    CAS  PubMed  Google Scholar 

  86. Goldberg, I. J. et al. Thyroid hormone reduces cholesterol via a non-LDL receptor-mediated pathway. Endocrinology 153, 5143–5149 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bonde, Y., Plosch, T., Kuipers, F., Angelin, B. & Rudling, M. Stimulation of murine biliary cholesterol secretion by thyroid hormone is dependent on a functional ABCG5/G8 complex. Hepatology 56, 1828–1837 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Bonde, Y. et al. Thyroid hormone reduces PCSK9 and stimulates bile acid synthesis in humans. J. Lipid Res. 55, 2408–2415 (2014).This study describes the effect of thyroid hormone on human proprotein convertase subtilisin/kexin type 9 (PCSK9).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yap, C. S., Sinha, R. A., Ota, S., Katsuki, M. & Yen, P. M. Thyroid hormone negatively regulates CDX2 and SOAT2 mRNA expression via induction of miRNA-181d in hepatic cells. Biochem. Biophys. Res. Commun. 440, 635–639 (2013).This study highlights the potential role of miRNA in thyroid-hormone-regulated cholesterol metabolism.

    CAS  PubMed  Google Scholar 

  90. Grasselli, E. et al. Non-receptor-mediated actions are responsible for the lipid-lowering effects of iodothyronines in FaO rat hepatoma cells. J. Endocrinol. 210, 59–69 (2011).

    CAS  PubMed  Google Scholar 

  91. Cordeiro, A., Souza, L. L., Einicker-Lamas, M. & Pazos-Moura, C. C. Non-classic thyroid hormone signalling involved in hepatic lipid metabolism. J. Endocrinol. 216, R47–R57 (2013).

    CAS  PubMed  Google Scholar 

  92. Cao, X., Kambe, F., Moeller, L. C., Refetoff, S. & Seo, H. Thyroid hormone induces rapid activation of Akt/protein kinase B-mammalian target of rapamycin-p70S6K cascade through phosphatidylinositol 3-kinase in human fibroblasts. Mol. Endocrinol. 19, 102–112 (2005).

    CAS  PubMed  Google Scholar 

  93. Swierczynski, J. et al. Triiodothyronine-induced accumulations of malic enzyme, fatty acid synthase, acetyl-coenzyme A carboxylase, and their mRNAs are blocked by protein kinase inhibitors. Transcription is the affected step. J. Biol. Chem. 266, 17459–17466 (1991).

    CAS  PubMed  Google Scholar 

  94. Yamauchi, M. et al. Thyroid hormone activates adenosine 5′-monophosphate-activated protein kinase via intracellular calcium mobilization and activation of calcium/calmodulin-dependent protein kinase kinase-β. Mol. Endocrinol. 22, 893–903 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Nakamura, H., Rue, P. A. & DeGroot, L. J. Thyroid hormone increases type I adenosine 3′, 5′-monophosphate-dependent protein kinase and casein kinase activities in rat liver cytosol: analysis of protein kinases by polyacrylamide disc gel electrophoresis. Endocrinology 112, 1427–1433 (1983).

    CAS  PubMed  Google Scholar 

  96. Coppola, M. et al. Thyroid hormone analogues and derivatives: actions in fatty liver. World J. Hepatol. 6, 114–129 (2014).

    PubMed  PubMed Central  Google Scholar 

  97. Lanni, A. et al. 3,5-Diiodo-L-thyronine powerfully reduces adiposity in rats by increasing the burning of fats. FASEB J. 19, 1552–1554 (2005).

    CAS  PubMed  Google Scholar 

  98. Grasselli, E. et al. Direct effects of iodothyronines on excess fat storage in rat hepatocytes. J. Hepatol. 54, 1230–1236 (2011).This article describes the role of 3,5-diiodothyronine in reducing hepatic fat.

    CAS  PubMed  Google Scholar 

  99. Cavallo, A. et al. 3,5-Diiodo-L-thyronine administration to hypothyroid rats rapidly enhances fatty acid oxidation rate and bioenergetic parameters in liver cells. PLOS ONE 8, e52328 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Grasselli, E. et al. 3,5-Diiodo-L-thyronine modifies the lipid droplet composition in a model of hepatosteatosis. Cell Physiol. Biochem. 33, 344–356 (2014).

    CAS  PubMed  Google Scholar 

  101. Vergani, L. Lipid lowering effects of iodothyronines: in vivo and in vitro studies on rat liver. World J. Hepatol. 6, 169–177 (2014).

    PubMed  PubMed Central  Google Scholar 

  102. Gnocchi, D., Massimi, M., Alisi, A., Incerpi, S. & Bruscalupi, G. Effect of fructose and 3,5-diiodothyronine (3,5-T(2)) on lipid accumulation and insulin signalling in non-alcoholic fatty liver disease (NAFLD)-like rat primary hepatocytes. Horm. Metab. Res. 46, 333–340 (2014).

    CAS  PubMed  Google Scholar 

  103. Coppola, M., Cioffi, F., Moreno, M., Goglia, F. & Silvestri, E. 3,5-Diiodo-L-thyronine: a possible pharmacological agent? Curr. Drug Deliv. 13, 330–338 (2016).

    CAS  PubMed  Google Scholar 

  104. de Lange, P. et al. Nonthyrotoxic prevention of diet-induced insulin resistance by 3,5-diiodo-L-thyronine in rats. Diabetes 60, 2730–2739 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Yan, F. et al. Thyrotropin increases hepatic triglyceride content through upregulation of SREBP-1c activity. J. Hepatol. 61, 1358–1364 (2014).This study describes a direct action of TSH in regulating hepatic lipid metabolism.

    CAS  PubMed  Google Scholar 

  106. Song, Y. et al. Thyroid-stimulating hormone regulates hepatic bile acid homeostasis via SREBP-2/HNF-4α/CYP7A1 axis. J. Hepatol. 62, 1171–1179 (2015).

    CAS  PubMed  Google Scholar 

  107. Zhang, X. et al. Thyroid-stimulating hormone decreases HMG-CoA reductase phosphorylation via AMP-activated protein kinase in the liver. J. Lipid Res. 56, 963–971 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Cappola, A. R. & Ladenson, P. W. Hypothyroidism and atherosclerosis. J. Clin. Endocrinol. Metab. 88, 2438–2444 (2003).

    CAS  PubMed  Google Scholar 

  109. Tzotzas, T., Krassas, G. E., Konstantinidis, T. & Bougoulia, M. Changes in lipoprotein(a) levels in overt and subclinical hypothyroidism before and during treatment. Thyroid 10, 803–808 (2000).

    CAS  PubMed  Google Scholar 

  110. Sherman, S. I. et al. Augmented hepatic and skeletal thyromimetic effects of tiratricol in comparison with levothyroxine. J. Clin. Endocrinol. Metab. 82, 2153–2158 (1997).

    CAS  PubMed  Google Scholar 

  111. [No authors listed.] The coronary drug project. Findings leading to further modifications of its protocol with respect to dextrothyroxine. The coronary drug project research group. JAMA 220, 996–1008 (1972).

  112. Galioni, E. F. et al. Long-term effect of dried thyroid on serum-lipoprotein and serum-cholesterol levels. Lancet 272, 120–123 (1957).

    CAS  PubMed  Google Scholar 

  113. Baxter, J. D. & Webb, P. Thyroid hormone mimetics: potential applications in atherosclerosis, obesity and type 2 diabetes. Nat. Rev. Drug Discov. 8, 308–320 (2009).

    CAS  PubMed  Google Scholar 

  114. Elbers, L. P., Kastelein, J. J. & Sjouke, B. Thyroid hormone mimetics: the past, current status and future challenges. Curr. Atheroscler Rep. 18, 14 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Underwood, A. H. et al. A thyromimetic that decreases plasma cholesterol levels without increasing cardiac activity. Nature 324, 425–429 (1986).

    CAS  PubMed  Google Scholar 

  116. Tancevski, I. et al. The liver-selective thyromimetic T-0681 influences reverse cholesterol transport and atherosclerosis development in mice. PLOS ONE 5, e8722 (2010).

    PubMed  PubMed Central  Google Scholar 

  117. Taylor, A. H., Stephan, Z. F., Steele, R. E. & Wong, N. C. Beneficial effects of a novel thyromimetic on lipoprotein metabolism. Mol. Pharmacol. 52, 542–547 (1997).

    CAS  PubMed  Google Scholar 

  118. Goldman, S. et al. DITPA (3,5-Diiodothyropropionic Acid), a thyroid hormone analog to treat heart failure: phase II trial veterans affairs cooperative study. Circulation 119, 3093–3100 (2009).

    CAS  PubMed  Google Scholar 

  119. Johansson, L. et al. Selective thyroid receptor modulation by GC-1 reduces serum lipids and stimulates steps of reverse cholesterol transport in euthyroid mice. Proc. Natl Acad. Sci. USA 102, 10297–10302 (2005).

    CAS  PubMed  Google Scholar 

  120. Tancevski, I., Demetz, E. & Eller, P. Sobetirome: a selective thyromimetic for the treatment of dyslipidemia. Recent Pat. Cardiovasc. Drug Discov. 6, 16–19 (2011).

    CAS  PubMed  Google Scholar 

  121. Kannisto, K. et al. The thyroid receptor β modulator GC-1 reduces atherosclerosis in ApoE deficient mice. Atherosclerosis 237, 544–554 (2014).

    CAS  PubMed  Google Scholar 

  122. Grover, G. J., Mellstrom, K. & Malm, J. Development of the thyroid hormone receptor β-subtype agonist KB-141: a strategy for body weight reduction and lipid lowering with minimal cardiac side effects. Cardiovasc. Drug Rev. 23, 133–148 (2005).

    CAS  PubMed  Google Scholar 

  123. Ladenson, P. W. et al. Use of the thyroid hormone analogue eprotirome in statin-treated dyslipidemia. N. Engl. J. Med. 362, 906–916 (2010).This study describes the use of a thyroid hormone analogue in treating dyslipidaemia in humans.

    CAS  PubMed  Google Scholar 

  124. Kelly, M. J. et al. Discovery of 2-[3,5-dichloro-4-(5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yloxy)phenyl]-3,5-dioxo-2,3,4,5-tetrahydro[1,2,4]triazine-6-carbonitrile (MGL-3196), a highly selective thyroid hormone receptor β agonist in clinical trials for the treatment of dyslipidemia. J. Med. Chem. 57, 3912–3923 (2014).

    CAS  PubMed  Google Scholar 

  125. Ito, B. R. et al. Thyroid hormone β receptor activation has additive cholesterol lowering activity in combination with atorvastatin in rabbits, dogs and monkeys. Br. J. Pharmacol. 156, 454–465 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Myers, C . Metabasis therapeutics announces the publication of pre-clinical findings on MB07811, its product candidate. FierceBiotech https://www.fiercebiotech.com/biotech/metabasis-therapeutics-announces-publication-of-pre-clinical-findings-on-mb07811-its (2009).

  127. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT00879112 (2018).

  128. Trost, S. U. et al. The thyroid hormone receptor-β-selective agonist GC-1 differentially affects plasma lipids and cardiac activity. Endocrinology 141, 3057–3064 (2000).

    CAS  PubMed  Google Scholar 

  129. Bryzgalova, G. et al. Anti-obesity, anti-diabetic, and lipid lowering effects of the thyroid receptor β subtype selective agonist KB-141. J. Steroid Biochem. Mol. Biol. 111, 262–267 (2008).

    CAS  PubMed  Google Scholar 

  130. Ahmed, M. Non-alcoholic fatty liver disease in 2015. World J. Hepatol. 7, 1450–1459 (2015).

    PubMed  PubMed Central  Google Scholar 

  131. Adams, L. A., Anstee, Q. M., Tilg, H. & Targher, G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut 66, 1138–1153 (2017).

    PubMed  Google Scholar 

  132. Caligiuri, A., Gentilini, A. & Marra, F. Molecular pathogenesis of NASH. Int. J. Mol. Sci. 17, 1575 (2016).

    PubMed Central  Google Scholar 

  133. Pais, R. et al. NAFLD and liver transplantation: current burden and expected challenges. J. Hepatol. 65, 1245–1257 (2016).

    PubMed  PubMed Central  Google Scholar 

  134. Eshraghian, A. & Hamidian Jahromi, A. Non-alcoholic fatty liver disease and thyroid dysfunction: a systematic review. World J. Gastroenterol. 20, 8102–8109 (2014).

    PubMed  PubMed Central  Google Scholar 

  135. Ludwig, U. et al. Subclinical and clinical hypothyroidism and non-alcoholic fatty liver disease: a cross-sectional study of a random population sample aged 18 to 65 years. BMC Endocr. Disord. 15, 41 (2015).

    PubMed  PubMed Central  Google Scholar 

  136. Xu, C., Xu, L., Yu, C., Miao, M. & Li, Y. Association between thyroid function and nonalcoholic fatty liver disease in euthyroid elderly Chinese. Clin. Endocrinol. 75, 240–246 (2011).

    CAS  Google Scholar 

  137. Chung, G. E. et al. Non-alcoholic fatty liver disease across the spectrum of hypothyroidism. J. Hepatol. 57, 150–156 (2012).

    CAS  PubMed  Google Scholar 

  138. Bano, A. et al. Thyroid function and the risk of nonalcoholic fatty liver disease: The Rotterdam Study. J. Clin. Endocrinol. Metab. 101, 3204–3211 (2016).

    CAS  PubMed  Google Scholar 

  139. Torun, E., Ozgen, I. T., Gokce, S., Aydin, S. & Cesur, Y. Thyroid hormone levels in obese children and adolescents with non-alcoholic fatty liver disease. J. Clin. Res. Pediatr. Endocrinol. 6, 34–39 (2014).

    PubMed  PubMed Central  Google Scholar 

  140. Gokmen, F. Y. et al. FT3/FT4 ratio predicts non-alcoholic fatty liver disease independent of metabolic parameters in patients with euthyroidism and hypothyroidism. Clin. (Sao Paulo) 71, 221–225 (2016).

    Google Scholar 

  141. Tao, Y., Gu, H., Wu, J. & Sui, J. Thyroid function is associated with non-alcoholic fatty liver disease in euthyroid subjects. Endocr. Res. 40, 74–78 (2015).

    PubMed  Google Scholar 

  142. Sinha, R. A. & Yen, P. M. Thyroid hormone-mediated autophagy and mitochondrial turnover in NAFLD. Cell Biosci. 6, 46 (2016).

    PubMed  PubMed Central  Google Scholar 

  143. Sinha, R. A., Singh, B. K. & Yen, P. M. Thyroid hormone regulation of hepatic lipid and carbohydrate metabolism. Trends Endocrinol. Metab. 25, 538–545 (2014).

    CAS  PubMed  Google Scholar 

  144. Pihlajamaki, J. et al. Thyroid hormone-related regulation of gene expression in human fatty liver. J. Clin. Endocrinol. Metab. 94, 3521–3529 (2009).This paper presents an interesting study describing defective hepatic thyroid hormone signalling in human NAFLD.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Li, Q. L., Yamamoto, N., Inoue, A. & Morisawa, S. Fatty acyl-CoAs are potent inhibitors of the nuclear thyroid hormone receptor in vitro. J. Biochem. 107, 699–702 (1990).

    CAS  PubMed  Google Scholar 

  146. Bohinc, B. N. et al. Repair-related activation of hedgehog signaling in stromal cells promotes intrahepatic hypothyroidism. Endocrinology 155, 4591–4601 (2014).

    PubMed  PubMed Central  Google Scholar 

  147. Finan, B. et al. Chemical hybridization of glucagon and thyroid hormone optimizes therapeutic impact for metabolic disease. Cell 167, 843–857 (2016).This study describes a novel approach of using chemical hybridization of thyroid hormone and glucagon for the treatment of metabolic diseases.

    CAS  PubMed  Google Scholar 

  148. Perra, A. et al. Thyroid hormone (T3) and TRβ agonist GC-1 inhibit/reverse nonalcoholic fatty liver in rats. FASEB J. 22, 2981–2989 (2008).

    CAS  PubMed  Google Scholar 

  149. Refetoff, S., Weiss, R. E. & Usala, S. J. The syndromes of resistance to thyroid hormone. Endocr. Rev. 14, 348–399 (1993).

    CAS  PubMed  Google Scholar 

  150. Chng, C. L. et al. Physiological and metabolic changes during the transition from hyperthyroidism to euthyroidism in Graves' disease. Thyroid 26, 1422–1430 (2016).

    CAS  PubMed  Google Scholar 

  151. Vatner, D. F. et al. Thyroid hormone receptor-β agonists prevent hepatic steatosis in fat-fed rats but impair insulin sensitivity via discrete pathways. Am. J. Physiol. Endocrinol. Metab. 305, E89–E100 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Lammel Lindemann, J. & Webb, P. Sobetirome: the past, present and questions about the future. Expert Opin. Ther. Targets 20, 145–149 (2016).

    CAS  PubMed  Google Scholar 

  153. Liangpunsakul, S. & Chalasani, N. Is hypothyroidism a risk factor for non-alcoholic steatohepatitis? J. Clin. Gastroenterol. 37, 340–343 (2003).

    PubMed  Google Scholar 

  154. Pagadala, M. R. et al. Prevalence of hypothyroidism in nonalcoholic fatty liver disease. Dig. Dis. Sci. 57, 528–534 (2012).

    PubMed  Google Scholar 

  155. Kim, D. et al. Subclinical hypothyroidism and low-normal thyroid function are associated with nonalcoholic steatohepatitis and fibrosis. Clin. Gastroenterol. Hepatol. 16, 123–131 (2018).

    CAS  PubMed  Google Scholar 

  156. Hassan, M. M. et al. Association between hypothyroidism and hepatocellular carcinoma: a case-control study in the United States. Hepatology 49, 1563–1570 (2009).

    PubMed  PubMed Central  Google Scholar 

  157. Frau, C. et al. Local hypothyroidism favors the progression of preneoplastic lesions to hepatocellular carcinoma in rats. Hepatology 61, 249–259 (2015).

    CAS  PubMed  Google Scholar 

  158. Chan, I. H. & Privalsky, M. L. Thyroid hormone receptors mutated in liver cancer function as distorted antimorphs. Oncogene 25, 3576–3588 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Yen, C. C. et al. Mediation of the inhibitory effect of thyroid hormone on proliferation of hepatoma cells by transforming growth factor-β. J. Mol. Endocrinol. 36, 9–21 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank their funding agencies, the Singapore Ministry of Health, Ministry of Education and Ministry of Trade, the National Medical Research Council, Singapore, and the Singapore Agency for Science, Technology and Research, for grants NMRC/CSA/0054/2013 (P.M.Y.), NMRC/BNIG/2025/2014 (R.A.S.), IA/I/16/2/502691-Wellcome Trust/DBT India Alliance Intermediate Fellowship (R.A.S.) and NMRC/OFYIRG/0002/2016 (B.K.S.).

Author information

Authors and Affiliations

Authors

Contributions

R.A.S. and P.M.Y. contributed equally to researching data for the article, discussing the content and writing the manuscript. R.A.S., B.K.S. and P.M.Y. contributed equally to reviewing and/or editing the manuscript before submission.

Corresponding authors

Correspondence to Rohit A. Sinha or Paul M. Yen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, R., Singh, B. & Yen, P. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat Rev Endocrinol 14, 259–269 (2018). https://doi.org/10.1038/nrendo.2018.10

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2018.10

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing