Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exercise-stimulated glucose uptake — regulation and implications for glycaemic control

Key Points

  • Exercise-stimulated signal transduction can restore glucose metabolism in insulin-resistant muscle through both acute activation of glucose transport and by improving insulin sensitivity for up to 48 hours after exercise

  • Glucose is a major fuel source during exercise and glucose uptake by skeletal muscle can increase by up to 50-fold during bouts of exercise

  • In excess of 1,000 phosphorylation sites in human skeletal muscle are regulated by exercise, which suggests that many regulators of muscle glucose uptake have yet to be discovered

  • Regulation of exercise-stimulated glucose uptake by skeletal muscle requires three major steps (delivery, transport and intramyocellular metabolism), any of which could be rate-limiting during various exercise conditions

  • Intensity and duration of exercise are key determinants of glucose uptake by skeletal muscle

  • Exercise-stimulated glucose transport is regulated by two major pathways that sense either alterations in the intracellular metabolic milieu (probably mediated by AMPK) or mechanical stress (partly mediated by RAC1)

Abstract

Skeletal muscle extracts glucose from the blood to maintain demand for carbohydrates as an energy source during exercise. Such uptake involves complex molecular signalling processes that are distinct from those activated by insulin. Exercise-stimulated glucose uptake is preserved in insulin-resistant muscle, emphasizing exercise as a therapeutic cornerstone among patients with metabolic diseases such as diabetes mellitus. Exercise increases uptake of glucose by up to 50-fold through the simultaneous stimulation of three key steps: delivery, transport across the muscle membrane and intracellular flux through metabolic processes (glycolysis and glucose oxidation). The available data suggest that no single signal transduction pathway can fully account for the regulation of any of these key steps, owing to redundancy in the signalling pathways that mediate glucose uptake to ensure maintenance of muscle energy supply during physical activity. Here, we review the molecular mechanisms that regulate the movement of glucose from the capillary bed into the muscle cell and discuss what is known about their integrated regulation during exercise. Novel developments within the field of mass spectrometry-based proteomics indicate that the known regulators of glucose uptake are only the tip of the iceberg. Consequently, many exciting discoveries clearly lie ahead.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Exercise enhances insulin sensitivity.
Figure 2: Molecular mechanisms of exercise-regulated glucose uptake by skeletal muscle.
Figure 3: An integrated view of exercise-stimulated glucose uptake.

Similar content being viewed by others

References

  1. Wasserman, D. H. Four grams of glucose. Am. J. Physiol. Endocrinol. Metab. 296, E11–E21 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Hoffman, N. J. et al. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab. 22, 922–935 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jensen, T. E., Angin, Y., Sylow, L. & Richter, E. A. Is contraction-stimulated glucose transport feedforward regulated by Ca2+? Exp. Physiol. 99, 1562–1568 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Jordy, A. B. & Kiens, B. Regulation of exercise-induced lipid metabolism in skeletal muscle. Exp. Physiol. 99, 1586–1592 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Jensen, T. E. & Richter, E. A. Regulation of glucose and glycogen metabolism during and after exercise. J. Physiol. 590, 1069–1076 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Richter, E. A. & Hargreaves, M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 93, 993–1017 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. van Loon, L. J., Greenhaff, P. L., Constantin-Teodosiu, D., Saris, W. H. & Wagenmakers, A. J. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J. Physiol. 536 (Pt. 1), 295–304 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Romijn, J. A. et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am. J. Physiol. 265, E380–E391 (1993).

    CAS  PubMed  Google Scholar 

  9. Ahlborg, G., Felig, P., Hagenfeldt, L., Hendler, R. & Wahren, J. Substrate turnover during prolonged exercise in man. Splanchinc and leg metabolism of glucose, free fatty acids and amino acids. J. Clin. Invest. 53, 1080–1090 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coyle, E. F. et al. Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J. Appl. Physiol. 55, 230–235 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Wahren, J., Felig, P., Ahlborg, G. & Jorfeldt, L. Glucose metabolism during leg exercise in man. J. Clin. Invest. 50, 2715–2725 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Katz, A., Broberg, S., Sahlin, K. & Wahren, J. Leg glucose uptake during maximal dynamic exercise in humans. Am. J. Physiol. 251, E65–E70 (1986).

    CAS  PubMed  Google Scholar 

  13. Ploug, T., Galbo, H. & Richter, E. A. Increased muscle glucose uptake during contractions: no need for insulin. Am. J. Physiol. 247, E726–E731 (1984).

    CAS  PubMed  Google Scholar 

  14. Wojtaszewski, J. F. et al. Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice. J. Clin. Invest. 104, 1257–1264 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sakamoto, K. et al. Role of Akt2 in contraction-stimulated cell signaling and glucose uptake in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 291, E1031–E1037 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Minuk, H. L. et al. Glucoregulatory and metabolic response to exercise in obese noninsulin-dependent diabetes. Am. J. Physiol. 240, E458–E464 (1981).

    CAS  PubMed  Google Scholar 

  17. Richter, E. A., Mikines, K. J., Galbo, H. & Kiens, B. Effect of exercise on insulin action in human skeletal muscle. J. Appl. Physiol. 66, 876–885 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Richter, E. A., Garetto, L. P., Goodman, M. N. & Ruderman, N. B. Muscle glucose metabolism following exercise in the rat. J. Clin. Invest. 69, 785–793 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bogardus, C. et al. Effect of muscle glycogen depletion on in vivo insulin action in man. J. Clin. Invest. 72, 1605–1610 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mikines, K., Sonne, B., Farrell, P., Tronier, B. & Galbo, H. Effect of physical exercise on sensitivity and responsiveness to insulin in humans. Am. J. Physiol. 254, E248–E259 (1988).

    CAS  PubMed  Google Scholar 

  21. Devlin, J. & Horton, E. Effects of prior high-intensity exercise on glucose metabolism in normal and insulin-resistant men. Diabetes 34, 973–979 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Boule, N. G., Haddad, E., Kenny, G. P., Wells, G. A. & Sigal, R. J. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA 286, 1218–1227 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Fatone, C. et al. Two weekly sessions of combined aerobic and resistance exercise are sufficient to provide beneficial effects in subjects with type 2 diabetes mellitus and metabolic syndrome. J. Endocrinol. Invest. 33, 489–495 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Dela, F., Mikines, K. J., von Linstow, M., Secher, N. H. & Galbo, H. Effect of training on insulin-mediated glucose uptake in human muscle. Am. J. Physiol. 263, E1134–E1143 (1992).

    CAS  PubMed  Google Scholar 

  25. Dela, F. et al. Insulin-stimulated muscle glucose clearance in patients with NIDDM. Effects of one-legged physical training. Diabetes 44, 1010–1020 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Kjaer, M., Kiens, B., Hargreaves, M. & Richter, E. A. Influence of active muscle mass on glucose homeostasis during exercise in humans. J. Appl. Physiol. 71, 552–557 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Calbet, J. A. et al. Central and peripheral hemodynamics in exercising humans: leg versus arm exercise. Scand. J. Med. Sci. Sports 25 (Suppl. 4), 144–157 (2015).

    Article  PubMed  Google Scholar 

  29. Joyner, M. J. & Casey, D. P. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol. Rev. 95, 549–601 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mackie, B. G. & Terjung, R. L. Influence of training on blood flow to different skeletal muscle fiber types. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 55, 1072–1078 (1983).

    CAS  PubMed  Google Scholar 

  31. Laughlin, M. H. & Armstrong, R. B. Muscular blood flow distribution patterns as a function of running speed in rats. Am. J. Physiol. 243, H296–H306 (1982).

    CAS  PubMed  Google Scholar 

  32. Hellsten, Y., Nyberg, M., Jensen, L. G. & Mortensen, S. P. Vasodilator interactions in skeletal muscle blood flow regulation. J. Physiol. 590, 6297–6305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Osorio-Fuentealba, C. et al. Electrical stimuli release ATP to increase GLUT4 translocation and glucose uptake via PI3Kγ-Akt-AS160 in skeletal muscle cells. Diabetes 62, 1519–1526 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vincent, M. A. et al. Mixed meal and light exercise each recruit muscle capillaries in healthy humans. Am. J. Physiol. Endocrinol. Metab. 290, E1191–E1197 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Sjoberg, K. A., Rattigan, S., Hiscock, N., Richter, E. A. & Kiens, B. A new method to study changes in microvascular blood volume in muscle and adipose tissue: real-time imaging in humans and rat. Am. J. Physiol. Heart Circ. Physiol. 301, H450–H458 (2011).

    Article  PubMed  CAS  Google Scholar 

  36. MacLean, D. A., Bangsbo, J. & Saltin, B. Muscle interstitial glucose and lactate levels during dynamic exercise in humans determined by microdialysis. J. Appl. Physiol. 87, 1483–1490 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Hespel, P., Vergauwen, L., Vandenberghe, K. & Richter, E. A. Important role of insulin and flow in stimulating glucose uptake in contracting skeletal muscle. Diabetes 44, 210–215 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Schultz, T. A. et al. Glucose delivery — a clarification of its role in regulating glucose uptake in rat skeletal muscle. Life Sci. 20, 733–736 (1977).

    Article  CAS  PubMed  Google Scholar 

  39. Schultz, T. A., Lewis, S. B., Westbie, D. K., Wallin, J. D. & Gerich, J. E. Glucose delivery: a modulator of glucose uptake in contracting skeletal muscle. Am. J. Physiol. 233, E514–E518 (1977).

    CAS  PubMed  Google Scholar 

  40. Lee-Young, R. S. et al. Endothelial nitric oxide synthase is central to skeletal muscle metabolic regulation and enzymatic signaling during exercise in vivo. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1399–R1408 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Richter, E. A. in Handbook of Physiology. Section 12: Exercise: Regulation and Integration of Multiple Systems (eds Rowell, L. B. & Shepherd, J. T.) (Oxford Univ. Press, 1996).

    Google Scholar 

  42. McConell, G., Fabris, S., Proietto, J. & Hargreaves, M. Effect of carbohydrate ingestion on glucose kinetics during exercise. J. Appl. Physiol. 77, 1537–1541 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Thorens, B. & Mueckler, M. Glucose transporters in the 21st Century. Am. J. Physiol. Endocrinol. Metab. 298, E141–E145 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Lauritzen, H. P., Galbo, H., Toyoda, T. & Goodyear, L. J. Kinetics of contraction-induced GLUT4 translocation in skeletal muscle fibers from living mice. Diabetes 59, 2134–2144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ploug, T., van Deurs, B., Ai, H., Cushman, S. W. & Ralston, E. Analysis of GLUT4 distribution in whole skeletal mu scle fibers: identification of distinct storage compartments that are recruited by insulin and muscle contractions. J. Cell Biol. 142, 1429–1446 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lemieux, K., Han, X. X., Dombrowski, L., Bonen, A. & Marette, A. The transferrin receptor defines two distinct contraction-responsive GLUT4 vesicle populations in skeletal muscle. Diabetes 49, 183–189 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Roy, D. & Marette, A. Exercise induces the translocation of GLUT4 to transverse tubules from an intracellular pool in rat skeletal muscle. Biochem. Biophys. Res. Commun. 223, 147–152 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Douen, A. et al. Exercise induces recruitment of the “insulin-responsive glucose transporter”. J. Biol. Chem. 265, 13427–13430 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Kristiansen, S., Hargreaves, M. & Richter, E. A. Exercise-induced increase in glucose transport, GLUT4, and VAMP-2 in plasma membrane from human muscle. Am. J. Physiol. 270, E197–E201 (1996).

    CAS  PubMed  Google Scholar 

  50. Kristiansen, S., Hargreaves, M. & Richter, E. A. Progressive increase in glucose transport and GLUT-4 in human sarcolemmal vesicles during moderate exercise. Am. J. Physiol. 272, E385–E389 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Kennedy, J. W. et al. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes 48, 1192–1197 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Zisman, A. et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat. Med. 6, 924–928 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Ryder, J. W. et al. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice. FASEB J. 13, 2246–2256 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Klip, A., Sun, Y., Chiu, T. T. & Foley, K. P. Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. Am. J. Physiol. Cell. Physiol. 306, C879–C886 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB β). Science 292, 1728–1731 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Martin, I. K., Katz, A. & Wahren, J. Splanchnic and muscle metabolism during exercise in NIDDM patients. Am. J. Physiol. 269 (3 Pt. 1), E583–E590 (1995).

    CAS  PubMed  Google Scholar 

  57. Rose, A. J., Kiens, B. & Richter, E. A. Ca2+–calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise. J. Physiol. 574 (Pt. 3), 889–903 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Youn, J. H., Gulve, E. A. & Holloszy, J. O. Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction. Am. J. Physiol. 260, C555–C561 (1991).

    Article  CAS  PubMed  Google Scholar 

  59. Wright, D. C., Hucker, K. A., Holloszy, J. O. & Han, D. H. Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes 53, 330–335 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Jensen, T. E., Rose, A. J., Hellsten, Y., Wojtaszewski, J. F. & Richter, E. A. Caffeine-induced Ca2+ release increases AMPK-dependent glucose uptake in rodent soleus muscle. Am. J. Physiol. Endocrinol. Metab. 293, E286–E292 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Jensen, T. E. et al. Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca2+ release. Mol. Metab. 3, 742–753 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Witczak, C. A. et al. CaMKII regulates contraction- but not insulin-induced glucose uptake in mouse skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 298, E1150–E1160 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kappel, V. D., Zanatta, L., Postal, B. G. & Silva, F. R. Rutin potentiates calcium uptake via voltage-dependent calcium channel associated with stimulation of glucose uptake in skeletal muscle. Arch. Biochem. Biophys. 532, 55–60 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Park, D. R., Park, K. H., Kim, B. J., Yoon, C. S. & Kim, U. H. Exercise ameliorates insulin resistance via Ca2+ signals distinct from those of insulin for GLUT4 translocation in skeletal muscles. Diabetes 64, 1224–1234 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Lee, H. C. Cyclic ADP-ribose and NAADP: fraternal twin messengers for calcium signaling. Sci. China Life Sci. 54, 699–711 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Guse, A. H. & Wolf, I. M. Ca2+ microdomains, NAADP and type 1 ryanodine receptor in cell activation. Biochim. Biophys. Acta 1863 (6 Pt B), 1379–1384 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Lanner, J. T. et al. AICAR prevents heat-induced sudden death in RyR1 mutant mice independent of AMPK activation. Nat. Med. 18, 244–251 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Terada, S., Muraoka, I. & Tabata, I. Changes in [Ca2+]i induced by several glucose transport-enhancing stimuli in rat epitrochlearis muscle. J. Appl. Physiol. 94, 1813–1820 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Fujii, N. et al. AMP-activated protein kinase α2 activity is not essential for contraction- and hyperosmolarity-induced glucose transport in skeletal muscle. J. Biol. Chem. 280, 39033–39041 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Chambers, M. A., Moylan, J. S., Smith, J. D., Goodyear, L. J. & Reid, M. B. Stretch-stimulated glucose uptake in skeletal muscle is mediated by reactive oxygen species and p38 MAP-kinase. J. Physiol. 587, 3363–3373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shoji, S. Effects of stretch and starvation on glucose uptake of rat soleus and extensor digitorum longus muscles. Muscle Nerve 9, 144–147 (1986).

    Article  CAS  PubMed  Google Scholar 

  73. Sakamoto, K., Aschenbach, W. G., Hirshman, M. F. & Goodyear, L. J. Akt signaling in skeletal muscle: regulation by exercise and passive stretch. Am. J. Physiol. Endocrinol. Metab. 285, E1081–E1088 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Sylow, L., Moller, L. L., Kleinert, M., Richter, E. A. & Jensen, T. E. Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1. J. Physiol. 593, 645–656 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ihlemann, J., Ploug, T., Hellsten, Y. & Galbo, H. Effect of tension on contraction-induced glucose transport in rat skeletal muscle. Am. J. Physiol. 277, E208–E214 (1999).

    CAS  PubMed  Google Scholar 

  76. Blair, D. R., Funai, K., Schweitzer, G. G. & Cartee, G. D. A myosin II ATPase inhibitor reduces force production, glucose transport, and phosphorylation of AMPK and TBC1D1 in electrically stimulated rat skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 296, E993–E1002 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sandstrom, M. E., Zhang, S. J., Westerblad, H. & Katz, A. Mechanical load plays little role in contraction-mediated glucose transport in mouse skeletal muscle. J. Physiol. 579, 527–534 (2007).

    Article  PubMed  CAS  Google Scholar 

  78. Sylow, L. et al. Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle. Diabetes 62, 1865–1875 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sylow, L. et al. Rac1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle. Diabetes 62, 1139–1151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sylow, L. et al. Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice. J. Physiol. 594, 4997–5008 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhou, Y., Jiang, D., Thomason, D. B. & Jarrett, H. W. Laminin-induced activation of Rac1 and JNKp46 is initiated by Src family kinases and mimics the effects of skeletal muscle contraction. Biochemistry 46, 14907–14916 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Oak, S. A., Zhou, Y. W. & Jarrett, H. W. Skeletal muscle signaling pathway through the dystrophin glycoprotein complex and Rac1. J. Biol. Chem. 278, 39287–39295 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Kitajima, N. et al. TRPC3-mediated Ca2+ influx contributes to Rac1-mediated production of reactive oxygen species in MLP-deficient mouse hearts. Biochem. Biophys. Res. Commun. 409, 108–113 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Huveneers, S. & Danen, E. H. Adhesion signaling — crosstalk between integrins, Src and Rho. J. Cell Sci. 122, 1059–1069 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Brozinick, J. T. Jr, Hawkins, E. D., Strawbridge, A. B. & Elmendorf, J. S. Disruption of cortical actin in skeletal muscle demonstrates an essential role of the cytoskeleton in glucose transporter 4 translocation in insulin-sensitive tissues. J. Biol. Chem. 279, 40699–40706 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Tondeleir, D., Vandamme, D., Vandekerckhove, J., Ampe, C. & Lambrechts, A. Actin isoform expression patterns during mammalian development and in pathology: insights from mouse models. Cell. Motil. Cytoskeleton 66, 798–815 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Nozaki, S., Ueda, S., Takenaka, N., Kataoka, T. & Satoh, T. Role of RalA downstream of Rac1 in insulin-dependent glucose uptake in muscle cells. Cell. Signal. 24, 2111–2117 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Takenaka, N. et al. Role for RalA downstream of Rac1 in skeletal muscle insulin signalling. Biochem. J. 469, 445–454 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Panday, A., Sahoo, M. K., Osorio, D. & Batra, S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell. Mol. Immunol. 12, 5–23 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Espinosa, A., Henriquez-Olguin, C. & Jaimovich, E. Reactive oxygen species and calcium signals in skeletal muscle: a crosstalk involved in both normal signaling and disease. Cell Calcium 60, 172–179 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Richter, E. A. & Ruderman, N. B. AMPK and the biochemistry of exercise: implications for human health and disease. Biochem. J. 418, 261–275 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Thomas, M. M. et al. Muscle-specific AMPK β1β2-null mice display a myopathy due to loss of capillary density in nonpostural muscles. FASEB J. 28, 2098–2107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lantier, L. et al. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB J. 28, 3211–3224 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. O'Neill, H. M. et al. AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc. Natl Acad. Sci. USA 108, 16092–16097 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Koistinen, H. A. et al. 5-Amino-imidazole carboxamide riboside increases glucose transport and cell-surface GLUT4 content in skeletal muscle from subjects with type 2 diabetes. Diabetes 52, 1066–1072 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Abbott, M. J., Bogachus, L. D. & Turcotte, L. P. AMPKα2 deficiency uncovers time-dependency in the regulation of contraction-induced palmitate and glucose uptake in mouse muscle. J. Appl. Physiol. 111, 125–134 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Yang, J. & Holman, G. D. Insulin and contraction stimulate exocytosis, but increased AMP-activated protein kinase activity resulting from oxidative metabolism stress slows endocytosis of GLUT4 in cardiomyocytes. J. Biol. Chem. 280, 4070–4078 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Birk, J. B. & Wojtaszewski, J. F. Predominant α2/β2/γ3 AMPK activation during exercise in human skeletal muscle. J. Physiol. 577, 1021–1032 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Treebak, J. T. et al. AS160 phosphorylation is associated with activation of α2β2γ1- but not α2β2γ3-AMPK trimeric complex in skeletal muscle during exercise in humans. Am. J. Physiol. Endocrinol. Metab. 292, E715–E722 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Jørgensen, S. B. et al. Knockout of the α2 but not α1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-β-4-ribifuranoside but not contraction-induced glucose uptake in skeletal muscle. J. Biol. Chem. 279, 1070–1079 (2004).

    Article  PubMed  CAS  Google Scholar 

  101. Barnes, B. R. et al. The 5′-AMP-activated protein kinase γ3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J. Biol. Chem. 279, 38441–38447 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Costford, S. R. et al. Gain-of-function R225W mutation in human AMPKγ3 causing increased glycogen and decreased triglyceride in skeletal muscle. PLoS ONE 2, e903 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Crawford, S. A. et al. Naturally occurring R225W mutation of the gene encoding AMP-activated protein kinase (AMPKγ3) results in increased oxidative capacity and glucose uptake in human primary myotubes. Diabetologia 53, 1986–1997 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Frosig, C., Jorgensen, S. B., Hardie, D. G., Richter, E. A. & Wojtaszewski, J. F. 5′-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 286, E411–E417 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Mortensen, B. et al. Effect of birth weight and 12 weeks of exercise training on exercise-induced AMPK signaling in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 304, E1379–E1390 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. McConell, G. K. et al. Short-term exercise training in humans reduces AMPK signalling during prolonged exercise independent of muscle glycogen. J. Physiol. 568, 665–676 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Taylor, E. B. et al. Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. J. Biol. Chem. 283, 9787–9796 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kramer, H. F. et al. AS160 regulates insulin- and contraction-stimulated glucose uptake in mouse skeletal muscle. J. Biol. Chem. 281, 31478–31485 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Pehmoller, C. et al. Genetic disruption of AMPK signaling abolishes both contraction- and insulin-stimulated TBC1D1 phosphorylation and 14-3-3 binding in mouse skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 297, E665–E675 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Chadt, A. et al. Deletion of both Rab-GTPase-activating proteins TBC14KO and TBC1D4 in mice eliminates insulin- and AICAR-stimulated glucose transport. Diabetes 64, 746–775 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Stockli, J. et al. The RabGAP TBC1D1 plays a central role in exercise-regulated glucose metabolism in skeletal muscle. Diabetes 64, 1914–1922 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Castorena, C. M., Mackrell, J. G., Bogan, J. S., Kanzaki, M. & Cartee, G. D. Clustering of GLUT4, TUG, and RUVBL2 protein levels correlate with myosin heavy chain isoform pattern in skeletal muscles, but AS160 and TBC1D1 levels do not. J. Appl. Physiol. 111, 1106–1117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kristensen, D. E. et al. Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise. J. Physiol. 593, 2053–2069 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Szekeres, F. et al. The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 303, E524–E533 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Moltke, I. et al. A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature 512, 190–193 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Sun, Y., Bilan, P. J., Liu, Z. & Klip, A. Rab8A and Rab13 are activated by insulin and regulate GLUT4 translocation in muscle cells. Proc. Natl Acad. Sci. USA 107, 19909–19914 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu, Y. et al. Phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) is an AMPK target participating in contraction-stimulated glucose uptake in skeletal muscle. Biochem. J. 455, 195–206 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Ikonomov, O. C. et al. Muscle-specific Pikfyve gene disruption causes glucose intolerance, insulin resistance, adiposity, and hyperinsulinemia but not muscle fiber-type switching. Am. J. Physiol. Endocrinol. Metab. 305, E119–E131 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. He, C. et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481, 511–515 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang, C. S. et al. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 20, 526–540 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Lo, V. F., Carnio, S., Vainshtein, A. & Sandri, M. Autophagy is not required to sustain exercise and PRKAA1/AMPK activity but is important to prevent mitochondrial damage during physical activity. Autophagy 10, 1883–1894 (2014).

    Article  CAS  Google Scholar 

  122. Joo, J. H. et al. The noncanonical role of ULK/ATG1 in ER-to-Golgi trafficking is essential for cellular homeostasis. Mol. Cell 62, 491–506 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bruno, J., Brumfield, A., Chaudhary, N., Iaea, D. & McGraw, T. E. SEC16A is a RAB10 effector required for insulin-stimulated GLUT4 trafficking in adipocytes. J. Cell Biol. 214, 61–76 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li, T. Y. et al. ULK1/2 constitute a bifurcate node controlling glucose metabolic fluxes in addition to autophagy. Mol. Cell 62, 359–370 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Fritzen, A. M. et al. 5′-AMP activated protein kinase α2 controls substrate metabolism during post-exercise recovery via regulation of pyruvate dehydrogenase kinase 4. J. Physiol. 593, 4765–4780 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Roberts, C. K., Barnard, R. J., Jasman, A. & Balon, T. W. Acute exercise increases nitric oxide synthase activity in skeletal muscle. Am. J. Physiol. 277 (2 Pt. 1), E390–E394 (1999).

    CAS  PubMed  Google Scholar 

  127. Merry, T. L., Steinberg, G. R., Lynch, G. S. & McConell, G. K. Skeletal muscle glucose uptake during contraction is regulated by nitric oxide and ROS independently of AMPK. Am. J. Physiol. Endocrinol. Metab. 298, E577–E585 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Pye, D., Palomero, J., Kabayo, T. & Jackson, M. J. Real-time measurement of nitric oxide in single mature mouse skeletal muscle fibres during contractions. J. Physiol. 581 (Pt. 1), 309–318 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wozniak, A. C. & Anderson, J. E. The dynamics of the nitric oxide release-transient from stretched muscle cells. Int. J. Biochem. Cell Biol. 41, 625–631 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Lau, K. S. et al. nNOS and eNOS modulate cGMP formation and vascular response in contracting fast-twitch skeletal muscle. Physiol. Genom. 2, 21–27 (2000).

    Article  CAS  Google Scholar 

  131. Balon, T. W. & Nadler, J. L. Evidence that nitric oxide increases glucose transport in skeletal muscle. J. Appl. Physiol. 82, 359–363 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Ross, R. M., Wadley, G. D., Clark, M. G., Rattigan, S. & McConell, G. K. Local nitric oxide synthase inhibition reduces skeletal muscle glucose uptake but not capillary blood flow during in situ muscle contraction in rats. Diabetes 56, 2885–2892 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Kingwell, B. A., Formosa, M., Muhlmann, M., Bradley, S. J. & McConell, G. K. Nitric oxide synthase inhibition reduces glucose uptake during exercise in individuals with type 2 diabetes more than in control subjects. Diabetes 51, 2572–2580 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Bradley, S. J., Kingwell, B. A. & McConell, G. K. Nitric oxide synthase inhibition reduces leg glucose uptake but not blood flow during dynamic exercise in humans. Diabetes 48, 1815–1821 (1999).

    Article  CAS  PubMed  Google Scholar 

  135. Hong, Y. H. et al. No effect of NOS inhibition on skeletal muscle glucose uptake during in situ hindlimb contraction in healthy and diabetic Sprague-Dawley rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R862–R871 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Etgen, G. J. Jr, Fryburg, D. A. & Gibbs, E. M. Nitric oxide stimulates skeletal muscle glucose transport through a calcium/contraction- and phosphatidylinositol-3-kinase-independent pathway. Diabetes 46, 1915–1919 (1997).

    Article  CAS  PubMed  Google Scholar 

  137. Higaki, Y., Hirshman, M. F., Fujii, N. & Goodyear, L. J. Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle. Diabetes 50, 241–247 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Heinonen, I. et al. Effect of nitric oxide synthase inhibition on the exchange of glucose and fatty acids in human skeletal muscle. Nutr. Metab. (Lond.) 10, 43 (2013).

    Article  CAS  Google Scholar 

  139. Hong, Y. H. et al. Glucose uptake during contraction in isolated skeletal muscles from neuronal nitric oxide synthase μ knockout mice. J. Appl. Physiol. 118, 1113–1121 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Pattwell, D. M., McArdle, A., Morgan, J. E., Patridge, T. A. & Jackson, M. J. Release of reactive oxygen and nitrogen species from contracting skeletal muscle cells. Free Radic. Biol. Med. 37, 1064–1072 (2004).

    Article  PubMed  CAS  Google Scholar 

  141. Reid, M. B. et al. Reactive oxygen in skeletal muscle. I. Intracellular oxidant kinetics and fatigue in vitro. J. Appl. Physiol. 73, 1797–1804 (1992).

    Article  CAS  PubMed  Google Scholar 

  142. Sandstrom, M. E. et al. Role of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscle. J. Physiol. 575, 251–262 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Sen, C. K., Rankinen, T., Vaisanen, S. & Rauramaa, R. Oxidative stress after human exercise: effect of N-acetylcysteine supplementation. J. Appl. Physiol. 76, 2570–2577 (1994).

    Article  CAS  PubMed  Google Scholar 

  144. Gomez-Cabrera, M. C. et al. Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J. Physiol. 567, 113–120 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Svensson, M. B. et al. Adaptive stress response of glutathione and uric acid metabolism in man following controlled exercise and diet. Acta Physiol. Scand. 176, 43–56 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Jackson, M. J. Redox regulation of muscle adaptations to contractile activity and aging. J. Appl. Physiol. 119, 163–171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ward, C. W., Prosser, B. L. & Lederer, W. J. Mechanical stretch-induced activation of ROS/RNS signaling in striated muscle. Antioxid. Redox Signal. 20, 929–936 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Pal, R., Basu, T. P., Li, S., Minard, C. & Rodney, G. G. Real-time imaging of NADPH oxidase activity in living cells using a novel fluorescent protein reporter. PLoS ONE 8, e63989 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Diaz-Vegas, A. et al. ROS production via P2Y1-PKC-NOX2 is triggered by extracellular ATP after electrical stimulation of skeletal muscle cells. PLoS ONE 10, e0129882 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Merry, T. L., Dywer, R. M., Bradley, E. A., Rattigan, S. & McConell, G. K. Local hindlimb antioxidant infusion does not affect muscle glucose uptake during in situ contractions in rat. J. Appl. Physiol. 108, 1275–1283 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. Merry, T. L. et al. N-Acetylcysteine infusion does not affect glucose disposal during prolonged moderate-intensity exercise in humans. J. Physiol. 588, 1623–1634 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Song, P. & Zou, M. H. Regulation of NAD(P)H oxidases by AMPK in cardiovascular systems. Free Radic. Biol. Med. 52, 1607–1619 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hordijk, P. L. Regulation of NADPH oxidases: the role of Rac proteins. Circ. Res. 98, 453–462 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Souto Padron de, F. A. et al. Nox2 mediates skeletal muscle insulin resistance induced by a high fat diet. J. Biol. Chem. 290, 13427–13439 (2015).

    Article  CAS  Google Scholar 

  155. Wojtaszewski, J. F., Jorgensen, S. B., Hellsten, Y., Hardie, D. G. & Richter, E. A. Glycogen-dependent effects of 5-aminoimidazole-4-carboxamide (AICA)-riboside on AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle. Diabetes 51, 284–292 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Roepstorff, C., Vistisen, B., Roepstorff, K. & Kiens, B. Regulation of plasma long-chain fatty acid oxidation in relation to uptake in human skeletal muscle during exercise. Am. J. Physiol. Endocrinol. Metab. 287, E696–E705 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Katz, A., Sahlin, K. & Broberg, S. Regulation of glucose utilization in human skeletal muscle during moderate dynamic exercise. Am. J. Physiol. 260, E411–E415 (1991).

    CAS  PubMed  Google Scholar 

  158. Derave, W. et al. Contraction-stimulated muscle glucose transport and GLUT-4 surface content are dependent on glycogen content. Am. J. Physiol. 277, E1103–E1110 (1999).

    CAS  PubMed  Google Scholar 

  159. Hespel, P. & Richter, E. A. Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations. J. Physiol. 427, 347–359 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Fogt, D. L. et al. Effect of glycogen synthase overexpression on insulin-stimulated muscle glucose uptake and storage. Am. J. Physiol. Endocrinol. Metab. 286, E363–E369 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Xirouchaki, C. E. et al. Impaired glucose metabolism and exercise capacity with muscle-specific glycogen synthase 1 (gys1) deletion in adult mice. Mol. Metab. 5, 221–232 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Nielsen, J. N. et al. Role of 5′AMP-activated protein kinase in glycogen synthase activity and glucose utilization: insights from patients with McArdle's disease. J. Physiol. 541, 979–989 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wojtaszewski, J. F., Nielsen, P., Hansen, B. F., Richter, E. A. & Kiens, B. Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J. Physiol. 528, 221–226 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Fujii, N. et al. Exercise induces isoform-specific increase in 5′AMP-activated protein kinase activity in human skeletal muscle. Biochem. Biophys. Res. Commun. 273, 1150–1155 (2000).

    Article  CAS  PubMed  Google Scholar 

  165. Chen, Z. P. et al. Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes 52, 2205–2212 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. Polekhina, G. et al. AMPK β subunit targets metabolic stress sensing to glycogen. Curr. Biol. 13, 867–871 (2003).

    Article  CAS  PubMed  Google Scholar 

  167. Oligschlaeger, Y. et al. The recruitment of AMP-activated protein kinase to glycogen is regulated by autophosphorylation. J. Biol. Chem. 290, 11715–11728 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Xu, H. et al. When phosphorylated at Thr148, the β2 subunit of AMP activated kinase does not associate with glycogen in skeletal muscle. Am. J. Physiol. Cell Physiol. 311, C35–C42 (2016).

    Article  PubMed  Google Scholar 

  169. Haller, R. G. & Vissing, J. No spontaneous second wind in muscle phosphofructokinase deficiency. Neurology 62, 82–86 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Zaid, H., Talior-Volodarsky, I., Antonescu, C., Liu, Z. & Klip, A. GAPDH binds GLUT4 reciprocally to hexokinase-II and regulates glucose transport activity. Biochem. J. 419, 475–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  171. Fueger, P. T., Bracy, D. P., Malabanan, C. M., Pencek, R. R. & Wasserman, D. H. Distributed control of glucose uptake by working muscles of conscious mice: roles of transport and phosphorylation. Am. J. Physiol. Endocrinol. Metab. 286, E77–E84 (2004).

    Article  CAS  PubMed  Google Scholar 

  172. Fueger, P. T. et al. Control of exercise-stimulated muscle glucose uptake by GLUT4 is dependent on glucose phosphorylation capacity in the conscious mouse. J. Biol. Chem. 279, 50956–50961 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Fueger, P. T. et al. Hexokinase II protein content is a determinant of exercise endurance capacity in the mouse. J. Physiol. 566, 533–541 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Fueger, P. T. et al. Control of muscle glucose uptake: test of the rate-limiting step paradigm in conscious, unrestrained mice. J. Physiol. 562, 925–935 (2005).

    Article  CAS  PubMed  Google Scholar 

  175. Katzen, H. M. & Schimke, R. T. Multiple forms of hexokinase in the rat: tissue distribution, age dependency, and properties. Proc. Natl Acad. Sci. USA 54, 1218–1225 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Grossbard, L. & Schimke, R. T. Multiple hexokinases of rat tissues: purification and comparison of soluble forms. J. Biol. Chem. 241, 3546–3560 (1966).

    Article  CAS  PubMed  Google Scholar 

  177. Ritov, V. B. & Kelley, D. E. Hexokinase isozyme distribution in human skeletal muscle. Diabetes 50, 1253–1262 (2001).

    Article  CAS  PubMed  Google Scholar 

  178. Albers, P. H. et al. Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes. Diabetes 64, 485–497 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. John, S., Weiss, J. N. & Ribalet, B. Subcellular localization of hexokinases I and II directs the metabolic fate of glucose. PLoS ONE 6, e17674 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Roberts, D. J., Tan-Sah, V. P., Smith, J. M. & Miyamoto, S. Akt phosphorylates HK-II at Thr-473 and increases mitochondrial HK-II association to protect cardiomyocytes. J. Biol. Chem. 288, 23798–23806 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Yamada, Y. et al. Low glucose-1, 6-bisphosphate and high fructose-2, 6-bisphosphate concentrations in muscles of patients with glycogenosis types VII and V. Biochem. Biophys. Res. Commun. 176, 7–10 (1991).

    Article  CAS  PubMed  Google Scholar 

  182. Hu, H. et al. Phosphoinositide 3-kinase regulates glycolysis through mobilization of aldolase from the actin cytoskeleton. Cell 164, 433–446 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Chenzion, M., Lilling, G. & Beitner, R. The dual effects of Ca2+ on binding of the glycolytic enzymes, phosphofructokinase and aldolase, to muscle cytoskeleton. Biochem. Med. Metab. Biol. 49, 173–181 (1993).

    Article  CAS  Google Scholar 

  184. Kao, A. W., Noda, Y., Johnson, J. H., Pessin, J. E. & Saltiel, A. R. Aldolase mediates the association of F-actin with the insulin-responsive glucose transporter GLUT4. J. Biol. Chem. 274, 17742–17747 (1999).

    Article  CAS  PubMed  Google Scholar 

  185. Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 45–465 (2012).

    Article  CAS  Google Scholar 

  186. Jiang, L. Q. et al. Autocrine role of interleukin-13 on skeletal muscle glucose metabolism in type 2 diabetic patients involves microRNA let-7. Am. J. Physiol. Endocrinol. Metab. 305, E1359–E1366 (2013).

    Article  CAS  PubMed  Google Scholar 

  187. Lee, H. J. et al. Irisin, a novel myokine, regulates glucose uptake in skeletal muscle cells via AMPK. Mol. Endocrinol. 29, 873–881 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Canto, C. et al. Neuregulins mediate calcium-induced glucose transport during muscle contraction. J. Biol. Chem. 281, 21690–21697 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Roustit, M. M., Vaughan, J. M., Jamieson, P. M. & Cleasby, M. E. Urocortin 3 activates AMPK and AKT pathways and enhances glucose disposal in rat skeletal muscle. J. Endocrinol. 223, 143–154 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. MacDonald, C., Wojtaszewski, J. F., Pedersen, B. K., Kiens, B. & Richter, E. A. Interleukin-6 release from human skeletal muscle during exercise: relation to AMPK activity. J. Appl. Physiol. 295, 2273–2277 (2003).

    Article  Google Scholar 

  191. Helge, J. W. et al. The effect of graded exercise on IL-6 release and glucose uptake in human skeletal muscle. J. Physiol. 546, 299–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  192. Carey, A. L. et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55, 2688–2697 (2006).

    Article  CAS  PubMed  Google Scholar 

  193. O'Neill, H. M. et al. IL-6 is not essential for exercise-induced increases in glucose uptake. J. Appl. Physiol. 114, 1151–1157 (2013).

    Article  PubMed  CAS  Google Scholar 

  194. Benrick, A., Wallenius, V. & Asterholm, I. W. Interleukin-6 mediates exercise-induced increase in insulin sensitivity in mice. Exp. Physiol. 97, 1224–1235 (2012).

    Article  CAS  PubMed  Google Scholar 

  195. Buvinic, S. et al. ATP released by electrical stimuli elicits calcium transients and gene expression in skeletal muscle. J. Biol. Chem. 284, 34490–34505 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Taguchi, T., Kozaki, Y., Katanosaka, K. & Mizumura, K. Compression-induced ATP release from rat skeletal muscle with and without lengthening contraction. Neurosci. Lett. 434, 277–281 (2008).

    Article  CAS  PubMed  Google Scholar 

  197. Mortensen, S. P., Gonzalez-Alonso, J., Nielsen, J. J., Saltin, B. & Hellsten, Y. Muscle interstitial ATP and norepinephrine concentrations in the human leg during exercise and ATP infusion. J. Appl. Physiol. 107, 1757–1762 (2009).

    Article  CAS  PubMed  Google Scholar 

  198. Casas, M., Buvinic, S. & Jaimovich, E. ATP signaling in skeletal muscle: from fiber plasticity to regulation of metabolism. Exerc. Sport Sci. Rev. 42, 110–116 (2014).

    Article  PubMed  Google Scholar 

  199. Sylow, L. et al. Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cell. Signal. 26, 323–331 (2014).

    Article  CAS  PubMed  Google Scholar 

  200. Lee, A. D., Hansen, P. A. & Holloszy, J. O. Wortmannin inhibits insulin-stimulated but not contraction-stimulated glucose transport activity in skeletal muscle. FEBS Lett. 361, 51–54 (1995).

    Article  CAS  PubMed  Google Scholar 

  201. Ploug, T., Galbo, H., Vinten, J., Jørgensen, M. & Richter, E. A. Kinetics of glucose transport in rat muscle: effects of insulin and contractions. Am. J. Physiol. 253, E12–E20 (1987).

    CAS  PubMed  Google Scholar 

  202. Lund, S., Holman, G. D., Schmitz, O. & Pedersen, O. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc. Natl Acad. Sci. USA 92, 5817–5821 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Treebak, J. T. et al. Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle. J. Physiol. 592, 351–375 (2014).

    Article  CAS  PubMed  Google Scholar 

  204. Sylow, L. et al. Rac1 in muscle is dispensable for improved insulin action after exercise in mice. Endocrinology 157, 3009–3015 (2016).

    Article  CAS  PubMed  Google Scholar 

  205. Kjobsted, R. et al. Prior AICAR stimulation increases insulin sensitivity in mouse skeletal muscle in an AMPK-dependent manner. Diabetes 64, 2042–2055 (2014).

    Article  PubMed  CAS  Google Scholar 

  206. Martin, I. K., Katz, A. & Wahren, J. Enhanced leg glucose uptake and normal hepatic glucose output during exercise in patients with NIDDM [abstract]. Diabetes 42 (Suppl. 1), 107A (1993).

    Google Scholar 

  207. Wallberg-Henriksson, H. & Holloszy, J. Activation of glucose transport in diabetic muscle: responses to contraction and insulin. Am. J. Physiol. 249, C233–C237 (1985).

    Article  CAS  PubMed  Google Scholar 

  208. DeFronzo, R. A. & Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32 (Suppl. 2), 157–163 (2009).

    Article  CAS  Google Scholar 

  209. Mikines, K., Sonne, B., Farrell, P., Tronier, B. & Galbo, H. Effect of training on the dose-response relationship for insulin action in men. J. Appl. Physiol. 66, 695–703 (1989).

    Article  CAS  PubMed  Google Scholar 

  210. Ihlemann, J., Galbo, H. & Ploug, T. Calphostin C is an inhibitor of contraction, but not insulin-stimulated glucose transport, in skeletal muscle. Acta Physiol. Scand. 167, 69–75 (1999).

    Article  CAS  PubMed  Google Scholar 

  211. Jensen, T. E. et al. Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. Am. J. Physiol. Endocrinol. Metab. 292, E1308–1317 (2007).

    Article  CAS  PubMed  Google Scholar 

  212. Koh, H. J. et al. Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle. Proc. Natl Acad. Sci. USA 107, 15541–15546 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Sakamoto, K. et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J. 24, 1810–1820 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Jeppesen, J. et al. LKB1 regulates lipid oxidation during exercise independently of AMPK. Diabetes 62, 1490–1499 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Mu, J., Brozinick, J. T. Jr, Valladares, O., Bucan, M. & Birnbaum, M. J. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol. Cell 7, 1085–1094 (2001).

    Article  CAS  PubMed  Google Scholar 

  216. Lefort, N., St-Amand, E., Morasse, S., Cote, C. H. & Marette, A. The α-subunit of AMPK is essential for submaximal contraction-mediated glucose transport in skeletal muscle in vitro. Am. J. Physiol. Endocrinol. Metab. 295, E1447–E1454 (2008).

    Article  CAS  PubMed  Google Scholar 

  217. Maarbjerg, S. J. et al. Genetic impairment of α2-AMPK signaling does not reduce muscle glucose uptake during treadmill exercise in mice. Am. J. Physiol. Endocrinol. Metab. 297, E924–E934 (2009).

    Article  CAS  PubMed  Google Scholar 

  218. Lee-Young, R. S. et al. Skeletal muscle AMP-activated protein kinase is essential for the metabolic response to exercise in vivo. J. Biol. Chem. 284, 23925–23934 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Jorgensen, S. B. et al. Knockout of the α2 but not α1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J. Biol. Chem. 279, 1070–1079 (2004).

    Article  CAS  PubMed  Google Scholar 

  220. Fentz, J. et al. AMPKα is critical for enhancing skeletal muscle fatty acid utilization during in vivo exercise in mice. FASEB J. 29, 1725–1738 (2015).

    Article  CAS  PubMed  Google Scholar 

  221. Wojtaszewski, J. F., Laustsen, J. L. & Richter, E. A. Contraction- and hypoxia-stimulated glucose transport in skeletal muscle is affected differently by wortmannin. Evidence for different signalling mechanisms. Biochim. Biophys. Acta 1340, 396–404 (1998).

    Article  Google Scholar 

  222. Jensen, T. E., Maarbjerg, S. J., Rose, A. J., Leitges, M. & Richter, E. A. Knockout of the predominant conventional PKC isoform, PKCα, in mouse skeletal muscle does not affect contraction-stimulated glucose uptake. Am. J. Physiol. Endocrinol. Metab. 297, E340–E348 (2009).

    Article  CAS  PubMed  Google Scholar 

  223. Kramer, H. F. et al. Calmodulin-binding domain of AS160 regulates contraction- but not insulin-stimulated glucose uptake in skeletal muscle. Diabetes 56, 2854–2862 (2007).

    Article  CAS  PubMed  Google Scholar 

  224. Vichaiwong, K. et al. Contraction regulates site-specific phosphorylation of TBC1D1 in skeletal muscle. Biochem. J. 431, 311–320 (2010).

    Article  CAS  PubMed  Google Scholar 

  225. An, D. et al. TBC1D1 regulates insulin- and contraction-induced glucose transport in mouse skeletal muscle. Diabetes 59, 1358–1365 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Fueger, P. T. et al. Glucose kinetics and exercise tolerance in mice lacking the GLUT4 glucose transporter. J. Physiol. 582, 801–812 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Hong, Y. H., Yang, C., Betik, A. C., Lee-Young, R. S. & McConell, G. K. Skeletal muscle glucose uptake during treadmill exercise in neuronal nitric oxide synthase-μ knockout mice. Am. J. Physiol. Endocrinol. Metab. 310, E838–E845 (2016).

    Article  PubMed  Google Scholar 

  228. Fueger, P. T. et al. Hexokinase II overexpression improves exercise-stimulated but not insulin-stimulated muscle glucose uptake in high-fat-fed C57BL/6J mice. Diabetes 53, 306–314 (2014).

    Article  Google Scholar 

  229. Halseth, A. E., Bracy, D. P. & Wasserman, D. H. Overexpression of hexokinase II increases insulinand exercise-stimulated muscle glucose uptake in vivo. Am. J. Physiol. 276, E70–E77 (1999).

    CAS  PubMed  Google Scholar 

  230. Fueger, P. T. et al. Hexokinase II partial knockout impairs exercise-stimulated glucose uptake in oxidative muscles of mice. Am. J. Physiol. Endocrinol. Metab. 285, E958–E963 (2003).

    Article  CAS  PubMed  Google Scholar 

  231. Nielsen, J. N. et al. Decreased insulin action in skeletal muscle from patients with McArdle's disease. Am. J. Physiol. Endocrinol. Metab. 282, E1267–E1275 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.A.R is supported by grants from the Danish Council for Independent Research Natural Sciences (grant 4002-00492B), the Danish Council for Independent Research Medical Sciences (grant 0602-02273B), the Novo Nordisk Foundation (grant 1015429) and the University of Copenhagen Excellence Program for Interdisciplinary Research (“Physical activity and nutrition for improvement of health”). L.S. and M.K. are supported by Postdoctoral Fellowships from the Danish Council for Independent Research Medical Sciences (grants 5053–00155 and 4004–00233, respectively). T.E.J. is supported by an excellence grant from the Novo Nordisk Foundation (grant 15182).

Author information

Authors and Affiliations

Authors

Contributions

L.S., M.K., E.A.R. and T.E.J. researched the data for the article. L.S., M.K., E.A.R. and T.E.J. provided a substantial contribution to discussions of the content. L.S., M.K., E.A.R. and T.E.J. contributed equally to writing the article and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Erik A. Richter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sylow, L., Kleinert, M., Richter, E. et al. Exercise-stimulated glucose uptake — regulation and implications for glycaemic control. Nat Rev Endocrinol 13, 133–148 (2017). https://doi.org/10.1038/nrendo.2016.162

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing