Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomic and epigenomic mechanisms of glucocorticoids in the brain

Key Points

  • Glucocorticoids are essential signalling molecules that bind to the glucocorticoid receptor to regulate the brain's ability to adapt to stress

  • The glucocorticoid receptor can alter neuronal function through both genomic (transcriptional) and non-genomic (intracellular signalling, epigenetic) effects

  • Sex hormones, neurotransmitters and neurotrophic factors can modulate the effects of the glucocorticoid receptor

  • Stress-induced changes resulting from glucocorticoid receptor activation can be persistent and thereby alter future stress reactivity through epigenetic mechanisms

  • Recovery from stress is not equivalent to reversal: one cannot turn back the clock

Abstract

Following the discovery of glucocorticoid receptors in the hippocampus and other brain regions, research has focused on understanding the effects of glucocorticoids in the brain and their role in regulating emotion and cognition. Glucocorticoids are essential for adaptation to stressors (allostasis) and in maladaptation resulting from allostatic load and overload. Allostatic overload, which can occur during chronic stress, can reshape the hypothalamic–pituitary–adrenal axis through epigenetic modification of genes in the hippocampus, hypothalamus and other stress-responsive brain regions. Glucocorticoids exert their effects on the brain through genomic mechanisms that involve both glucocorticoid receptors and mineralocorticoid receptors directly binding to DNA, as well as by non-genomic mechanisms. Furthermore, glucocorticoids synergize both genomically and non-genomically with neurotransmitters, neurotrophic factors, sex hormones and other stress mediators to shape an organism's present and future responses to a stressful environment. Here, we discuss the mechanisms of glucocorticoid action in the brain and review how glucocorticoids interact with stress mediators in the context of allostasis, allostatic load and stress-induced neuroplasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intracellular regulation of the glucocorticoid receptor.
Figure 2: Circadian and ultradian fluctuations in corticosterone.
Figure 3: Stress and allostatic load.
Figure 4: Gene expression profiling of acute and chronic stress compared with cortisol injections.
Figure 5: Genetic polymorphisms can alter stress-induced gene expression.

Similar content being viewed by others

References

  1. Ahima, R., Krozowski, Z. & Harlan, R. Type I corticosteroid receptor-like immunoreactivity in the rat CNS: distribution and regulation by corticosteroids. J. Comp. Neurol. 313, 522–538 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Ahima, R. S. & Harlan, R. E. Charting of type II glucocorticoid receptor-like immunoreactivity in the rat central nervous system. Neuroscience 39, 579–604 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. McEwen, B. S., Weiss, J. M. & Schwartz, L. S. Selective retention of corticosterone by limbic structures in rat brain. Nature 220, 911–912 (1968).

    Article  CAS  PubMed  Google Scholar 

  4. DeKloet, E. R., Boschma, Y., Reul, Y. & Jong, W. in Adrenal Gland and Hypertension (ed. Mantero, F.) (Serono Symposium, 1988).

    Google Scholar 

  5. Wang, Q. et al. Glucocorticoid receptor protein expression in human hippocampus; stability with age. Neurobiol. Aging 34, 1662–1673 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Herman, J. P. et al. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front. Neuroendocrinol. 24, 151–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Akana, S. F., Jacobson, L., Cascio, C. S., Shinsako, J. & Dallman, M. F. Constant corticosterone replacement normalizes basal adrenocorticotropin (ACTH) but permits sustained ACTH hypersecretion after stress in adrenalectomized rats. Endocrinology 122, 1337–1342 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Jacobson, L., Akana, S. F., Cascio, C. S., Shinsako, J. & Dallman, M. F. Circadian variations in plasma corticosterone permit normal termination of adrenocorticotropin responses to stress. Endocrinology 122, 1343–1348 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. de Kloet, E. R., Fitzsimons, C. P., Datson, N. A., Meijer, O. C. & Vreugdenhil, E. Glucocorticoid signaling and stress-related limbic susceptibility pathway: about receptors, transcription machinery and microRNA. Brain Res. 1293, 129–141 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Joels, M., Karst, H., Krugers, H. J. & Lucassen, P. J. Chronic stress: implications for neuronal morphology, function and neurogenesis. Front. Neuroendocrinol. 28, 72–96 (2007).

    Article  PubMed  Google Scholar 

  11. McEwen, B. S. Stress and hippocampal plasticity. Annu. Rev. Neurosci. 22, 105–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. McEwen, B. S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87, 873–904 (2007).

    Article  PubMed  Google Scholar 

  13. Cameron, H. A. & Gould, E. in Receptor Dynamics in Neural Development (ed. Shaw, C. A.) 141–157 (CRC Press, 1996).

    Google Scholar 

  14. Du, J. et al. Dynamic regulation of mitochondrial function by glucocorticoids. Proc. Natl Acad. Sci. USA 106, 3543–3548 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karst, H. et al. Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc. Natl Acad. Sci. USA 102, 19204–19207 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hunter, R. G. et al. Stress and corticosteroids regulate rat hippocampal mitochondrial DNA gene expression via the glucocorticoid receptor. Proc. Natl Acad. Sci. USA 113, 9099–9104 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Popoli, M., Yan, Z., McEwen, B. S. & Sanacora, G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat. Rev. Neurosci. 13, 22–37 (2012).

    Article  CAS  Google Scholar 

  18. McEwen, B. S. Protective and damaging effects of stress mediators. N. Engl. J. Med. 338, 171–179 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. McEwen, B. S. & Gianaros, P. J. Stress- and allostasis-induced brain plasticity. Annu. Rev. Med. 62, 431–445 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. McEwen, B. S. & Wingfield, J. C. The concept of allostasis in biology and biomedicine. Horm. Behav. 43, 2–15 (2003).

    Article  PubMed  Google Scholar 

  21. McEwen, B. S. et al. Mechanisms of stress in the brain. Nat. Neurosci. 18, 1353–1363 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. de Quervain, D., Schwabe, L. & Roozendaal, B. Stress, glucocorticoids and memory: implications for treating fear-related disorders. Nat. Rev. Neurosci. 18, 7–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Zorn, J. V. et al. Cortisol stress reactivity across psychiatric disorders: a systematic review and meta-analysis. Psychoneuroendocrinology 77, 25–36 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. McNay, E. C., Fries, T. M. & Gold, P. E. Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc. Natl Acad. Sci. USA 97, 2881–2885 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Uemura, K. et al. Involvement of the hippocampus in central nervous system-mediated glucoregulation in rats. Endocrinology 124, 2449–2455 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Watanabe, Y., Gould, E., Cameron, H. A., Daniels, D. C. & McEwen, B. S. Phenytoin prevents stress- and corticosterone-induced atrophy of CA3 pyramidal neurons. Hippocampus 2, 431–435 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Conrad, C. D., Galea, L. A., Kuroda, Y. & McEwen, B. S. Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behav. Neurosci. 110, 1321–1334 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Oster, H. et al. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 4, 163–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Stavreva, D. A. et al. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nat. Cell Biol. 11, 1093–1102 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Qian, X., Droste, S. K., Lightman, S. L., Reul, J. M. & Linthorst, A. C. Circadian and ultradian rhythms of free glucocorticoid hormone are highly synchronized between the blood, the subcutaneous tissue, and the brain. Endocrinology 153, 4346–4353 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Conway-Campbell, B. L., Pooley, J. R., Hager, G. L. & Lightman, S. L. Molecular dynamics of ultradian glucocorticoid receptor action. Mol. Cell. Endocrinol. 348, 383–393 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Lightman, S. L. et al. The significance of glucocorticoid pulsatility. Eur. J. Pharmacol. 583, 255–262 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Liston, C. et al. Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance. Nat. Neurosci. 16, 698–705 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hall, B. S., Moda, R. N. & Liston, C. Glucocorticoid mechanisms of functional connectivity changes in stress-related neuropsychiatric disorders. Neurobiol. Stress 1, 174–183 (2015).

    Article  PubMed  Google Scholar 

  35. Reul, J. M., van den Bosch, F. R. & de Kloet, E. R. Relative occupation of type-I and type-II corticosteroid receptors in rat brain following stress and dexamethasone treatment: functional implications. J. Endocrinol. 115, 459–467 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Beato, M. & Sanchez-Pacheco, A. Interaction of steroid hormone receptors with the transcription initiation complex. Endocr. Rev. 17, 587–609 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Reul, J. M. & de Kloet, E. R. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117, 2505–2511 (1985).

    Article  CAS  PubMed  Google Scholar 

  38. Datson, N. A., van der Perk, J., de Kloet, E. R. & Vreugdenhil, E. Identification of corticosteroid-responsive genes in rat hippocampus using serial analysis of gene expression. Eur. J. Neurosci. 14, 675–689 (2001).

    Article  PubMed  CAS  Google Scholar 

  39. Datson, N. A., Morsink, M. C., Meijer, O. C. & de Kloet, E. R. Central corticosteroid actions: Search for gene targets. Eur. J. Pharmacol. 583, 272–289 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Cole, T. J. et al. Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev. 9, 1608–1621 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Cole, T. J. et al. GRKO mice express an aberrant dexamethasone-binding glucocorticoid receptor, but are profoundly glucocorticoid resistant. Mol. Cell. Endocrinol. 173, 193–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Oitzl, M. S., de Kloet, E. R., Joels, M., Schmid, W. & Cole, T. J. Spatial learning deficits in mice with a targeted glucocorticoid receptor gene disruption. Eur. J. Neurosci. 9, 2284–2296 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Ridder, S. et al. Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. J. Neurosci. 25, 6243–6250 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wei, Q. et al. Glucocorticoid receptor overexpression in forebrain: a mouse model of increased emotional lability. Proc. Natl Acad. Sci. USA 101, 11851–11856 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Etxabe, J. & Vazquez, J. A. Morbidity and mortality in Cushing's disease: an epidemiological approach. Clin. Endocrinol. (Oxf.) 40, 479–484 (1994).

    Article  CAS  Google Scholar 

  46. Saag, K. G. F. & Daniel, E. Major side effects of systemic glucocorticoids. UpToDate https://www.uptodate.com/contents/major-side-effects-of-systemic-glucocorticoids (2017).

  47. Griffing, G. T., Nagelberg, S. B. & Odeke, S. Addison disease. Medscape http://emedicine.medscape.com/article/116467-overview (2017).

  48. Sonino, N. & Fava, G. A. Psychiatric disorders associated with Cushing's syndrome. Epidemiology, pathophysiology and treatment. CNS Drugs 15, 361–373 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Simmons, N. E., Do, H. M., Lipper, M. H. & Laws, E. R. Jr. Cerebral atrophy in Cushing's disease. Surg. Neurol. 53, 72–76 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Khiat, A., Bard, C., Lacroix, A., Rousseau, J. & Boulanger, Y. Brain metabolic alterations in Cushing's syndrome as monitored by proton magnetic resonance spectroscopy. NMR Biomed. 12, 357–363 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Langenecker, S. A. et al. Impact of chronic hypercortisolemia on affective processing. Neuropharmacology 62, 217–225 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Andela, C. D. et al. Mechanisms in endocrinology: Cushing's syndrome causes irreversible effects on the human brain: a systematic review of structural and functional magnetic resonance imaging studies. Eur. J. Endocrinol. 173, R1–R14 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Starkman, M. N., Gebarski, S. S., Berent, S. & Schteingart, D. E. Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing's syndrome. Biol. Psychiatry 32, 756–765 (1992).

    Article  CAS  PubMed  Google Scholar 

  54. Starkman, M. N. et al. Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing's disease. Biol. Psychiatry 46, 1595–1602 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Bas-Hoogendam, J. M. et al. Altered neural processing of emotional faces in remitted Cushing's disease. Psychoneuroendocrinology 59, 134–146 (2015).

    Article  PubMed  Google Scholar 

  56. van der Werff, S. J. et al. Resting-state functional connectivity in patients with long-term remission of Cushing's disease. Neuropsychopharmacology 40, 1888–1898 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Anglin, R. E., Rosebush, P. I. & Mazurek, M. F. The neuropsychiatric profile of Addison's disease: revisiting a forgotten phenomenon. J. Neuropsychiatry Clin. Neurosci. 18, 450–459 (2006).

    Article  PubMed  Google Scholar 

  58. Schelling, G., Roozendaal, B. & De Quervain, D. J.-F. Can posttraumatic stress disorder be prevented with glucocorticoids? Ann. NY Acad. Sci. 1032, 158–166 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Zohar, J. et al. High dose hydrocortisone immediately after trauma may alter the trajectory of PTSD: interplay between clinical and animal studies. Eur. Neuropsychopharmacol. 21, 796–809 (2011).

    Article  PubMed  CAS  Google Scholar 

  60. Rao, R. P., Anilkumar, S., McEwen, B. S. & Chattarji, S. Glucocorticoids protect against the delayed behavioral and cellular effects of acute stress on the amygdala. Biol. Psychiatry 72, 466–475 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Judd, L. L. et al. Adverse consequences of glucocorticoid medication: psychological, cognitive, and behavioral effects. Am. J. Psychiatry 171, 1045–1051 (2014).

    Article  PubMed  Google Scholar 

  62. Fardet, L., Petersen, I. & Nazareth, I. Suicidal behavior and severe neuropsychiatric disorders following glucocorticoid therapy in primary care. Am. J. Psychiatry 169, 491–497 (2012).

    Article  PubMed  Google Scholar 

  63. McEwen, B. S., Nasca, C. & Gray, J. D. Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology 41, 3–23 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Pham, K., Nacher, J., Hof, P. R. & McEwen, B. S. Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur. J. Neurosci. 17, 879–886 (2003).

    Article  PubMed  Google Scholar 

  65. Vyas, A., Bernal, S. & Chattarji, S. Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Res. 965, 290–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Vyas, A., Jadhav, S. & Chattarji, S. Prolonged behavioral stress enhances synaptic connectivity in the basolateral amygdala. Neuroscience 143, 387–393 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Luine, V., Villegas, M., Martinez, C. & McEwen, B. S. Repeated stress causes reversible impairments of spatial memory performance. Brain Res. 639, 167–170 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Conrad, C. D., LeDoux, J. E., Magarinos, A. M. & McEwen, B. S. Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav. Neurosci. 113, 902–913 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Magarinos, A. M. & McEwen, B. S. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69, 89–98 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Christian, K. M., Miracle, A. D., Wellman, C. L. & Nakazawa, K. Chronic stress-induced hippocampal dendritic retraction requires CA3 NMDA receptors. Neuroscience 174, 26–36 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Pavlides, C., Kimura, A., Magarinos, A. M. & McEwen, B. S. Type I adrenal steroid receptors prolong hippocampal long-term potentiation. Neuroreport 5, 2673–2677 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Diamond, D. M., Bennett, M. C., Fleshner, M. & Rose, G. M. Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus 2, 421–430 (1992).

    Article  CAS  PubMed  Google Scholar 

  73. Treccani, G. et al. Stress and corticosterone increase the readily releasable pool of glutamate vesicles in synaptic terminals of prefrontal and frontal cortex. Mol. Psychiatry 19, 433–443 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Tasker, J. G., Di, S. & Malcher-Lopes, R. Minireview: rapid glucocorticoid signaling via membrane-associated receptors. Endocrinology 147, 5549–5556 (2006).

    Article  PubMed  CAS  Google Scholar 

  75. Hill, M. N. & McEwen, B. S. Involvement of the endocannabinoid system in the neurobehavioural effects of stress and glucocorticoids. Prog. Neuropsychopharmacol. Biol. Psychiatry 34, 791–797 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. MacDougall, M. J. & Howland, J. G. Acute stress, but not corticosterone, disrupts short- and long-term synaptic plasticity in rat dorsal subiculum via glucocorticoid receptor activation. Cereb. Cortex 23, 2611–2619 (2013).

    Article  PubMed  Google Scholar 

  77. Gray, J. D., Rubin, T. G., Hunter, R. G. & McEwen, B. S. Hippocampal gene expression changes underlying stress sensitization and recovery. Mol. Psychiatry 19, 1171–1178 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Datson, N. A. et al. Previous history of chronic stress changes the transcriptional response to glucocorticoid challenge in the dentate gyrus region of the male rat hippocampus. Endocrinology 154, 3261–3272 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Leuner, B., Caponiti, J. M. & Gould, E. Oxytocin stimulates adult neurogenesis even under conditions of stress and elevated glucocorticoids. Hippocampus 22, 861–868 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Rao, N. A. et al. Coactivation of GR and NFKB alters the repertoire of their binding sites and target genes. Genome Res. 21, 1404–1416 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Lambert, W. M. et al. Brain-derived neurotrophic factor signaling rewrites the glucocorticoid transcriptome via glucocorticoid receptor phosphorylation. Mol. Cell. Biol. 33, 3700–3714 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Coburn-Litvak, P. S. et al. Chronic corticosterone affects brain weight, and mitochondrial, but not glial volume fraction in hippocampal area CA3. Neuroscience 124, 429–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Magarinos, A. M., Verdugo, J. M. & McEwen, B. S. Chronic stress alters synaptic terminal structure in hippocampus. Proc. Natl Acad. Sci. USA 94, 14002–14008 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stewart, M. G. et al. Stress suppresses and learning induces plasticity in CA3 of rat hippocampus: a three-dimensional ultrastructural study of thorny excrescences and their postsynaptic densities. Neuroscience 131, 43–54 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Oakley, R. H. & Cidlowski, J. A. Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids. J. Biol. Chem. 286, 3177–3184 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Rogatsky, I., Luecke, H. F., Leitman, D. C. & Yamamoto, K. R. Alternate surfaces of transcriptional coregulator GRIP1 function in different glucocorticoid receptor activation and repression contexts. Proc. Natl Acad. Sci. USA 99, 16701–16706 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Meijsing, S. H. et al. DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 324, 407–410 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Trapp, T., Rupprecht, R., Castren, M., Reul, J. M. & Holsboer, F. Heterodimerization between mineralocorticoid and glucocorticoid receptor: a new principle of glucocorticoid action in the CNS. Neuron 13, 1457–1462 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Ou, X. M., Storring, J. M., Kushwaha, N. & Albert, P. R. Heterodimerization of mineralocorticoid and glucocorticoid receptors at a novel negative response element of the 5-HT1A receptor gene. J. Biol. Chem. 276, 14299–14307 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Sorrells, S. F., Caso, J. R., Munhoz, C. D. & Sapolsky, R. M. The stressed CNS: when glucocorticoids aggravate inflammation. Neuron 64, 33–39 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Chinenov, Y. et al. Role of transcriptional coregulator GRIP1 in the anti-inflammatory actions of glucocorticoids. Proc. Natl Acad. Sci. USA 109, 11776–11781 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Reichardt, H. M. et al. DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93, 531–541 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Oitzl, M. S., Reichardt, H. M., Joels, M. & de Kloet, E. R. Point mutation in the mouse glucocorticoid receptor preventing DNA binding impairs spatial memory. Proc. Natl Acad. Sci. USA 98, 12790–12795 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Frijters, R. et al. Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor. BMC Genomics 11, 359 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Polman, J. A., de Kloet, E. R. & Datson, N. A. Two populations of glucocorticoid receptor-binding sites in the male rat hippocampal genome. Endocrinology 154, 1832–1844 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Mehler, M. F. Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Prog. Neurobiol. 86, 305–341 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Hunter, R. G. et al. Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response. Proc. Natl Acad. Sci. USA 109, 17657–17662 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hunter, R. G., Gagnidze, K., McEwen, B. S. & Pfaff, D. W. Stress and the dynamic genome: steroids, epigenetics, and the transposome. Proc. Natl Acad. Sci. USA 112, 6828–6833 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. McEwen, B. S. & Morrison, J. H. The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron 79, 16–29 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Thomassin, H., Flavin, M., Espinas, M. L. & Grange, T. Glucocorticoid-induced DNA demethylation and gene memory during development. EMBO J. 20, 1974–1983 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Arloth, J. et al. Genetic differences in the immediate transcriptome response to stress predict risk-related brain function and psychiatric disorders. Neuron 86, 1189–1202 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Murgatroyd, C. et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat. Neurosci. 12, 1559–1566 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Murgatroyd, C. & Spengler, D. Polycomb binding precedes early-life stress responsive DNA methylation at the Avp enhancer. PLoS ONE 9, e90277 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Elliott, E., Ezra-Nevo, G., Regev, L., Neufeld-Cohen, A. & Chen, A. Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat. Neurosci. 13, 1351–1353 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. LaPlant, Q. et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat. Neurosci. 13, 1137–1143 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Suri, D., Bhattacharya, A. & Vaidya, V. A. Early stress evokes temporally distinct consequences on the hippocampal transcriptome, anxiety and cognitive behaviour. Int. J. Neuropsychopharmacol. 17, 289–301 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Lee, R. S. et al. A measure of glucocorticoid load provided by DNA methylation of Fkbp5 in mice. Psychopharmacology (Berl.) 218, 303–312 (2011).

    Article  CAS  Google Scholar 

  108. Levine, A., Worrell, T. R., Zimnisky, R. & Schmauss, C. Early life stress triggers sustained changes in histone deacetylase expression and histone H4 modifications that alter responsiveness to adolescent antidepressant treatment. Neurobiol. Dis. 45, 488–498 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Lupien, S. J., McEwen, B. S., Gunnar, M. R. & Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10, 434–445 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Sinclair, D., Fillman, S. G., Webster, M. J. & Weickert, C. S. Dysregulation of glucocorticoid receptor co-factors FKBP5, BAG1 and PTGES3 in prefrontal cortex in psychotic illness. Sci. Rep. 3, 3539 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Binder, E. B. et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat. Genet. 36, 1319–1325 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Silva, R. et al. Lithium blocks stress-induced changes in depressive-like behavior and hippocampal cell fate: the role of glycogen-synthase-kinase-3beta. Neuroscience 152, 656–669 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Zhou, R. et al. The anti-apoptotic, glucocorticoid receptor cochaperone protein BAG-1 is a long-term target for the actions of mood stabilizers. J. Neurosci. 25, 4493–4502 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Maeng, S. et al. BAG1 plays a critical role in regulating recovery from both manic-like and depression-like behavioral impairments. Proc. Natl Acad. Sci. USA 105, 8766–8771 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Denny, W. B., Valentine, D. L., Reynolds, P. D., Smith, D. F. & Scammell, J. G. Squirrel monkey immunophilin FKBP51 is a potent inhibitor of glucocorticoid receptor binding. Endocrinology 141, 4107–4113 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Vermeer, H., Hendriks-Stegeman, B. I., van der Burg, B., van Buul-Offers, S. C. & Jansen, M. Glucocorticoid-induced increase in lymphocytic FKBP51 messenger ribonucleic acid expression: a potential marker for glucocorticoid sensitivity, potency, and bioavailability. J. Clin. Endocrinol. Metab. 88, 277–284 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Ising, M. et al. Polymorphisms in the FKBP5 gene region modulate recovery from psychosocial stress in healthy controls. Eur. J. Neurosci. 28, 389–398 (2008).

    Article  PubMed  Google Scholar 

  118. Binder, E. B. et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 299, 1291–1305 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Duman, R. S. & Monteggia, L. M. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 59, 1116–1127 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Jeanneteau, F., Garabedian, M. J. & Chao, M. V. Activation of Trk neurotrophin receptors by glucocorticoids provides a neuroprotective effect. Proc. Natl Acad. Sci. USA 105, 4862–4867 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Magarinos, A. M. et al. Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons. Hippocampus 21, 253–264 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Arango-Lievano, M. et al. Neurotrophic-priming of glucocorticoid receptor signaling is essential for neuronal plasticity to stress and antidepressant treatment. Proc. Natl Acad. Sci. USA 112, 15737–15742 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Egan, M. F. et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Chen, Z. Y. et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 314, 140–143 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Yu, H. et al. Variant brain-derived neurotrophic factor Val66Met polymorphism alters vulnerability to stress and response to antidepressants. J. Neurosci. 32, 4092–4101 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Gray, J. D. et al. Translational profiling of stress-induced neuroplasticity in the CA3 pyramidal neurons of BDNF Val66Met mice. Mol. Psychiatry http://dx.doi.org/10.1038/mp.2016.219 (2016).

  127. Joel, D. et al. Sex beyond the genitalia: the human brain mosaic. Proc. Natl Acad. Sci. USA 112, 15468–15473 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. McCarthy, M. M. Multifaceted origins of sex differences in the brain. Phil. Trans. R. Soc. B 371, 20150106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Marrocco, J. & McEwen, B. S. Sex in the brain: hormones and sex differences. Dialogues Clin. Neurosci. 18, 373–383 (2016).

    PubMed  PubMed Central  Google Scholar 

  130. Beery, A. K. & Zucker, I. Sex bias in neuroscience and biomedical research. Neurosci. Biobehav Rev. 35, 565–572 (2011).

    Article  PubMed  Google Scholar 

  131. Shansky, R. M. & Woolley, C. S. Considering sex as a biological variable will be valuable for neuroscience research. J. Neurosci. 36, 11817–11822 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Joel, D. & McCarthy, M. M. Incorporating sex as a biological variable in neuropsychiatric research: where are we now and where should we be? Neuropsychopharmacology 42, 379–385 (2017).

    Article  PubMed  Google Scholar 

  133. Bale, T. L. & Epperson, C. N. Sex as a biological variable: who, what, when, why, and how. Neuropsychopharmacology 42, 386–396 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Derntl, B. et al. Multidimensional assessment of empathic abilities: neural correlates and gender differences. Psychoneuroendocrinology 35, 67–82 (2010).

    Article  PubMed  Google Scholar 

  135. Bourke, C. H., Harrell, C. S. & Neigh, G. N. Stress-induced sex differences: adaptations mediated by the glucocorticoid receptor. Horm. Behav. 62, 210–218 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Galea, L. A. et al. Sex differences in dendritic atrophy of CA3 pyramidal neurons in response to chronic restraint stress. Neuroscience 81, 689–697 (1997).

    Article  CAS  PubMed  Google Scholar 

  137. Luine, V. N., Beck, K. D., Bowman, R. E., Frankfurt, M. & MacLusky, N. J. Chronic stress and neural function: accounting for sex and age. J. Neuroendocrinol. 19, 743–751 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Bowman, R. E., Zrull, M. C. & Luine, V. N. Chronic restraint stress enhances radial arm maze performance in female rats. Brain Res. 904, 279–289 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Wood, G. E. & Shors, T. J. Stress facilitates classical conditioning in males, but impairs classical conditioning in females through activational effects of ovarian hormones. Proc. Natl Acad. Sci. USA 95, 4066–4071 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wood, G. E., Shors, T. J. & Beylin, A. V. The contribution of adrenal and reproductive hormones to the opposing effects of stress on trace conditioning in males versus females. Behav. Neurosci. 115, 175–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Shors, T. J. & Miesegaes, G. Testosterone in utero and at birth dictates how stressful experience will affect learning in adulthood. Proc. Natl Acad. Sci. USA 99, 13955–13960 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Leuner, B., Mendolia-loffredo, S. & Shors, T. J. Males and females respond differently to controllability and antidepressant treatment. Biol. Psychiatry 56, 964–970 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Shansky, R. M. et al. Estrogen promotes stress sensitivity in a prefrontal cortex-amygdala pathway. Cereb. Cortex 20, 2560–2567 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  144. McEwen, B. S. & Milner, T. A. Hippocampal formation: shedding light on the influence of sex and stress on the brain. Brain Res. Rev. 55, 343–355 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Bangasser, D. A. et al. Sex differences in corticotropin-releasing factor receptor signaling and trafficking: potential role in female vulnerability to stress-related psychopathology. Mol. Psychiatry 15, 896–904 (2010).

    Article  CAS  Google Scholar 

  146. Bangasser, D. A., Zhang, X., Garachh, V., Hanhauser, E. & Valentino, R. J. Sexual dimorphism in locus coeruleus dendritic morphology: a structural basis for sex differences in emotional arousal. Physiol. Behav. 103, 342–351 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Cahill, L. Why sex matters for neuroscience. Nat. Rev. Neurosci. 7, 477–484 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Lasley, E. N. & McEwen, B. S. The end of sex as we know it. The Dana Foundation http://www.dana.org/Cerebrum/2005/The_End_of_Sex_as_We_Know_It/ (2005).

  149. McEwen, B. S. Introduction: the end of sex as we once knew it. Physiol. Behav. 97, 143–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Laje, G. et al. Genetic markers of suicidal ideation emerging during citalopram treatment of major depression. Am. J. Psychiatry 164, 1530–1538 (2007).

    Article  PubMed  Google Scholar 

  151. Meites, J. Short history of neuroendocrinology and the International Society of Neuroendocrinology. Neuroendocrinology 56, 1–10 (1992).

    Article  CAS  PubMed  Google Scholar 

  152. Becker, J. B. & Koob, G. F. Sex differences in animal models: focus on addiction. Pharmacol. Rev. 68, 242–263 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Carruth, L. L., Reisert, I. & Arnold, A. P. Sex chromosome genes directly affect brain sexual differentiation. Nat. Neurosci. 5, 933–934 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Romeo, R. D. Pubertal maturation and programming of hypothalamic-pituitary-adrenal reactivity. Front. Neuroendocrinol. 31, 232–240 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Angold, A. & Costello, E. J. Puberty and depression. Child Adolesc. Psychiatr. Clin. N. Am. 15, 919–937 (2006).

    Article  PubMed  Google Scholar 

  156. Dalla, C. et al. Chronic mild stress impact: are females more vulnerable? Neuroscience 135, 703–714 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Viau, V. Functional cross-talk between the hypothalamic-pituitary-gonadal and -adrenal axes. J. Neuroendocrinol. 14, 506–513 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Kunugi, H. et al. Assessment of the dexamethasone/CRH test as a state-dependent marker for hypothalamic-pituitary-adrenal (HPA) axis abnormalities in major depressive episode: a multicenter study. Neuropsychopharmacology 31, 212–220 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Maccari, S., Krugers, H. J., Morley-Fletcher, S., Szyf, M. & Brunton, P. J. The consequences of early-life adversity: neurobiological, behavioural and epigenetic adaptations. J. Neuroendocrinol. 26, 707–723 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Gobinath, A. R., Mahmoud, R. & Galea, L. A. Influence of sex and stress exposure across the lifespan on endophenotypes of depression: focus on behavior, glucocorticoids, and hippocampus. Front. Neurosci. 8, 420 (2014).

    PubMed  Google Scholar 

  161. Musazzi, L. & Marrocco, J. Stress response and perinatal reprogramming: unraveling (mal)adaptive strategies. Neural Plast. 2016, 6752193 (2016).

    PubMed  PubMed Central  Google Scholar 

  162. Weinstock, M., Matlina, E., Maor, G. I., Rosen, H. & McEwen, B. S. Prenatal stress selectively alters the reactivity of the hypothalamic-pituitary adrenal system in the female rat. Brain Res. 595, 195–200 (1992).

    Article  CAS  PubMed  Google Scholar 

  163. McCormick, C. M., Smythe, J. W., Sharma, S. & Meaney, M. J. Sex-specific effects of prenatal stress on hypothalamic-pituitary-adrenal responses to stress and brain glucocorticoid receptor density in adult rats. Brain Res. Dev. Brain Res. 84, 55–61 (1995).

    Article  CAS  PubMed  Google Scholar 

  164. Maccari, S. et al. Adoption reverses the long-term impairment in glucocorticoid feedback induced by prenatal stress. J. Neurosci. 15, 110–116 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Koehl, M. et al. Prenatal stress alters circadian activity of hypothalamo-pituitary-adrenal axis and hippocampal corticosteroid receptors in adult rats of both gender. J. Neurobiol. 40, 302–315 (1999).

    Article  CAS  PubMed  Google Scholar 

  166. Tarullo, A. R. & Gunnar, M. R. Child maltreatment and the developing HPA axis. Horm. Behav. 50, 632–639 (2006).

    Article  PubMed  Google Scholar 

  167. Slotten, H. A., Kalinichev, M., Hagan, J. J., Marsden, C. A. & Fone, K. C. Long-lasting changes in behavioural and neuroendocrine indices in the rat following neonatal maternal separation: gender-dependent effects. Brain Res. 1097, 123–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Litvin, Y. et al. Maternal separation modulates short-term behavioral and physiological indices of the stress response. Horm. Behav. 58, 241–249 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Ogawa, T. et al. Periodic maternal deprivation alters stress response in adult offspring: potentiates the negative feedback regulation of restraint stress-induced adrenocortical response and reduces the frequencies of open field-induced behaviors. Pharmacol. Biochem. Behav. 49, 961–967 (1994).

    Article  CAS  PubMed  Google Scholar 

  170. Ariza Traslavina, G. A., de Oliveira, F. L. & Franci, C. R. Early adolescent stress alters behavior and the HPA axis response in male and female adult rats: the relevance of the nature and duration of the stressor. Physiol. Behav. 133, 178–189 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Barha, C. K., Brummelte, S., Lieblich, S. E. & Galea, L. A. Chronic restraint stress in adolescence differentially influences hypothalamic-pituitary-adrenal axis function and adult hippocampal neurogenesis in male and female rats. Hippocampus 21, 1216–1227 (2011).

    Article  CAS  PubMed  Google Scholar 

  172. Iwasaki-Sekino, A., Mano-Otagiri, A., Ohata, H., Yamauchi, N. & Shibasaki, T. Gender differences in corticotropin and corticosterone secretion and corticotropin-releasing factor mRNA expression in the paraventricular nucleus of the hypothalamus and the central nucleus of the amygdala in response to footshock stress or psychological stress in rats. Psychoneuroendocrinology 34, 226–237 (2009).

    Article  CAS  PubMed  Google Scholar 

  173. Rubinow, D. R. et al. Testosterone suppression of CRH-stimulated cortisol in men. Neuropsychopharmacology 30, 1906–1912 (2005).

    Article  PubMed  CAS  Google Scholar 

  174. Goel, N. & Bale, T. L. Sex differences in the serotonergic influence on the hypothalamic-pituitary-adrenal stress axis. Endocrinology 151, 1784–1794 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Quinn, M., Ramamoorthy, S. & Cidlowski, J. A. Sexually dimorphic actions of glucocorticoids: beyond chromosomes and sex hormones. Ann. NY Acad. Sci. 1317, 1–6 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Duma, D., Collins, J. B., Chou, J. W. & Cidlowski, J. A. Sexually dimorphic actions of glucocorticoids provide a link to inflammatory diseases with gender differences in prevalence. Sci. Signal. 3, ra74 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Zhang, Y., Leung, D. Y., Nordeen, S. K. & Goleva, E. Estrogen inhibits glucocorticoid action via protein phosphatase 5 (PP5)-mediated glucocorticoid receptor dephosphorylation. J. Biol. Chem. 284, 24542–24552 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Krishnan, A. V., Swami, S. & Feldman, D. Estradiol inhibits glucocorticoid receptor expression and induces glucocorticoid resistance in MCF-7 human breast cancer cells. J. Steroid Biochem. Mol. Biol. 77, 29–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  179. Olazabal, U. E., Pfaff, D. W. & Mobbs, C. V. Sex differences in the regulation of heat shock protein 70 kDa and 90 kDa in the rat ventromedial hypothalamus by estrogen. Brain Res. 596, 311–314 (1992).

    Article  CAS  PubMed  Google Scholar 

  180. Tranguch, S. et al. Cochaperone immunophilin FKBP52 is critical to uterine receptivity for embryo implantation. Proc. Natl Acad. Sci. USA 102, 14326–14331 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Knee, D. A., Froesch, B. A., Nuber, U., Takayama, S. & Reed, J. C. Structure-function analysis of Bag1 proteins. Effects on androgen receptor transcriptional activity. J. Biol. Chem. 276, 12718–12724 (2001).

    Article  CAS  PubMed  Google Scholar 

  182. Hubler, T. R. et al. The FK506-binding immunophilin FKBP51 is transcriptionally regulated by progestin and attenuates progestin responsiveness. Endocrinology 144, 2380–2387 (2003).

    Article  CAS  PubMed  Google Scholar 

  183. Hubler, T. R. & Scammell, J. G. Intronic hormone response elements mediate regulation of FKBP5 by progestins and glucocorticoids. Cell Stress Chaperones 9, 243–252 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Jaaskelainen, T., Makkonen, H. & Palvimo, J. J. Steroid up-regulation of FKBP51 and its role in hormone signaling. Curr. Opin. Pharmacol. 11, 326–331 (2011).

    Article  CAS  PubMed  Google Scholar 

  185. Kontula, K., Paavonen, T., Luukkainen, T. & Andersson, L. C. Binding of progestins to the glucocorticoid receptor. Correlation to their glucocorticoid-like effects on in vitro functions of human mononuclear leukocytes. Biochem. Pharmacol. 32, 1511–1518 (1983).

    Article  CAS  PubMed  Google Scholar 

  186. Kurihara, I. et al. Expression and regulation of nuclear receptor coactivators in glucocorticoid action. Mol. Cell. Endocrinol. 189, 181–189 (2002).

    Article  CAS  PubMed  Google Scholar 

  187. Meijer, O. C. et al. Steroid receptor coactivator-1 splice variants differentially affect corticosteroid receptor signaling. Endocrinology 146, 1438–1448 (2005).

    Article  CAS  PubMed  Google Scholar 

  188. Camacho-Arroyo, I., Neri-Gomez, T., Gonzalez-Arenas, A. & Guerra-Araiza, C. Changes in the content of steroid receptor coactivator-1 and silencing mediator for retinoid and thyroid hormone receptors in the rat brain during the estrous cycle. J. Steroid Biochem. Mol. Biol. 94, 267–272 (2005).

    Article  CAS  PubMed  Google Scholar 

  189. Charlier, T. D., Harada, N., Ball, G. F. & Balthazart, J. Targeting steroid receptor coactivator-1 expression with locked nucleic acids antisense reveals different thresholds for the hormonal regulation of male sexual behavior in relation to aromatase activity and protein expression. Behav. Brain Res. 172, 333–343 (2006).

    Article  CAS  PubMed  Google Scholar 

  190. Mitev, Y. A., Wolf, S. S., Almeida, O. F. & Patchev, V. K. Developmental expression profiles and distinct regional estrogen responsiveness suggest a novel role for the steroid receptor coactivator SRC-1 as discriminative amplifier of estrogen signaling in the rat brain. FASEB J. 17, 518–519 (2003).

    Article  CAS  PubMed  Google Scholar 

  191. Bian, C., Zhang, D., Guo, Q., Cai, W. & Zhang, J. Localization and sex-difference of steroid receptor coactivator-1 immunoreactivities in the brain of adult female and male mice. Steroids 76, 269–279 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Bian, C. et al. Regional specific regulation of steroid receptor coactivator-1 immunoreactivity by orchidectomy in the brain of adult male mice. Steroids 88, 7–14 (2014).

    Article  CAS  PubMed  Google Scholar 

  193. Rolfe, D. F. & Brown, G. C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77, 731–758 (1997).

    Article  CAS  PubMed  Google Scholar 

  194. Taivassalo, T. et al. The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients. Brain 126, 413–423 (2003).

    Article  PubMed  Google Scholar 

  195. Ross, J. M. et al. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature 501, 412–415 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Picard, M. et al. Acute exercise remodels mitochondrial membrane interactions in mouse skeletal muscle. J. Appl. Physiol. (1985) 115, 1562–1571 (2013).

    Article  CAS  Google Scholar 

  197. Picard, M., Juster, R. P. & McEwen, B. S. Mitochondrial allostatic load puts the 'gluc' back in glucocorticoids. Nat. Rev. Endocrinol. 10, 303–310 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of NIH/F32 MH102065 to JDG and NIH/RO1 MH41256 and the Hope for Depression Research Foundation grant RGA#13-004 to BSM.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article, discussion of content, writing the article and reviewing and/or editing the manuscript before submission.

Corresponding author

Correspondence to Bruce S. McEwen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Ultradian

Having a period of recurrence shorter than a day but longer than an hour.

Excitotoxicity

Pathological process by which neurons are damaged by overactivation of receptors for glutamate, such as NMDA (N-methyl-D-aspartate) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors.

Long-term potentiation

Persistent increase in synaptic strength following high-frequency stimulation of a chemical synapse.

Prime burst potentiation

Specific type of long-term potentiation that combines complex-spike discharge and theta rhythm to produce lasting increases in evoked responses recorded in area CA1.

Polycomb complexes

A family of proteins that bind to DNA, leading to chromatin remodelling that causes epigenetic silencing of genes.

Gene–environment interaction

When two different genotypes respond to environmental variation in different ways.

Neurotrophic hypothesis

This hypothesis states that depression results from decreased neurotrophic support, leading to neuronal atrophy, decreased hippocampal neurogenesis and loss of glia, and that antidepressant treatment blocks or reverses this neurotrophic factor deficit and thereby reverses the atrophy and cell loss.

Conduct disorder

A mental disorder diagnosed in childhood or adolescence that presents itself through a repetitive and persistent pattern of behaviour in which the basic rights of others or major age-appropriate norms are violated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gray, J., Kogan, J., Marrocco, J. et al. Genomic and epigenomic mechanisms of glucocorticoids in the brain. Nat Rev Endocrinol 13, 661–673 (2017). https://doi.org/10.1038/nrendo.2017.97

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2017.97

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing