Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New outlook on the diagnosis, treatment and follow-up of childhood-onset craniopharyngioma

Key Points

  • The clinical, neuroradiological and surgical definition of hypothalamic involvement is a fundamental factor related to poor postoperative outcome, progressive obesity and neuropsychological impairment in children after surgical removal of craniopharyngioma

  • The previously assumed 'gold-standard' objective of a primary radical removal of the lesion in all cases needs to be replaced with the new paradigm of a limited resection plus focused radiotherapy in patients with craniopharyngioma and hypothalamic lesions

  • Hypothalamic involvement and treatment-related hypothalamic lesions are associated with the highest risk of postoperative sequelae and impaired quality of survival

  • 3D intensity-modulated proton beam radiotherapy has potential advantages over photon beam methods to focus and limit the radiation effects to optic and hypothalamic structures

  • Preclinical, in vivo mouse models can be used to investigate the pathogenesis of adamantinomatous craniopharyngioma and to test novel treatments

Abstract

Childhood-onset craniopharyngiomas are rare embryonic tumours of low-grade histological malignancy. Novel insights into the molecular pathogenesis of human adamantinomatous craniopharyngioma have started to unveil the possibility of testing novel treatments targeting pathogenic pathways. Hypothalamic involvement and/or treatment-related lesions result in impaired physical and social functionality and in severe neuroendocrine sequelae. Quality of survival in patients with craniopharyngioma with hypothalamic involvement is impaired by severe obesity, physical fatigue and non-optimal psychosocial development. Patients with craniopharyngioma involving hypothalamic structures have reduced 20-year overall survival, but overall and progression-free survival are not related to the degree of surgical resection. Irradiation is effective in the prevention of tumour progression and recurrence. For favourably localized craniopharyngiomas, the preferred treatment of choice is to attempt complete resection with preservation of visual, hypothalamic and pituitary function. For unfavourably localized tumours in close proximity to optic and/or hypothalamic structures, a radical neurosurgical strategy attempting complete resection is not recommended owing to potential severe sequelae. As expertise has been shown to have an impact on post-treatment morbidity, medical societies should establish criteria for adequate professional expertise for the treatment of craniopharyngioma. On the basis of these criteria, health authorities should organize the certification of centres of excellence that are authorized to treat and care for patients with this chronic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular pathways involved in human adamantinomatous craniopharyngioma.
Figure 2: Paracrine model for the involvement of pituitary stem cells in tumorigenesis.
Figure 3: Childhood craniopharyngioma.
Figure 4: Survival of patients with childhood-onset craniopharyngioma.
Figure 5: MRI of childhood craniopharyngioma.

Similar content being viewed by others

Hermann L. Müller, Thomas E. Merchant, … Stephanie Puget

References

  1. Müller, H. L. Craniopharyngioma. Endocr. Rev. 35, 513–543 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Müller, H. L. Consequences of craniopharyngioma surgery in children. J. Clin. Endocrinol. Metab. 96, 1981–1991 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Müller, H. L. Craniopharyngioma and hypothalamic injury: latest insights into consequent eating disorders and obesity. Curr. Opin. Endocrinol. Diabetes Obes. 23, 81–89 (2016). This article reviews the broad range of neuroendocrine disorders in patients with childhood-onset craniopharyngioma.

    Article  CAS  PubMed  Google Scholar 

  4. Müller, H. L. Risk-adapted treatment and follow-up management in childhood-onset craniopharyngioma. Expert Rev. Neurother. 16, 535–548 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Bunin, G. R. et al. The descriptive epidemiology of craniopharyngioma. J. Neurosurg. 89, 547–551 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Olsson, D. S., Andersson, E., Bryngelsson, I. L., Nilsson, A. G. & Johannsson, G. Excess mortality and morbidity in patients with craniopharyngioma, especially in patients with childhood onset: a population-based study in Sweden. J. Clin. Endocrinol. Metab. 100, 467–474 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Erfurth, E. M., Holmer, H. & Fjalldal, S. B. Mortality and morbidity in adult craniopharyngioma. Pituitary 16, 46–55 (2013).

    Article  PubMed  Google Scholar 

  8. Müller, H. L. et al. Longitudinal study on growth and body mass index before and after diagnosis of childhood craniopharyngioma. J. Clin. Endocrinol. Metab. 89, 3298–3305 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Sklar, C. A. Craniopharyngioma: endocrine abnormalities at presentation. Pediatr. Neurosurg. 21 (Suppl. 1), 18–20 (1994).

    Article  PubMed  Google Scholar 

  10. Hoffmann, A. et al. History before diagnosis in childhood craniopharyngioma: associations with initial presentation and long-term prognosis. Eur. J. Endocrinol. 173, 853–862 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Steno, J., Malacek, M. & Bizik, I. Tumor–third ventricular relationships in supradiaphragmatic craniopharyngiomas: correlation of morphological, magnetic resonance imaging, and operative findings. Neurosurgery 54, 1051–1058 (2004).

    Article  PubMed  Google Scholar 

  12. Prieto, R., Pascual, J. M. & Barrios, L. Optic chiasm distortions caused by craniopharyngiomas: clinical and magnetic resonance imaging correlation and influence on visual outcome. World Neurosurg. 83, 500–529 (2015).

    Article  PubMed  Google Scholar 

  13. Pascual, J. M., Prieto, R., Carrasco, R. & Barrios, L. Displacement of mammillary bodies by craniopharyngiomas involving the third ventricle: surgical–MRI correlation and use in topographical diagnosis. J. Neurosurg. 119, 381–405 (2013).

    Article  PubMed  Google Scholar 

  14. Saeki, N. et al. Heavily T2 weighted MR images of anterior optic pathways in patients with sellar and parasellar tumours — prediction of surgical anatomy. Acta Neurochir. (Wien) 144, 25–35 (2002).

    Article  CAS  Google Scholar 

  15. Xie, T. et al. 3D-FIESTA MR images are useful in the evaluation of the endoscopic expanded endonasal approach for midline skull-base lesions. Acta Neurochir. (Wien) 153, 12–18 (2011).

    Article  Google Scholar 

  16. Sekine, S. et al. Craniopharyngiomas of adamantinomatous type harbor β-catenin gene mutations. Am. J. Pathol. 161, 1997–2001 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kato, K. et al. Possible linkage between specific histological structures and aberrant reactivation of the Wnt pathway in adamantinomatous craniopharyngioma. J. Pathol. 203, 814–821 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Buslei, R. et al. Common mutations of β-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region. Acta Neuropathol. 109, 589–597 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Brastianos, P. K. et al. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat. Genet. 46, 161–165 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Holsken, A. et al. Adamantinomatous and papillary craniopharyngiomas are characterized by distinct epigenomic as well as mutational and transcriptomic profiles. Acta Neuropathol. Commun. 4, 20 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Larkin, S. J., Preda, V., Karavitaki, N., Grossman, A. & Ansorge, O. BRAF V600E mutations are characteristic for papillary craniopharyngioma and may coexist with CTNNB1-mutated adamantinomatous craniopharyngioma. Acta Neuropathol. 127, 927–929 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Martinez-Barbera, J. P. & Buslei, R. Adamantinomatous craniopharyngioma: pathology, molecular genetics and mouse models. J. Pediatr. Endocrinol. Metab. 28, 7–17 (2015). This article reviews novel findings on molecular genetics and a mouse model for adamantinomatous craniopharyngioma.

    Article  CAS  PubMed  Google Scholar 

  23. Gaston-Massuet, C. et al. Increased Wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proc. Natl Acad. Sci. USA 108, 11482–11487 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Holsken, A. et al. Target gene activation of the Wnt signaling pathway in nuclear β-catenin accumulating cells of adamantinomatous craniopharyngiomas. Brain Pathol. 19, 357–364 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Preda, V., Larkin, S. J., Karavitaki, N., Ansorge, O. & Grossman, A. B. The Wnt signalling cascade and the adherens junction complex in craniopharyngioma tumorigenesis. Endocr. Pathol. 26, 1–8 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Hofmann, B. M. et al. Nuclear β-catenin accumulation as reliable marker for the differentiation between cystic craniopharyngiomas and rathke cleft cysts: a clinico-pathologic approach. Am. J. Surg. Pathol. 30, 1595–1603 (2006).

    Article  PubMed  Google Scholar 

  27. Gump, J. M. et al. Identification of targets for rational pharmacological therapy in childhood craniopharyngioma. Acta Neuropathol. Commun. 3, 30 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Holsken, A., Buchfelder, M., Fahlbusch, R., Blumcke, I. & Buslei, R. Tumour cell migration in adamantinomatous craniopharyngiomas is promoted by activated Wnt-signalling. Acta Neuropathol. 119, 631–639 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Holsken, A. et al. EGFR signaling regulates tumor cell migration in craniopharyngiomas. Clin. Cancer Res. 17, 4367–4377 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Stache, C. et al. Tight junction protein claudin-1 is differentially expressed in craniopharyngioma subtypes and indicates invasive tumor growth. Neuro Oncol. 16, 256–264 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Andoniadou, C. L. et al. Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma. Acta Neuropathol. 124, 259–271 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gomes, D. C. et al. Sonic Hedgehog pathway is upregulated in adamantinomatous craniopharyngiomas. Eur. J. Endocrinol. 172, 603–608 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Gong, J. et al. High expression levels of CXCL12 and CXCR4 predict recurrence of adamanti-nomatous craniopharyngiomas in children. Cancer Biomark. 14, 241–251 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Martinez-Barbera, J. P. 60 years of neuroendocrinology: biology of human craniopharyngioma: lessons from mouse models. J. Endocrinol. 226, T161–T172 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Andoniadou, C. L. et al. Sox2+ stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell 13, 433–445 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Kode, A. et al. Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature 506, 240–244 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Bullard, D. E. & Bigner, D. D. Heterotransplantation of human craniopharyngiomas in athymic “nude” mice. Neurosurgery 4, 308–314 (1979).

    Article  CAS  PubMed  Google Scholar 

  39. Xu, J. et al. Angiogenesis and cell proliferation in human craniopharyngioma xenografts in nude mice. J. Neurosurg. 105, 306–310 (2006).

    Article  PubMed  Google Scholar 

  40. Stache, C. et al. Insights into the infiltrative behavior of adamantinomatous craniopharyngioma in a new xenotransplant mouse model. Brain Pathol. 25, 1–10 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Apps, J. R. et al. Imaging invasion: Micro-CT imaging of adamantinomatous craniopharyngioma highlights cell type specific spatial relationships of tissue invasion. Acta Neuropathol. Commun. 4, 57 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Pettorini, B. L. et al. The role of inflammation in the genesis of the cystic component of craniopharyngiomas. Childs Nerv. Syst. 26, 1779–1784 (2010).

    Article  PubMed  Google Scholar 

  43. Stevens, A., Kloter, I. & Roggendorf, W. Inflammatory infiltrates and natural killer cell presence in human brain tumors. Cancer 61, 738–743 (1988).

    Article  CAS  PubMed  Google Scholar 

  44. Hoffman, H. J. et al. Aggressive surgical management of craniopharyngiomas in children. J. Neurosurg. 76, 47–52 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Choux, M. & Lena, G. Bases of surgical management of craniopharyngioma in children [proceedings]. Acta Neurochir. Suppl. (Wien) 28, 348 (1979).

    CAS  Google Scholar 

  46. Pierre-Kahn, A. et al. Treatment of craniopharyngiomas in children. Retrospective analysis of 50 cases. Arch. Fr. Pediatr. 45, 163–167 (in French) (1988).

    CAS  PubMed  Google Scholar 

  47. Yasargil, M. G. et al. Total removal of craniopharyngiomas. Approaches and long-term results in 144 patients. J. Neurosurg. 73, 3–11 (1990).

    Article  CAS  PubMed  Google Scholar 

  48. Caldarelli, M., di Rocco, C., Papacci, F. & Colosimo, C. Jr. Management of recurrent craniopharyngioma. Acta Neurochir. (Wien) 140, 447–454 (1998).

    Article  CAS  Google Scholar 

  49. Zuccaro, G. Radical resection of craniopharyngioma. Childs Nerv. Syst. 21, 679–690 (2005).

    Article  PubMed  Google Scholar 

  50. DeVile, C. J., Grant, D. B., Hayward, R. D. & Stanhope, R. Growth and endocrine sequelae of craniopharyngioma. Arch. Dis. Child. 75, 108–114 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Müller, H. L. et al. Functional capacity and body mass index in patients with sellar masses — cross-sectional study on 403 patients diagnosed during childhood and adolescence. Childs Nerv. Syst. 21, 539–545 (2005).

    Article  PubMed  Google Scholar 

  52. Müller, H. L. et al. Longitudinal study on quality of life in 102 survivors of childhood craniopharyngioma. Childs Nerv. Syst. 21, 975–980 (2005).

    Article  PubMed  Google Scholar 

  53. Puget, S. et al. Pediatric craniopharyngiomas: classification and treatment according to the degree of hypothalamic involvement. J. Neurosurg. 106, 3–12 (2007). This article reports on a currently used grading system for hypothalamic involvement in childhood-onset craniopharyngioma.

    PubMed  Google Scholar 

  54. Sainte-Rose, C. et al. Craniopharyngioma: the pendulum of surgical management. Childs Nerv. Syst. 21, 691–695 (2005).

    Article  PubMed  Google Scholar 

  55. Mallucci, C. et al. Management of craniopharyngioma: the Liverpool experience following the introduction of the CCLG guidelines. Introducing a new risk assessment grading system. Childs Nerv. Syst. 28, 1181–1192 (2012).

    Article  PubMed  Google Scholar 

  56. Bartels, U., Laperriere, N., Bouffet, E. & Drake, J. Intracystic therapies for cystic craniopharyngioma in childhood. Front. Endocrinol. (Lausanne) 3, 39 (2012). This is a comprehensive review on intracystic treatment options in childhood-onset craniopharyngioma.

    Article  Google Scholar 

  57. Dastoli, P. A. et al. Cystic craniopharyngioma: intratumoral chemotherapy with α interferon. Arq. Neuropsiquiatr. 69, 50–55 (2011).

    Article  PubMed  Google Scholar 

  58. Tatreau, J. R. et al. Anatomical considerations for endoscopic endonasal skull base surgery in pediatric patients. Laryngoscope 120, 1730–1737 (2010).

    Article  PubMed  Google Scholar 

  59. Ali, Z. S. et al. Suprasellar pediatric craniopharyngioma resection via endonasal endoscopic approach. Childs Nerv. Syst. 29, 2065–2070 (2013).

    Article  PubMed  Google Scholar 

  60. Campbell, P. G. et al. Endocrinological and ophthalmological consequences of an initial endonasal endoscopic approach for resection of craniopharyngiomas. Neurosurg. Focus 28, E8 (2010).

    Article  PubMed  Google Scholar 

  61. Locatelli, D. et al. Endoscopic endonasal transsphenoidal surgery for sellar tumors in children. Int. J. Pediatr. Otorhinolaryngol. 74, 1298–1302 (2010).

    Article  PubMed  Google Scholar 

  62. Fahlbusch, R., Honegger, J., Paulus, W., Huk, W. & Buchfelder, M. Surgical treatment of craniopharyngiomas: experience with 168 patients. J. Neurosurg. 90, 237–250 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Zona, G. & Spaziante, R. Management of cystic craniopharyngiomas in childhood by a transsphenoidal approach. J. Pediatr. Endocrinol. Metab. 19 (Suppl. 1), 381–388 (2006).

    PubMed  Google Scholar 

  64. Elliott, R. E., Jane, J. A. Jr & Wisoff, J. H. Surgical management of craniopharyngiomas in children: meta-analysis and comparison of transcranial and transsphenoidal approaches. Neurosurgery 69, 630–643 (2011).

    Article  PubMed  Google Scholar 

  65. Prieto, R. et al. Predictive factors for craniopharyngioma recurrence: a systematic review and illustrative case report of a rapid recurrence. World Neurosurg. 79, 733–749 (2013).

    Article  PubMed  Google Scholar 

  66. Steno, J. Microsurgical topography of craniopharyngiomas. Acta Neurochir. Suppl. (Wien) 35, 94–100 (1985).

    Article  CAS  Google Scholar 

  67. Pascual, J. M., Prieto, R. & Carrasco, R. Infundibulo-tuberal or not strictly intraventricular craniopharyngioma: evidence for a major topographical category. Acta Neurochir. (Wien) 153, 2403–2425 (2011).

    Article  Google Scholar 

  68. Pan, J. et al. Intraventricular craniopharyngioma: morphological analysis and outcome evaluation of 17 cases. Acta Neurochir. (Wien) 153, 773–784 (2011).

    Article  Google Scholar 

  69. Qi, S. et al. Anatomic relations of the arachnoidea around the pituitary stalk: relevance for surgical removal of craniopharyngiomas. Acta Neurochir. (Wien) 153, 785–796 (2011).

    Article  Google Scholar 

  70. Tomita, T. & Bowman, R. M. Craniopharyngiomas in children: surgical experience at Children's Memorial Hospital. Childs Nerv. Syst. 21, 729–746 (2005).

    Article  PubMed  Google Scholar 

  71. Wang, K. C., Hong, S. H., Kim, S. K. & Cho, B. K. Origin of craniopharyngiomas: implication on the growth pattern. Childs Nerv. Syst. 21, 628–634 (2005).

    Article  PubMed  Google Scholar 

  72. Kiehna, E. N. & Merchant, T. E. Radiation therapy for pediatric craniopharyngioma. Neurosurg. Focus 28, E10 (2010). This is a comprehensive review of radio-oncological treatment techniques and strategies in childhood-onset craniopharyngioma.

    Article  PubMed  Google Scholar 

  73. Dunbar, S. F. et al. Stereotactic radiotherapy for pediatric and adult brain tumors: preliminary report. Int. J. Radiat. Oncol. Biol. Phys. 30, 531–539 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Merchant, T. E. et al. Disease control after reduced volume conformal and intensity modulated radiation therapy for childhood craniopharyngioma. Int. J. Radiat. Oncol. Biol. Phys. 85, e187–e192 (2013).

    Article  PubMed  Google Scholar 

  75. Di Pinto, M., Conklin, H. M., Li, C. & Merchant, T. E. Learning and memory following conformal radiation therapy for pediatric craniopharyngioma and low-grade glioma. Int. J. Radiat. Oncol. Biol. Phys. 84, e363–e369 (2012).

    Article  PubMed  Google Scholar 

  76. Beltran, C., Roca, M. & Merchant, T. E. On the benefits and risks of proton therapy in pediatric craniopharyngioma. Int. J. Radiat. Oncol. Biol. Phys. 82, e281–e287 (2012).

    Article  PubMed  Google Scholar 

  77. Merchant, T. E. et al. Necrosis, vasculopathy and neurological complications after proton therapy for childhood craniopharyngioma: Results from a prospective trial and a photon cohort comparison [abstract 269]. Int. J. Radiat. Oncol. Biol. Phys. 96 (Suppl.), S120–S121 (2016).

    Article  Google Scholar 

  78. Bishop, A. J. et al. Proton beam therapy versus conformal photon radiation therapy for childhood craniopharyngioma: multi-institutional analysis of outcomes, cyst dynamics, and toxicity. Int. J. Radiat. Oncol. Biol. Phys. 90, 354–361 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Uh, J. et al. Effects of surgery and proton therapy on cerebral white matter of craniopharyngioma patients. Int. J. Radiat. Oncol. Biol. Phys. 93, 64–71 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01419067?term=NCT01419067&rank=1 (2016).

  81. Sterkenburg, A. S. et al. Survival, hypothalamic obesity, and neuropsychological/psychosocial status after childhood-onset craniopharyngioma: newly reported long-term outcomes. Neuro Oncol. 17, 1029–1038 (2015). This article describes a20-years follow-up analysis of 485 patients with childhood-onset craniopharyngioma, which shows impaired overall survival in patients with hypothalamic involvement and similar relapse and progression rates with regard to different degrees of resection (gross total resection versus incomplete resection).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Daubenbuchel, A. M. et al. Hydrocephalus and hypothalamic involvement in pediatric patients with craniopharyngioma or cysts of Rathke's pouch: impact on long-term prognosis. Eur. J. Endocrinol. 172, 561–569 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Pickering, L. et al. Sleep-wake and melatonin pattern in craniopharyngioma patients. Eur. J. Endocrinol. 170, 873–884 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Müller, H. L. Increased daytime sleepiness in patients with childhood craniopharyngioma and hypothalamic tumor involvement: review of the literature and perspectives. Int. J. Endocrinol. 2010, 519607 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Müller, H. L. et al. Melatonin treatment in obese patients with childhood craniopharyngioma and increased daytime sleepiness. Cancer Causes Control 17, 583–589 (2006).

    Article  PubMed  Google Scholar 

  86. Romijn, J. A. Pituitary diseases and sleep disorders. Curr. Opin. Endocrinol. Diabetes Obes. 23, 345–351 (2016).

    Article  PubMed  Google Scholar 

  87. Hoffmann, A., Postma, F. P., Sterkenburg, A. S., Gebhardt, U. & Müller, H. L. Eating behavior, weight problems and eating disorders in 101 long-term survivors of childhood-onset craniopharyngioma. J. Pediatr. Endocrinol. Metab. 28, 35–43 (2015).

    Article  PubMed  Google Scholar 

  88. Heymsfield, S. B. et al. Hyperphagia: current concepts and future directions proceedings of the 2nd international conference on hyperphagia. Obesity (Silver Spring) 22, S1–S17 (2014).

    Article  Google Scholar 

  89. Roth, C. L. et al. Functional neuroimaging in craniopharyngioma: a useful tool to better understand hypothalamic obesity? Obes. Facts 5, 243–253 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ozyurt, J. et al. Neuropsychological outcome in patients with childhood craniopharyngioma and hypothalamic involvement. J. Pediatr. 164, 876–881.e4 (2014).

    Article  PubMed  Google Scholar 

  91. Ozyurt, J. et al. Remote effects of hypothalamic lesions in the prefrontal cortex of craniopharygioma patients. Neurobiol. Learn. Mem. 111, 71–80 (2014).

    Article  PubMed  Google Scholar 

  92. Honegger, J., Buchfelder, M. & Fahlbusch, R. Surgical treatment of craniopharyngiomas: endocrinological results. J. Neurosurg. 90, 251–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Hoffmann, A. et al. Nonalcoholic fatty liver disease and fatigue in long-term survivors of childhood-onset craniopharyngioma. Eur. J. Endocrinol. 173, 389–397 (2015). This is the first report on the incidence of and risk factors for nonalcoholic fatty liver diseasein patients with childhood-onset craniopharyngioma.

    Article  CAS  PubMed  Google Scholar 

  94. Roemmler-Zehrer, J. et al. Specific behaviour, mood and personality traits may contribute to obesity in patients with craniopharyngioma. Clin. Endocrinol. (Oxf.) 82, 106–114 (2015).

    Article  CAS  Google Scholar 

  95. Zada, G., Kintz, N., Pulido, M. & Amezcua, L. Prevalence of neurobehavioral, social, and emotional dysfunction in patients treated for childhood craniopharyngioma: a systematic literature review. PLoS ONE 8, e76562 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Fjalldal, S. et al. Hypothalamic involvement predicts cognitive performance and psychosocial health in long-term survivors of childhood craniopharyngioma. J. Clin. Endocrinol. Metab. 98, 3253–3262 (2013). This is a study on the association between hypothalamic involvement and neuropsychological outcome in childhood craniopharyngioma.

    Article  CAS  PubMed  Google Scholar 

  97. Crespo, I., Santos, A. & Webb, S. M. Quality of life in patients with hypopituitarism. Curr. Opin. Endocrinol. Diabetes Obes. 22, 306–312 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Crespo, I., Valassi, E., Santos, A. & Webb, S. M. Health-related quality of life in pituitary diseases. Endocrinol. Metab. Clin. North. Am. 44, 161–170 (2015).

    Article  PubMed  Google Scholar 

  99. Ozyurt, J., Müller, H. L. & Thiel, C. M. A systematic review of cognitive performance in patients with childhood craniopharyngioma. J. Neurooncol. 125, 9–21 (2015). This review reportsneuropsychological outcomes in long-term survivors of childhood-onset craniopharyngioma, with special regard to hypothalamic involvement.

    Article  PubMed  Google Scholar 

  100. Pereira, A. M. et al. High prevalence of long-term cardiovascular, neurological and psychosocial morbidity after treatment for craniopharyngioma. Clin. Endocrinol. (Oxf.) 62, 197–204 (2005).

    Article  Google Scholar 

  101. Haliloglu, B. & Bereket, A. Hypothalamic obesity in children: pathophysiology to clinical management. J. Pediatr. Endocrinol. Metab. 28, 503–513 (2015).

    Article  PubMed  Google Scholar 

  102. Müller, H. L. Paediatrics: surgical strategy and quality of life in craniopharyngioma. Nat. Rev. Endocrinol. 9, 447–449 (2013).

    Article  PubMed  Google Scholar 

  103. Müller, H. L. Risk-adapted, long-term management in childhood-onset craniopharyngioma. Pituitary http://dx.doi.org/10.1007/s11102-016-0751-0 (2016).

  104. Elfers, C. T. & Roth, C. L. Effects of methylphenidate on weight gain and food intake in hypothalamic obesity. Front. Endocrinol. (Lausanne) 2, 78 (2011).

    Article  Google Scholar 

  105. Zoicas, F., Droste, M., Mayr, B., Buchfelder, M. & Schofl, C. GLP-1 analogues as a new treatment option for hypothalamic obesity in adults: report of nine cases. Eur. J. Endocrinol. 168, 699–706 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Daubenbuchel, A. M. et al. Oxytocin in survivors of childhood-onset craniopharyngioma. Endocrine 54, 524–531 (2016). This is the first report on oxytocin saliva concentrations in childhood-onset craniopharyngioma with regard to different grades of hypothalamic involvement.

    Article  CAS  PubMed  Google Scholar 

  107. Bretault, M. et al. Clinical review: bariatric surgery following treatment for craniopharyngioma: a systematic review and individual-level data meta-analysis. J. Clin. Endocrinol. Metab. 98, 2239–2246 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Gatta, B. et al. Is bariatric surgery really inefficient in hypothalamic obesity? Clin. Endocrinol. (Oxf.) 78, 636–638 (2013).

    Article  Google Scholar 

  109. Müller, H. L., Gebhardt, U., Maroske, J. & Hanisch, E. Long-term follow-up of morbidly obese patients with childhood craniopharyngioma after laparoscopic adjustable gastric banding (LAGB). Klin. Padiatr. 223, 372–373 (2011).

    Article  PubMed  Google Scholar 

  110. de Vile, C. J. et al. Obesity in childhood craniopharyngioma: relation to post-operative hypothalamic damage shown by magnetic resonance imaging. J. Clin. Endocrinol. Metab. 81, 2734–2737 (1996).

    CAS  PubMed  Google Scholar 

  111. Elowe-Gruau, E. et al. Childhood craniopharyngioma: hypothalamus-sparing surgery decreases the risk of obesity. J. Clin. Endocrinol. Metab. 98, 2376–2382 (2013). This is the first report on the effects of hypothalamus-sparing surgical strategies on outcome in childhood craniopharyngioma.

    Article  CAS  PubMed  Google Scholar 

  112. Müller, H. L. et al. Xanthogranuloma, Rathke's cyst, and childhood craniopharyngioma: results of prospective multinational studies of children and adolescents with rare sellar malformations. J. Clin. Endocrinol. Metab. 97, 3935–3943 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Müller, H. L. et al. Post-operative hypothalamic lesions and obesity in childhood craniopharyngioma: results of the multinational prospective trial KRANIOPHARYNGEOM 2000 after 3-year follow-up. Eur. J. Endocrinol. 165, 17–24 (2011). This prospective study shows that hypothalamic lesions are associated with poor outcome and obesity in childhood-onset craniopharyngioma.

    Article  CAS  PubMed  Google Scholar 

  114. Van Gompel, J. J., Nippoldt, T. B., Higgins, D. M. & Meyer, F. B. Magnetic resonance imaging-graded hypothalamic compression in surgically treated adult craniopharyngiomas determining postoperative obesity. Neurosurg. Focus 28, E3 (2010).

    Article  PubMed  Google Scholar 

  115. Elliott, R. E., Sands, S. A., Strom, R. G. & Wisoff, J. H. Craniopharyngioma Clinical Status Scale: a standardized metric of preoperative function and posttreatment outcome. Neurosurg. Focus 28, E2 (2010).

    Article  PubMed  Google Scholar 

  116. Steno, J., Bizik, I., Steno, A. & Matejcik, V. Craniopharyngiomas in children: how radical should the surgeon be? Childs Nerv. Syst. 27, 41–54 (2011).

    Article  PubMed  Google Scholar 

  117. Roth, C. L. et al. Semiquantitative analysis of hypothalamic damage on MRI predicts risk for hypothalamic obesity. Obesity (Silver Spring) 23, 1226–1233 (2015).

    Article  Google Scholar 

  118. Mortini, P. et al. Magnetic resonance imaging as predictor of functional outcome in craniopharyngiomas. Endocrine 51, 148–162 (2016). This is a study on MRI and clinical findings in 47 patients with childhood-onset craniopharyngioma, aiming atidentifying objective radiological criteria as preoperative prognostic factors of hypothalamic damage and including a comparison of the results with regard to current grading systems for hypothalamic involvement and/or damage.

    Article  CAS  PubMed  Google Scholar 

  119. Garre, M. L. & Cama, A. Craniopharyngioma: modern concepts in pathogenesis and treatment. Curr. Opin. Pediatr. 19, 471–479 (2007).

    Article  PubMed  Google Scholar 

  120. Müller, H. L. Childhood craniopharyngioma — current concepts in diagnosis, therapy and follow-up. Nat. Rev. Endocrinol. 6, 609–618 (2010).

    Article  PubMed  Google Scholar 

  121. De Vile, C. J. et al. Management of childhood craniopharyngioma: can the morbidity of radical surgery be predicted? J. Neurosurg. 85, 73–81 (1996).

    Article  CAS  PubMed  Google Scholar 

  122. Müller, H. L. Craniopharyngioma: long-term consequences of a chronic disease. Expert Rev. Neurother. 15, 1241–1244 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Sanford, R. A. Craniopharyngioma: results of survey of the American Society of Pediatric Neurosurgery. Pediatr. Neurosurg. 21 (Suppl. 1), 39–43 (1994).

    Article  PubMed  Google Scholar 

  124. Boop, F. A. Craniopharyngioma. J. Neurosurg. 106, 1–2 (2007).

    Article  PubMed  Google Scholar 

  125. Hankinson, T. C. et al. Patterns of care for craniopharyngioma: survey of members of the American Association of Neurological Surgeons. Pediatr. Neurosurg. 49, 131–136 (2013).

    Article  PubMed  Google Scholar 

  126. Hoffmann, A. et al. Childhood craniopharyngioma — changes of treatment strategies in the trials KRANIOPHARYNGEOM 2000/2007. Klin. Padiatr. 226, 161–168 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Rath, S. R. et al. Childhood craniopharyngioma: 20-year institutional experience in Western Australia. J. Paediatr. Child Health 49, 403–408 (2013).

    Article  PubMed  Google Scholar 

  128. Lo, A. C. et al. Long-term outcomes and complications in patients with craniopharyngioma: the British Columbia Cancer Agency experience. Int. J. Radiat. Oncol. Biol. Phys. 88, 1011–1018 (2014).

    Article  PubMed  Google Scholar 

  129. Zaidi, H. A., Chapple, K. & Little, A. S. National treatment trends, complications, and predictors of in-hospital charges for the surgical management of craniopharyngiomas in adults from 2007 to 2011. Neurosurg. Focus 37, E6 (2014).

    Article  PubMed  Google Scholar 

  130. Müller, H. L. Childhood craniopharyngioma: treatment strategies and outcomes. Expert Rev. Neurother. 14, 187–197 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Flitsch, J., Aberle, J. & Burkhardt, T. Surgery for pediatric craniopharyngiomas: is less more? J. Pediatr. Endocrinol. Metab. 28, 27–33 (2015).

    Article  PubMed  Google Scholar 

  132. Buchfelder, M., Schlaffer, S. M., Lin, F. & Kleindienst, A. Surgery for craniopharyngioma. Pituitary 16, 18–25 (2013).

    Article  PubMed  Google Scholar 

  133. Mortini, P., Gagliardi, F., Boari, N. & Losa, M. Surgical strategies and modern therapeutic options in the treatment of craniopharyngiomas. Crit. Rev. Oncol. Hematol. 88, 514–529 (2013).

    Article  PubMed  Google Scholar 

  134. Ali, Z. S. et al. Comparative effectiveness of treatment options for pediatric craniopharyngiomas. J. Neurosurg. Pediatr. 13, 178–188 (2014).

    Article  PubMed  Google Scholar 

  135. Ogawa, Y., Kawaguchi, T. & Tominaga, T. Outcome and mid-term prognosis after maximum and radical removal of craniopharyngiomas with the priority to the extended transsphenoidal approach — a single center experience. Clin. Neurol. Neurosurg. 125, 41–46 (2014).

    Article  PubMed  Google Scholar 

  136. Raza, S. M. & Schwartz, T. H. How to achieve the best possible outcomes in the management of retroinfundibular craniopharyngiomas? World Neurosurg. 82, 614–616 (2014).

    Article  PubMed  Google Scholar 

  137. Daubenbuchel, A. M. & Müller, H. L. Neuroendocrine disorders in pediatric craniopharyngioma patients. J. Clin. Med. 4, 389–413 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Flitsch, J., Müller, H. L. & Burkhardt, T. Surgical strategies in childhood craniopharyngioma. Front. Endocrinol. (Lausanne) 2, 96 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

H.L.M. acknowledges support from the German Childhood Cancer Foundation, Bonn, Germany.

Author information

Authors and Affiliations

Authors

Contributions

H.L.M., T.E.M., S.P. and J.-P.M.-B. researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Hermann L. Müller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, H., Merchant, T., Puget, S. et al. New outlook on the diagnosis, treatment and follow-up of childhood-onset craniopharyngioma. Nat Rev Endocrinol 13, 299–312 (2017). https://doi.org/10.1038/nrendo.2016.217

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.217

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing