Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metrics for glycaemic control — from HbA1c to continuous glucose monitoring

Key Points

  • Fluctuations in blood levels of glucose in diabetes mellitus manifest on several clinically relevant timescales, from gradual months-long changes in average glycaemia (reflected by levels of HbA1c) to fast transitions captured by continuous glucose monitoring

  • As intensive treatment of diabetes mellitus characteristically results in an increased incidence of hypoglycaemia, safe and clinically meaningful lowering of HbA1c levels can only be achieved if accompanied by a reduction in glucose variability

  • Although established for decades, HbA1c measures average blood glucose indirectly and has certain limitations; thus, along with HbA1c, glucose variability is increasingly regarded as a primary marker of glycaemic control

  • Various metrics of glucose variability exist that use self-monitoring data to assess the amplitude of blood glucose excursions or continuous monitoring to predict hypoglycaemia and hyperglycaemia and design artificial-pancreas algorithms

  • Certain classes of medication (for example, glucagon-like peptide 1 receptor agonists and dipeptidyl peptidase 4 inhibitors) have a pronounced variability-reducing effect; thus, glucose variability analyses will help to better evaluate their use in the treatment of diabetes mellitus

  • As technology exists for the direct observation of fluctuations in blood glucose, assessment of the efficacy of diabetes mellitus treatment can move beyond the HbA1c assay as the sole marker of glycaemic control

Abstract

As intensive treatment to lower levels of HbA1c characteristically results in an increased risk of hypoglycaemia, patients with diabetes mellitus face a life-long optimization problem to reduce average levels of glycaemia and postprandial hyperglycaemia while simultaneously avoiding hypoglycaemia. This optimization can only be achieved in the context of lowering glucose variability. In this Review, I discuss topics that are related to the assessment, quantification and optimal control of glucose fluctuations in diabetes mellitus. I focus on markers of average glycaemia and the utility and/or shortcomings of HbA1c as a 'gold-standard' metric of glycaemic control; the notion that glucose variability is characterized by two principal dimensions, amplitude and time; measures of glucose variability that are based on either self-monitoring of blood glucose data or continuous glucose monitoring (CGM); and the control of average glycaemia and glucose variability through the use of pharmacological agents or closed-loop control systems commonly referred to as the 'artificial pancreas'. I conclude that HbA1c and the various available metrics of glucose variability reflect the management of diabetes mellitus on different timescales, ranging from months (for HbA1c) to minutes (for CGM). Comprehensive assessment of the dynamics of glycaemic fluctuations is therefore crucial for providing accurate and complete information to the patient, physician, automated decision-support or artificial-pancreas system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-monitored blood levels of glucose recorded over 60 days.
Figure 2: Risk analysis of blood glucose data.
Figure 3: Effectiveness of overnight closed-loop control in reducing glucose variability.

Similar content being viewed by others

References

  1. White, N. H. et al. Identification of type I diabetic patients at increased risk for hypoglycemia during intensive therapy. N. Engl. J. Med. 308, 485–491 (1983).

    CAS  PubMed  Google Scholar 

  2. Cryer, P. E. & Gerich, J. E. Glucose counterregulation, hypoglycemia, and intensive therapy of diabetes mellitus. N. Engl. J. Med. 313, 232–241 (1985).

    CAS  PubMed  Google Scholar 

  3. Amiel, S. A., Tamborlane, W. V., Simonson, D. C. & Sherwin, R. S. Defective glucose counterregulation after strict glycemic control of insulin-dependent diabetes mellitus. N. Engl. J. Med. 316, 1376–1383 (1987).

    CAS  PubMed  Google Scholar 

  4. The Diabetes Control and Complications Trial Research Group. Hypoglycemia in the Diabetes Control and Complications Trial. Diabetes 46, 271–286 (1997).

  5. Monnier, L., Colette, C., Dejager, S. & Owens, D. R. Near normal HbA1c with stable homeostasis: the ultimate targets/aim of diabetes therapy. Rev. Endocr. Metab. Disord. 17, 91–101 (2016). This paper provides contemporary in-depth discussion of the importance of postprandial hyperglycaemia and glucose variability in assessing the treatment of diabetes mellitus.

    CAS  PubMed  Google Scholar 

  6. Svendsen, P. A., Lauritzen, T., Soegard, U. & Nerup, J. Glycosylated haemoglobin and steady-state mean blood glucose concentration in type 1 (insulin-dependent) diabetes. Diabetologia 23, 403–405 (1982).

    CAS  PubMed  Google Scholar 

  7. Santiago, J. V. Lessons from the Diabetes Control and Complications Trial. Diabetes 42, 1549–1554 (1993).

    CAS  PubMed  Google Scholar 

  8. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications of insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

  9. The Diabetes Control and Complications Trial Research Group. The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the Diabetes Control and Complications Trial. Diabetes 44, 968–983 (1995).

  10. Lachin, J. M., Genuth, S., Nathan, D. M., Zinman, B. & Rutledge, B. N. ; DCCT/EDIC Research Group. Effect of glycemic exposure on the risk of microvascular complications in the Diabetes Control and Complications Trial — revisited. Diabetes 57, 995–1001 (2008).

    CAS  PubMed  Google Scholar 

  11. Reichard, P. & Pihl, M. Mortality and treatment side effects during long-term intensified conventional insulin treatment in the Stockholm Diabetes Intervention study. Diabetes 43, 313–317 (1994).

    CAS  PubMed  Google Scholar 

  12. Reichard, P., Pihl, M., Rosenqvist, U. & Sule, J. Complications in IDDM are caused by elevated blood glucose level: the Stockholm Diabetes Intervention Study (SDIS) at 10-year follow up. Diabetologia 39, 1483–1488 (1996).

    CAS  PubMed  Google Scholar 

  13. UK Prospective Diabetes Study Group (UKPDS). Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837–853 (1998).

  14. [No authors listed.] Epidemiology of Diabetes Interventions and Complications (EDIC). Design, implementation, and preliminary results of a long-term follow-up of the Diabetes Control and Complications Trial cohort. Diabetes Care 22, 99–111 (1999).

  15. The Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Study Research Group. Mortality in type 1 diabetes in the DCCT/EDIC versus the general population. Diabetes Care 39, 1378–1383 (2016).

  16. International Expert Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 32, 1327–1334 (2009).

  17. American Diabetes Association. 2. Classification and diagnosis of diabetes. Diabetes Care 39 (Suppl. 1), 13–22 (2016).

  18. American Society of Hematology. Blood basics. Hematology http://www.hematology.org/Patients/Basics/ (2016).

  19. Hempe, J. M., Gomez, R., McCarter R. J. Jr & Chalew, S. A. High and low hemoglobin glycation phenotypes in type 1 diabetes: a challenge for interpretation of glycemic control. J. Diabetes Complicat. 16, 313–320 (2002).

    PubMed  Google Scholar 

  20. Kirk, J. K. et al. Disparities in HbA1c levels between African-American and non-Hispanic white adults with diabetes: a meta-analysis. Diabetes Care 29, 2130–2136 (2006).

    PubMed  PubMed Central  Google Scholar 

  21. Herman, W. H. et al. Differences in A1C by race and ethnicity among patients with impaired glucose tolerance in the Diabetes Prevention Program. Diabetes Care 30, 2453–2457 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kamps, J. L., Hempe, J. M. & Chalew, S. A. Racial disparity in A1C independent of mean blood glucose in children with type 1 diabetes. Diabetes Care 33, 1025–1027 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Herman, W. H. Are there clinical implications of racial differences in HbA1c? Yes, to not consider can do great harm! Diabetes Care 39, 1458–1461 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Selvin, E. Are there clinical implications of racial differences in HbA1c? A difference, to be a difference, must make a difference. Diabetes Care 39, 1462–1467 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gold, A. E., Frier, B. M., MacLeod, K. M. & Deary, I. J. A structural equation model for predictors of severe hypoglycaemia in patients with insulin-dependent diabetes mellitus. Diabet. Med. 14, 309–315 (1997).

    CAS  PubMed  Google Scholar 

  26. Cox, D. J. et al. Frequency of severe hypoglycemia in IDDM can be predicted from self-monitoring blood glucose data. J. Clin. Endocrinol. Metab. 79, 1659–1662 (1994).

    CAS  PubMed  Google Scholar 

  27. Kovatchev, B. P. et al. Assessment of risk for severe hypoglycemia among adults with IDDM: validation of the low blood glucose index. Diabetes Care 21, 1870–1875 (1998).

    CAS  PubMed  Google Scholar 

  28. Cox, D. J., Gonder-Frederick, L. A., Ritterband, L., Clarke, W. L. & Kovatchev, B. P. Prediction of severe hypoglycemia. Diabetes Care 30, 1370–1373 (2007).

    PubMed  Google Scholar 

  29. Cryer, P. E. Iatrogenic hypoglycemia as a cause of hypoglycemia-associated autonomic failure in IDDM. A vicious cycle. Diabetes 41, 255–260 (1992).

    CAS  PubMed  Google Scholar 

  30. Henderson, J. N., Allen, K. V., Deary, I. J. & Frier, B. M. Hypoglycemia in insulin-treated type 2 diabetes: frequency, symptoms and impaired awareness. Diabet. Med. 20, 1016–1021 (2003).

    CAS  PubMed  Google Scholar 

  31. Cryer, P. E. Hypoglycemia: Pathophysiology, Diagnosis and Treatment (Oxford Univ. Press, 1997).

    Google Scholar 

  32. Cryer, P. E., Davis, S. N. & Shamoon, H. Hypoglycemia in diabetes. Diabetes Care 26, 1902–1912 (2003).

    CAS  PubMed  Google Scholar 

  33. American Diabetes Association Workgroup on Hypoglycemia. Defining and reporting hypoglycemia in diabetes. Diabetes Care 28, 1245–1249 (2005).

  34. Cryer, P. E. Hypoglycaemia: the limiting factor in the glycaemic management of type I and type II diabetes. Diabetologia 45, 937–948 (2002).

    CAS  PubMed  Google Scholar 

  35. Cryer, P. E. Glycemic goals in diabetes: trade-off between glycemic control and iatrogenic hypoglycemia. Diabetes 63, 2188–2195 (2014). This paper provides a clinical justification for the dual-optimization problem of diabetes mellitus — to improve average glycaemic control without increasing the risk of hypoglycaemia.

    PubMed  Google Scholar 

  36. Diabetes Research in Children Network (DirecNet) Study Group. Relationship of A1C to glucose concentrations in children with type 1 diabetes: assessments by high-frequency glucose determinations by sensors. Diabetes Care 31, 381–385 (2008).

  37. Kovatchev, B. P., Flacke, F., Sieber, J. & Breton, M. D. Accuracy and robustness of dynamical tracking of average glycemia (A1c) to provide real-time estimation of hemoglobin A1c using routine self-monitored blood glucose data. Diabetes Technol. Ther. 16, 303–309 (2014). This paper describes HbA 1c as a resultfrom a dynamical process in time — an approach that unifies blood glucose fluctuations across several timescales.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hempe, J. M., Soros, A. A. & Chalew, S. A. Estimated average glucose and self-monitored mean blood glucose are discordant estimates of glycemic control. Diabetes Care 33, 1449–1451 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Soranzo, N. et al. Common variants at 10 genomic loci influence hemoglobin A1C levels via glycemic and nonglycemic pathways. Diabetes 59, 3229–3239 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Harding, A. H. et al. Fat consumption and HbA1c levels: the EPIC-Norfolk Study. Diabetes Care 24, 1911–1916 (2001).

    CAS  PubMed  Google Scholar 

  41. Soulimane, S. et al. HbA1c, fasting and 2 h plasma glucose in current, ex- and never-smokers: a meta-analysis. Diabetologia 57, 30–39 (2014).

    CAS  PubMed  Google Scholar 

  42. McCarter, R. J., Hempe, J. M., Gomez, R. & Chalew, S. A. Biological variation in HbA1c predicts risk of retinopathy and nephropathy in type 1 diabetes. Diabetes Care 27, 1259–1264 (2004).

    CAS  PubMed  Google Scholar 

  43. Soros, A. A., Chalew, S. A., McCarter, R. J., Shepard, R. & Hempe, J. M. Hemoglobin glycation index: a robust measure of hemoglobin A1c bias in pediatric type 1 diabetes patients. Pediatr. Diabetes 11, 455–461 (2010).

    CAS  PubMed  Google Scholar 

  44. Hempe, J. M. et al. The hemoglobin glycation index identifies subpopulations with harms or benefits from intensive treatment in the ACCORD trial. Diabetes Care 38, 1067–1074 (2015). This paper presents evidence emphasizing the clinical importance of the discrepancy between HbA 1c and average glycaemia.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Osterman-Golkar, S. M. & Vesper, H. W. Assessment of the relationship between glucose and A1c using kinetic modeling. J. Diabetes Complicat. 20, 285–294 (2006).

    PubMed  Google Scholar 

  46. Trevino, G. On the weighted-average relationship between plasma glucose and HbA1c . Diabetes Care 29, 466 (2006).

    PubMed  Google Scholar 

  47. Trevino, G. A nonlinear relation between glucose and A1c. Diabetes Res. Clin. Pract. 79, e14 (2008).

    PubMed  Google Scholar 

  48. Kahrom, M. An innovative mathematical model: a key to the riddle of HbA1c . Int. J. Endocrinol. 2010, 481326 (2010).

    PubMed  PubMed Central  Google Scholar 

  49. Nathan, D. M. et al. Translating the A1C assay into estimated average glucose values. Diabetes Care 31, 1473–1478 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Breton, M. D., Sieber, J., Freckmann, G., Flacke, F. & Kovatchev, B. P. Decision support via dynamic tracking of HbA1c using sparse SMBG measurements: effect of calibration. Diabetes 65 (Suppl. 1), A228 (2016).

    Google Scholar 

  51. Temelkova-Kurktschiev, T. S. et al. Plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1c level. Diabetes Care 23, 1830–1834 (2000).

    CAS  PubMed  Google Scholar 

  52. Haffner, S. M. The importance of postprandial hyperglycaemia in development of cardiovascular disease in people with diabetes. Int. J. Clin. Pract. Suppl. 123, 24–26 (2001).

    Google Scholar 

  53. Esposito, K., Giugliano, D., Nappo, F. & Martella, K. Regression of carotid atherosclerosis by control of postprandial hyperglycemia in type 2 diabetes mellitus. Circulation 110, 214–219 (2004).

    CAS  PubMed  Google Scholar 

  54. Monnier, L. et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295, 1681–1687 (2006).

    CAS  Google Scholar 

  55. Cox, D. J., Gonder-Frederick, L. A., McCall, A., Kovatchev, B. P. & Clarke, W. L. The effects of glucose fluctuation on cognitive function and QOL: the functional costs of hypoglycaemia and hyperglycaemia among adults with type 1 or type 2 diabetes. Int. J. Clin. Pract. Suppl. 129, 20–26 (2002).

    Google Scholar 

  56. Cox, D. J., McCall, A., Kovatchev, B. P., Ilag, L. & Tan, M. H. Effects of blood glucose rate of changes on perceived mood and cognitive symptoms in insulin-treated type 2 diabetes. Diabetes Care 30, 2001–2002 (2007).

    PubMed  Google Scholar 

  57. Hirsch, I. B. & Brownlee, M. Should minimal blood glucose variability become the gold standard of glycemic control? J. Diabetes Complicat. 19, 178–181 (2005). This is one of the first papers presenting a strong clinical argument for the importance of blood glucose variability.

    PubMed  Google Scholar 

  58. Brownlee, M. & Hirsch, I. B. Glycemic variability: a hemoglobin A1c–independent risk factor for diabetic complication? JAMA 295, 1707–1708 (2006).

    CAS  PubMed  Google Scholar 

  59. Monnier, L. & Colette, C. Glycemic variability: should we and can we prevent it? Diabetes Care 31 (Suppl. 2), S150–S154 (2008).

    CAS  PubMed  Google Scholar 

  60. McCall, A. L. & Kovatchev, B. P. The median is not the only message: a clinician's perspective on mathematical analysis of glycemic variability and modeling in diabetes mellitus. J. Diabetes Sci. Technol. 3, 3–11 (2009).

    PubMed  PubMed Central  Google Scholar 

  61. Siegelaar, S. E., Holleman, F., Hoekstra, J. B. & DeVries, J. H. Glucose variability; does it matter? Endocr. Rev. 31, 171–182 (2010).

    CAS  PubMed  Google Scholar 

  62. DeVries, J. H. Glucose variability: where it is important and how to measure it. Diabetes 62, 1405–1408 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hirsch, I. B. Glycemic variability and diabetes complications: does it matter? Of course it does! Diabetes Care 38, 1610–1614 (2015).

    CAS  PubMed  Google Scholar 

  64. Service, F. J. Glucose variability. Diabetes 62, 1398–1404 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bergenstal, R. M. Glycemic variability and diabetes complications: does it matter? Simply put, there are better glycemic markers! Diabetes Care 38, 1615–1621 (2015).

    PubMed  Google Scholar 

  66. Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 358, 2545–2559 (2008).

  67. ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358, 2560–2572 (2008).

  68. FLAT-SUGAR Trial Investigators. Design of FLAT-SUGAR. Randomized trial of prandial insulin versus prandial GLP-1 receptor agonist together with basal insulin and metformin for high-risk type 2 diabetes. Diabetes Care 38, 1558–1566 (2015).

  69. Hirsch, I. B. et al. Glucose variability in type 2 diabetes: the initial results of the FLAT-SUGAR trial. Diabetes 64 (Suppl. 1), A100 (2015).

    Google Scholar 

  70. Umpierrez, G. E. et al. Lixisenatide added to basal insulin reduces glycemic variability in T2DM patients. Diabetes 63 (Suppl. 1), A260 (2014).

    Google Scholar 

  71. Rodbard, D. The challenges of measuring glycemic variability. J. Diabetes Sci. Technol. 6, 712–715 (2012).

    PubMed  PubMed Central  Google Scholar 

  72. Kovatchev, B. P. & Cobelli, C. Glucose variability: timing, risk analysis, and relationship to hypoglycemia in diabetes. Diabetes Care 39, 502–510 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kovatchev, B. P., Cox, D. J., Gonder-Frederick, L. A. & Clarke, W. L. Methods for quantifying self-monitoring blood glucose profiles exemplified by an examination of blood glucose patterns in patients with type 1 and type 2 diabetes. Diabetes Technol. Ther. 4, 295–303 (2002).

    CAS  PubMed  Google Scholar 

  74. Kovatchev, B. P., Cox, D. J., Kumar, A., Gonder-Frederick, L. A. & Clarke, W. L. Algorithmic evaluation of metabolic control and risk of severe hypoglycemia in type 1 and type 2 diabetes using self-monitoring blood glucose (SMBG) data. Diabetes Technol. Ther. 5, 817–828 (2003).

    CAS  PubMed  Google Scholar 

  75. Kovatchev, B. P. & Clarke, W. L. Peculiarities of the continuous glucose monitoring data stream and their impact on developing closed-loop control technology. J. Diabetes Sci. Technol. 2, 158–163 (2008).

    PubMed  PubMed Central  Google Scholar 

  76. Cobelli, C. et al. Diabetes: models, signals, and control. IEEE Rev. Biomed. Eng. 2, 54–96 (2009). This is one of the most comprehensive reviews to date of the quantitative methods available to the research and clinical practice of diabetes mellitus, ranging from metabolic in silico models to processing of CGM data and design of artificial-pancreas algorithms.

    PubMed  PubMed Central  Google Scholar 

  77. Hovorka, R. Continuous glucose monitoring and closed-loop systems. Diabet. Med. 23, 1–12 (2006).

    CAS  PubMed  Google Scholar 

  78. Hovorka, R. Closed-loop insulin delivery: from bench to clinical practice. Nat. Rev. Endocrinol. 7, 385–395 (2011).

    CAS  PubMed  Google Scholar 

  79. Kovatchev, B. P. Is glycemic variability important to assessing anti-diabetes therapies? Curr. Diab. Rep. 6, 350–356 (2006).

    PubMed  Google Scholar 

  80. Service, F. J. et al. Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes 19, 644–655 (1970). This paper introduced MAGE — to date, one of the first and most frequently used metrics of glucose variability.

    CAS  PubMed  Google Scholar 

  81. Costa, M. D., Henriques, T., Munshi, M. N., Segal, A. R. & Goldberger, A. L. Dynamical glucometry: use of multiscale entropy analysis in diabetes. Chaos 24, 033139 (2014).

    PubMed  PubMed Central  Google Scholar 

  82. Chen, J. L., Chen, P. F. & Wang, H. M. Decreased complexity of glucose dynamics in diabetes: evidence from multiscale entropy analysis of continuous glucose monitoring system data. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R179–R183 (2014).

    CAS  PubMed  Google Scholar 

  83. Pørksen, N. et al. Pulsatile insulin secretion: detection, regulation, and role in diabetes. Diabetes 51 (Suppl. 1), S245–S254 (2002).

    PubMed  Google Scholar 

  84. Garg, S. K. et al. Hypoglycemia begets hypoglycemia: the order effect in the ASPIRE in-clinic study. Diabetes Technol. Ther. 16, 125–130 (2014).

    CAS  PubMed  Google Scholar 

  85. Cryer, P. E. Hypoglycemia begets hypoglycemia in IDDM. Diabetes 42, 1691–1693 (1993). This landmark paper describes the occurrence of hypoglycaemia as a result of a recurrent process in time.

    CAS  PubMed  Google Scholar 

  86. Schlichtkrull, J., Munck, O. & Jersild, M. The M-value, an index of blood-sugar control in diabetics. Acta Med. Scand. 177, 95–102 (1965).

    CAS  PubMed  Google Scholar 

  87. Ryan, E. A. et al. Assessment of the severity of hypoglycemia and glycemic lability in type 1 diabetic subjects undergoing islet transplantation. Diabetes 53, 955–962 (2004).

    CAS  PubMed  Google Scholar 

  88. Hermanides, J. et al. Glucose variability is associated with intensive care unit mortality. Crit. Care Med. 38, 838–842 (2010).

    CAS  PubMed  Google Scholar 

  89. Kovatchev, B. P., Cox, D. J., Gonder-Frederick, L. A. & Clarke, W. Symmetrization of the blood glucose measurement scale and its applications. Diabetes Care 20, 1655–1658 (1997). This paper introduced the basics of the risk analysis of blood glucose data — a technique that is now used in a range of applications,from assessment of glucose variability to the design of closed-loop control algorithms.

    CAS  PubMed  Google Scholar 

  90. Kovatchev, B. P., Otto, E., Cox, D., Gonder-Frederick, L. & Clarke, W. Evaluation of a new measure of blood glucose variability in diabetes. Diabetes Care 29, 2433–2438 (2006).

    CAS  PubMed  Google Scholar 

  91. Kovatchev, B. P., Straume, M., Cox, D. J. & Farhy, L. S. Risk analysis of blood glucose data: a quantitative approach to optimizing the control of insulin dependent diabetes. J. Theor. Med. 3, 1–10 (2001).

    Google Scholar 

  92. Patton, S. R. & Clements, M. A. Average daily risk range as a measure for clinical research and routine care. J. Diabetes Sci. Technol. 7, 1370–1375 (2013).

    PubMed  PubMed Central  Google Scholar 

  93. Kovatchev, B. P., Clarke, W. L., Breton, M., Brayman, K. & McCall, A. Quantifying temporal glucose variability in diabetes via continuous glucose monitoring: mathematical methods and clinical application. Diabetes Technol. Ther. 7, 849–862 (2005).

    CAS  PubMed  Google Scholar 

  94. McDonnell, C. M., Donath, S. M., Vidmar, S. I., Werther, G. A. & Cameron, F. J. A novel approach to continuous glucose analysis utilizing glycemic variation. Diabetes Technol. Ther. 7, 253–263 (2005).

    CAS  PubMed  Google Scholar 

  95. Baghurst, P. A. Calculating the mean amplitude of glycemic excursion from continuous glucose monitoring data: an automated algorithm. Diabetes Technol. Ther. 13, 296–302 (2011).

    CAS  PubMed  Google Scholar 

  96. Fabris, C., Patek, S. & Breton, M. Are risk indices derived from CGM interchangeable with SMBG-based indices? J. Diabetes Sci. Technol. 10, 50–59 (2016).

    Google Scholar 

  97. McCall, A. L., Cox, D. J., Crean, J., Gloster, M. & Kovatchev, B. P. A novel analytical method for assessing glucose variability: using CGMS in type 1 diabetes mellitus. Diabetes Technol. Ther. 8, 644–653 (2006).

    CAS  PubMed  Google Scholar 

  98. Rodbard, D. New and improved methods to characterize glycemic variability using continuous glucose monitoring. Diabetes Technol. Ther. 11, 551–565 (2009).

    CAS  PubMed  Google Scholar 

  99. Rodbard, D. Interpretation of continuous glucose monitoring data: glycemic variability and quality of control. Diabetes Technol. Ther. 11 (Suppl. 1), S55–S67 (2009).

    CAS  PubMed  Google Scholar 

  100. Clarke, W. & Kovatchev, B. Statistical tools to analyze continuous glucose monitor data. Diabetes Technol. Ther. 11 (Suppl. 1), S45–S54 (2009).

    CAS  PubMed  Google Scholar 

  101. Magni, L. et al. Evaluating the efficacy of closed-loop glucose regulation via control-variability grid analysis. J. Diabetes Sci. Technol. 2, 630–635 (2008).

    PubMed  PubMed Central  Google Scholar 

  102. Inzucchi, S. E., Umpierrez, G., DiGenio, A., Zhou, R. & Kovatchev, B. P. How well do glucose variability measures predict patient glycaemic outcomes during treatment intensification in type 2 diabetes? Diabetes Res. Clin. Pract. 110, 234–240 (2015).

    CAS  PubMed  Google Scholar 

  103. Drucker, D. J. & Nauck, M. A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368, 1696–1705 (2006).

    CAS  PubMed  Google Scholar 

  104. Dolgin, E. Managed by machine. Nature 485, S6–S8 (2012).

    CAS  PubMed  Google Scholar 

  105. Clery, D. A pancreas in a box. Science 343, 133–115 (2014).

    CAS  PubMed  Google Scholar 

  106. Hampton, T. Fully automated artificial pancreas finally within reach. JAMA 311, 2260–2261 (2014).

    CAS  PubMed  Google Scholar 

  107. Hovorka, R. et al. Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial. Lancet 375, 743–751 (2010).

    CAS  PubMed  Google Scholar 

  108. El-Khatib, F. H., Russell, S. J., Nathan, D. M., Sutherlin, R. G. & Damiano, E. R. A bihormonal closed-loop artificial pancreas for type 1 diabetes. Sci. Transl Med. 2, 27ra27 (2010).

    PubMed  PubMed Central  Google Scholar 

  109. Kropff, J. et al. 2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial. Lancet Diabetes Endocrinol. 3, 939–947 (2015).

    PubMed  Google Scholar 

  110. Anderson, S. M. et al. Multinational home use of closed-loop control is safe and effective. Diabetes Care 39, 1143–1150 (2016).

    PubMed  PubMed Central  Google Scholar 

  111. Kovatchev, B. P. et al. Feasibility of long-term closed-loop control: a multicenter 6-month trial of 24/7 automated insulin delivery. Diabetes Technol. Ther. 19, 18–24 (2017).

    CAS  PubMed  Google Scholar 

  112. Cefalu, W. T. & Tamborlane, W. V. The artificial pancreas: are we there yet? Diabetes Care 37, 1182–1183 (2014).

    PubMed  PubMed Central  Google Scholar 

  113. Kovatchev, B. P., Tamborlane, W. V., Cefalu, W. T. & Cobelli, C. The artificial pancreas in 2016: a digital treatment ecosystem for diabetes. Diabetes Care 39, 1123–1126 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. Doyle, F. J. III, Huyett, L. M., Lee, J. B., Zisser, H. C. & Dassau, E. Closed-loop artificial pancreas systems: engineering the algorithms. Diabetes Care 37, 1191–1197 (2014).

    PubMed  PubMed Central  Google Scholar 

  115. Percival, M. W., Zisser, H., Jovanovicˇ, L. & Doyle, F. J. III. Closed-loop control and advisory mode evaluation of an artificial pancreatic β cell: use of proportional–integral–derivative equivalent model-based controllers. J. Diabetes Sci. Technol. 2, 636–644 (2008).

    PubMed  PubMed Central  Google Scholar 

  116. Brown, S. A. et al. Multinight “bedside” closed-loop control for patients with type 1 diabetes. Diabetes Technol. Ther. 17, 203–209 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Maahs, D. M. et al. Outcome measures for artificial pancreas clinical trials: a Consensus Report. Diabetes Care 39, 1175–1179 (2016).

    PubMed  PubMed Central  Google Scholar 

  118. Guerci, B. et al. Continuous glucose profiles with vildagliptin versus sitagliptin in add-on to metformin: results from the randomized Optima study. Diabetes Metab. 38, 359–366 (2012).

    CAS  PubMed  Google Scholar 

  119. McCall, A. L. et al. Reduced daily risk of glycemic variability: comparison of exenatide with insulin glargine. Diabetes Technol. Ther. 11, 339–344 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Mori, Y., Taniguchi, Y., Sezaki, K., Yokoyama, J. & Utsunomiya, K. Liraglutide narrows the range of circadian glycemic variations in Japanese type 2 diabetes patients and nearly flattens these variations in drug-naive type 2 diabetes patients: continuous glucose monitoring–based study. Diabetes Technol. Ther. 13, 1139–1144 (2011).

    CAS  PubMed  Google Scholar 

  121. Heise, T. et al. A. Pharmacokinetics, pharmacodynamics and tolerability of multiple oral doses of linagliptin, a dipeptidyl peptidase-4 inhibitor in male type 2 diabetes patients. Diabetes Obes. Metab. 11, 786–794 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author's research is supported by the National Institute of Diabetes and Digestive and Kidney Diseases (grant RO1 DK051562).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris P. Kovatchev.

Ethics declarations

Competing interests

The author has received research grants and personal fees from Dexcom and Sanofi-Aventis, research material support from Dexcom, Roche Diagnostics and Tandem Diabetes Care, holds intellectual property relevant to the subject of this Review (handled through the University of Virginia Licensing and Ventures Group) and is board member and a shareholder in TypeZero Technologies.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovatchev, B. Metrics for glycaemic control — from HbA1c to continuous glucose monitoring. Nat Rev Endocrinol 13, 425–436 (2017). https://doi.org/10.1038/nrendo.2017.3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2017.3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing