Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus

Key Points

  • Type 2 diabetes mellitus (T2DM) is associated with reduced mitochondrial function in the skeletal muscle and metabolic inflexibility

  • Healthy mitochondria require a tight balance between mitochondrial biogenesis and mitophagy, as well as between mitochondrial ATP and reactive oxygen species production

  • Exercise training is the intervention that most comprehensively improves the diverse aspects of mitochondrial function, along with whole-body and skeletal muscle insulin sensitivity

  • Calorie restriction and calorie restriction mimetics are strong nonexercise tools to boost mitochondrial function, probably via the activation of an AMPK–NAD+–SIRT pathway

  • Novel environmental and lifestyle factors, such as sleep and ambient temperature, might also affect mitochondrial function and insulin sensitivity in humans

Abstract

Low levels of physical activity and the presence of obesity are associated with mitochondrial dysfunction. In addition, mitochondrial dysfunction has been associated with the development of insulin resistance and type 2 diabetes mellitus (T2DM). Although the evidence for a causal relationship between mitochondrial function and insulin resistance is still weak, emerging evidence indicates that boosting mitochondrial function might be beneficial to patient health. Exercise training is probably the most recognized promoter of mitochondrial function and insulin sensitivity and hence is still regarded as the best strategy to prevent and treat T2DM. Animal data, however, have revealed several new insights into the regulation of mitochondrial metabolism, and novel targets for interventions to boost mitochondrial function have emerged. Importantly, many of these targets seem to be regulated by factors such as nutrition, ambient temperature and circadian rhythms, which provides a basis for nonpharmacological strategies to prevent or treat T2DM in humans. Here, we will review the current evidence that mitochondrial function can be targeted therapeutically to improve insulin sensitivity and to prevent T2DM, focusing mainly on human intervention studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The conversion of acetyl-CoA to acetylcarnitine by carnitine-acyltransferase.
Figure 2: Mitochondrial network morphology.
Figure 3: Schematic overview of the role of NAD+ in the regulation of mitochondrial metabolism.
Figure 4: Circadian clock and mitochondrial function.

Similar content being viewed by others

References

  1. Navarro, A. & Boveris, A. The mitochondrial energy transduction system and the aging process. Am. J. Physiol. Cell Physiol. 292, C670–C686 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Shigenaga, M. K., Hagen, T. M. & Ames, B. N. Oxidative damage and mitochondrial decay in aging. Proc. Natl Acad. Sci. USA 91, 10771–10778 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cortopassi, G. A. & Wong, A. Mitochondria in organismal aging and degeneration. Biochim. Biophys. Acta 1410, 183–193 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Carter, H., Chen, C. & Hood, D. Mitochondria, muscle health, and exercise with advancing age. Physiology 30, 208–223 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Hood, D., Uguccioni, G., Vainshtein, A. & D'souza, D. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle: implications for health and disease. Compr. Physiol. 1, 1119–1134 (2011).

    Article  PubMed  Google Scholar 

  6. Shulman, G. I. et al. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N. Engl. J. Med. 322, 223–228 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Unger, R. H. & Orci, L. Diseases of liporegulation: new perspective on obesity and related disorders. FASEB J. 15, 312–321 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Kelley, D. E., He, J., Menshikova, E. V. & Ritov, V. B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51, 2944–2950 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Ritov, V. B. et al. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 54, 8–14 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Patti, M. E. et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc. Natl Acad. Sci. USA 100, 8466–8471 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Petersen, K. F. et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300, 1140–1142 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Petersen, K. F., Dufour, S., Befroy, D., Garcia, R. & Shulman, G. I. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med. 350, 664–671 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kemp, G. & Brindle, K. What do magnetic resonance-based measurements of Pi→ATP flux tell us about skeletal muscle metabolism? Diabetes 61, 1927–1934 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schrauwen-Hinderling, V. B. et al. Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects. Diabetologia 50, 113–120 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Phielix, E. et al. Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes 57, 2943–2949 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hancock, C. R. et al. High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc. Natl Acad. Sci. USA 105, 7815–7820 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Turner, N. et al. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 56, 2085–2092 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Pospisilik, J. A. et al. Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell 131, 476–491 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Schiff, M. et al. Mitochondria and diabetes mellitus: untangling a conflictive relationship? J. Inherit. Metab. Dis. 32, 684–698 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Dumas, J., Simard, G., Flamment, M., Ducluzeau, P. & Ritz, P. Is skeletal muscle mitochondrial dysfunction a cause or an indirect consequence of insulin resistance in humans? Diabetes Metab. 35, 159–167 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Joseph, A. & Hood, D. Relationships between exercise, mitochondrial biogenesis and type 2 diabetes. Med. Sport Sci. 60, 48–61 (2014).

    Article  PubMed  Google Scholar 

  23. Toledo, F. & Goodpaster, B. The role of weight loss and exercise in correcting skeletal muscle mitochondrial abnormalities in obesity, diabetes and aging. Mol. Cell. Endocrinol. 379, 30–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Brunmair, B. et al. Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes 53, 1052–1059 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Madiraju, A. K. et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542–546 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Matsuzaki, S. & Humphries, K. M. Selective inhibition of deactivated mitochondrial complex I by biguanides. Biochemistry 54, 2011–2021 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Satapati, S. et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J. Clin. Invest. 125, 4447–4462 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Romanello, V. & Sandri, M. Mitochondrial quality control and muscle mass maintenance. Front. Physiol. 6, 422 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Thomas, R. & Gustafsson, Å. Mitochondrial autophagy. Circ. J. 77, 2449–2454 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jung, H. S. & Lee, M. S. Role of autophagy in diabetes and mitochondria. Ann. NY Acad. Sci. 1201, 79–83 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Randle, P., Garland, P., Hales, C. & Newsholme, E. The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 281, 785–789 (1963).

    Article  Google Scholar 

  32. Storlien, L., Oakes, N. & Kelley, D. Metabolic flexibility. Proc. Nutr. Soc. 63, 363–368 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Kelley, D. E. & Mandarino, L. J. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 49, 677–683 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Mihalik, S. J. et al. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity (Silver Spring) 18, 1695–1700 (2010).

    Article  CAS  Google Scholar 

  35. Seiler, S. E. et al. Obesity and lipid stress inhibit carnitine acetyltransferase activity. J. Lipid Res. 55, 635–644 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lindeboom, L. et al. Long-echo time MR spectroscopy for skeletal muscle acetylcarnitine detection. J. Clin. Invest. 124, 4915–4925 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Song, F. et al. Oxidative stress, antioxidant status and DNA damage in patients with impaired glucose regulation and newly diagnosed type 2 diabetes. Clin. Sci. (Lond.) 112, 599–606 (2007).

    Article  CAS  Google Scholar 

  38. Anderson, E. J. et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J. Clin. Invest. 119, 573–581 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Amara, C. E. et al. Mild mitochondrial uncoupling impacts cellular aging in human muscles in vivo. Proc. Natl Acad. Sci. USA 104, 1057–1062 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Diehl, A. M. & Hoek, J. B. Mitochondrial uncoupling: role of uncoupling protein anion carriers and relationship to thermogenesis and weight control “the benefits of losing control”. J. Bioenerg. Biomembr. 31, 493–506 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Wallin, I. E. The mitochondria problem. Am. Naturalist 57, 255–261 (1923).

    Article  Google Scholar 

  42. Schatz, G., Haslbrunner, E. & Tuppy, H. Deoxyribonucleic acid associated with yeast mitochondria. Biochem. Biophys. Res. Commun. 15, 127–132 (1964).

    Article  CAS  PubMed  Google Scholar 

  43. Lee, C., Yen, K. & Cohen, P. Humanin: a harbinger of mitochondrial-derived peptides? Trends Endocrinol. Metab. 24, 222–228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, C. et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 21, 443–454 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mottis, A., Jovaisaite, V. & Auwerx, J. The mitochondrial unfolded protein response in mammalian physiology. Mamm. Genome 25, 424–433 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ljubicic, V. et al. Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging. Biochim. Biophys. Acta 1800, 223–234 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Lin, J. et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418, 797–801 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Hoeks, J. et al. Enhanced lipid-but not carbohydrate-supported mitochondrial respiration in skeletal muscle of PGC-1α overexpressing mice. J. Cell. Physiol. 227, 1026–1033 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Choi, C. S. et al. Paradoxical effects of increased expression of PGC-1α on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism. Proc. Natl Acad. Sci. USA 105, 19926–19931 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Summermatter, S. et al. PGC-1α improves glucose homeostasis in skeletal muscle in an activity-dependent manner. Diabetes 62, 85–95 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Koves, T. R. et al. PPARγ coactivator-1α contributes to exercise-induced regulation of intramuscular lipid droplet programming in mice and humans. J. Lipid Res. 54, 522–534 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Meex, R. C. et al. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes 59, 572–579 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Mensink, M. et al. Improved skeletal muscle oxidative enzyme activity and restoration of PGC-1α and PPARβ/δ gene expression upon rosiglitazone treatment in obese patients with type 2 diabetes mellitus. Int. J. Obes. (Lond.) 31, 1302–1310 (2007).

    Article  CAS  Google Scholar 

  54. Canto, C. & Auwerx, J. PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 20, 98–105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zorzano, A., Hernandez-Alvarez, M. I., Palacin, M. & Mingrone, G. Alterations in the mitochondrial regulatory pathways constituted by the nuclear co-factors PGC-1α or PGC-1β and mitofusin 2 in skeletal muscle in type 2 diabetes. Biochim. Biophys. Acta 1797, 1028–1033 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Glancy, B. et al. Mitochondrial reticulum for cellular energy distribution in muscle. Nature 523, 617–620 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Westermann, B. Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 11, 872–884 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Cipolat, S., Martins de Brito, O., Dal Zilio, B. & Scorrano, L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl Acad. Sci. USA 101, 15927–15932 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Herlan, M., Bornhovd, C., Hell, K., Neupert, W. & Reichert, A. S. Alternative topogenesis of Mgm1 and mitochondrial morphology depend on ATP and a functional import motor. J. Cell Biol. 165, 167–173 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tondera, D. et al. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J. 28, 1589–1600 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Patten, D. A. et al. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J. 33, 2676–2691 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liesa, M. & Shirihai, O. S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 17, 491–506 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, Y. J., Jeong, S. Y., Karbowski, M., Smith, C. L. & Youle, R. J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 15, 5001–5011 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wikstrom, J. D. et al. Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure. EMBO J. 33, 418–436 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Poehlman, E. T. & Horton, E. S. Regulation of energy expenditure in aging humans. Annu. Rev. Nutr. 10, 255–275 (1990).

    Article  CAS  PubMed  Google Scholar 

  66. Schrauwen, P., Xia, J., Bogardus, C., Pratley, R. E. & Ravussin, E. Skeletal muscle uncoupling protein 3 expression is a determinant of energy expenditure in Pima Indians. Diabetes 48, 146–149 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sebastian, D. et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc. Natl Acad. Sci. USA 109, 5523–5528 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pich, S. et al. The Charcot–Marie–Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Hum. Mol. Genet. 14, 1405–1415 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Zuchner, S. et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot–Marie–Tooth neuropathy type 2A. Nat. Genet. 36, 449–451 (2004).

    Article  PubMed  CAS  Google Scholar 

  71. Bach, D. et al. Expression of Mfn2, the Charcot–Marie–Tooth neuropathy type 2A gene, in human skeletal muscle. Diabetes 54, 2685–2693 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Jheng, H. F. et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol. Cell. Biol. 32, 309–319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Watanabe, T. et al. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance. Exp. Cell Res. 323, 314–325 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Waterham, H. R. et al. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med. 356, 1736–1741 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Wallberg-Henriksson, H. et al. Increased peripheral insulin sensitivity and muscle mitochondrial enzymes but unchanged blood glucose control in type I diabetics after physical training. Diabetes 31, 1044–1050 (1982).

    Article  CAS  PubMed  Google Scholar 

  76. James, D. E., Lederman, L. & Pilch, P. F. Purification of insulin-dependent exocytic vesicles containing the glucose transporter. J. Biol. Chem. 262, 11817–11824 (1987).

    Article  CAS  PubMed  Google Scholar 

  77. Menshikova, E. V. et al. Effects of weight loss and physical activity on skeletal muscle mitochondrial function in obesity. Am. J. Physiol. Endocrinol. Metab. 288, E818–E825 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Short, K. R. et al. Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52, 1888–1896 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Toledo, F. G. et al. Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Diabetes 56, 2142–2147 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Bajpeyi, S. et al. Skeletal muscle mitochondrial capacity and insulin resistance in type 2 diabetes. J. Clin. Endocrinol. Metab. 96, 1160–1168 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hutchison, S. K. et al. Effect of exercise training on insulin sensitivity, mitochondria and computed tomography muscle attenuation in overweight women with and without polycystic ovary syndrome. Diabetologia 55, 1424–1434 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Hey-Mogensen, M. et al. Effect of physical training on mitochondrial respiration and reactive oxygen species release in skeletal muscle in patients with obesity and type 2 diabetes. Diabetologia 53, 1976–1985 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Hood, M. S., Little, J. P., Tarnopolsky, M. A., Myslik, F. & Gibala, M. J. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med. Sci. Sports Exerc. 43, 1849–1856 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Irving, B. A., Short, K. R., Nair, K. S. & Stump, C. S. Nine days of intensive exercise training improves mitochondrial function but not insulin action in adult offspring of mothers with type 2 diabetes. J. Clin. Endocrinol. Metab. 96, E1137–E1141 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Coen, P. M. et al. Exercise and weight loss improve muscle mitochondrial respiration, lipid partitioning, and insulin sensitivity after gastric bypass surgery. Diabetes 64, 3737–3750 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Phielix, E., Meex, R., Moonen-Kornips, E., Hesselink, M. K. & Schrauwen, P. Exercise training increases mitochondrial content and ex vivo mitochondrial function similarly in patients with type 2 diabetes and in control individuals. Diabetologia 53, 1714–1721 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pagel-Langenickel, I. et al. A discordance in rosiglitazone mediated insulin sensitization and skeletal muscle mitochondrial content/activity in Type 2 diabetes mellitus. Am. J. Physiol. Heart Circ. Physiol. 293, H2659–H2666 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Malin, S. K. et al. Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin-resistant phenotypes. Am. J. Physiol. Endocrinol. Metab. 305, E1292–E1298 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bergouignan, A. et al. Effect of contrasted levels of habitual physical activity on metabolic flexibility. J. Appl. Physiol. (1985) 114, 371–379 (2013).

    Article  CAS  Google Scholar 

  90. den Hoed, M., Hesselink, M. K., van Kranenburg, G. P. & Westerterp, K. R. Habitual physical activity in daily life correlates positively with markers for mitochondrial capacity. J. Appl. Physiol. (1985) 105, 561–568 (2008).

    Article  CAS  Google Scholar 

  91. Karolkiewicz, J. et al. Response of oxidative stress markers and antioxidant parameters to an 8-week aerobic physical activity program in healthy, postmenopausal women. Arch. Gerontol. Geriatr. 49, e67–e71 (2009).

    Article  PubMed  Google Scholar 

  92. Konopka, A. R. et al. Defects in mitochondrial efficiency and H2O2 emissions in obese women are restored to a lean phenotype with aerobic exercise training. Diabetes 64, 2104–2115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ludzki, A. et al. Rapid repression of ADP transport by palmitoyl-CoA is attenuated by exercise training in humans: a potential mechanism to decrease oxidative stress and improve skeletal muscle insulin signaling. Diabetes 64, 2769–2779 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mielke, C. et al. Adenine nucleotide translocase is acetylated in vivo in human muscle: modeling predicts a decreased ADP affinity and altered control of oxidative phosphorylation. Biochemistry 53, 3817–3829 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Sparks, L. M. et al. Ant1-mediated fatty acid-induced uncoupling as a target for improving myocellular insulin sensitivity. Diabetologia 59, 1030–1039 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Befroy, D. E. et al. Increased substrate oxidation and mitochondrial uncoupling in skeletal muscle of endurance-trained individuals. Proc. Natl Acad. Sci. USA 105, 16701–16706 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ding, H. et al. Response of mitochondrial fusion and fission protein gene expression to exercise in rat skeletal muscle. Biochim. Biophys. Acta 1800, 250–256 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Cartoni, R. et al. Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise. J. Physiol. 567, 349–358 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Garnier, A. et al. Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J. 19, 43–52 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Hernandez-Alvarez, M. I. et al. Subjects with early-onset type 2 diabetes show defective activation of the skeletal muscle PGC-1α/mitofusin-2 regulatory pathway in response to physical activity. Diabetes Care 33, 645–651 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Fealy, C. E., Mulya, A., Lai, N. & Kirwan, J. P. Exercise training decreases activation of the mitochondrial fission protein dynamin-related protein-1 in insulin-resistant human skeletal muscle. J. Appl. Physiol. (1985) 117, 239–245 (2014).

    Article  CAS  Google Scholar 

  102. Finkel, T. The metabolic regulation of aging. Nat. Med. 21, 1416–1423 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Heilbronn, L. K. et al. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA 295, 1539–1548 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Civitarese, A. E. et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 4, e76 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Guarente, L. Mitochondria — a nexus for aging, calorie restriction, and sirtuins? Cell 132, 171–176 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sun, Q. et al. Overexpression of visfatin/PBEF/Nampt alters whole-body insulin sensitivity and lipid profile in rats. Ann. Med. 41, 311–320 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Yoshino, J., Mills, K. F., Yoon, M. J. & Imai, S. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Milne, J. C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–716 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rutanen, J. et al. SIRT1 mRNA expression may be associated with energy expenditure and insulin sensitivity. Diabetes 59, 829–835 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Baksi, A. et al. A phase II, randomized, placebo-controlled, double-blind, multi-dose study of SRT2104, a SIRT1 activator, in subjects with type 2 diabetes. Br. J. Clin. Pharmacol. 78, 69–77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Howitz, K. T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. de Ligt, M., Timmers, S. & Schrauwen, P. Resveratrol and obesity: can resveratrol relieve metabolic disturbances? Biochim. Biophys. Acta 1852, 1137–1144 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Timmers, S. et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 14, 612–622 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Timmers, S., Hesselink, M. K. & Schrauwen, P. Therapeutic potential of resveratrol in obesity and type 2 diabetes: new avenues for health benefits? Ann. NY Acad. Sci. 1290, 83–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Canto, C. et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 15, 838–847 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gariani, K. et al. Eliciting the mitochondrial unfolded protein response via NAD repletion reverses fatty liver disease. Hepatology 63, 1190–1204 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Traba, J. et al. Fasting and refeeding differentially regulate NLRP3 inflammasome activation in human subjects. J. Clin. Invest. 125, 4592–4600 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  119. van de Weijer, T. et al. Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans. Diabetes 64, 1193–1201 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Pan, A., Schernhammer, E. S., Sun, Q. & Hu, F. B. Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS Med. 8, e1001141 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Suwazono, Y. et al. Shiftwork and impaired glucose metabolism: a 14-year cohort study on 7104 male workers. Chronobiol. Int. 26, 926–941 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Meisinger, C., Heier, M. & Loewel, H. Sleep disturbance as a predictor of type 2 diabetes mellitus in men and women from the general population. Diabetologia 48, 235–241 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Scheer, F. A., Hilton, M. F., Mantzoros, C. S. & Shea, S. A. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl Acad. Sci. USA 106, 4453–4458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Karlsson, B., Knutsson, A. & Lindahl, B. Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occup. Environ. Med. 58, 747–752 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kalsbeek, A., la Fleur, S. & Fliers, E. Circadian control of glucose metabolism. Mol. Metab. 3, 372–383 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yin, L., Wang, J., Klein, P. S. & Lazar, M. A. Nuclear receptor Rev-erbα is a critical lithium-sensitive component of the circadian clock. Science 311, 1002–1005 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Woldt, E. et al. Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat. Med. 19, 1039–1046 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Eckel-Mahan, K. L. et al. Reprogramming of the circadian clock by nutritional challenge. Cell 155, 1464–1478 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Peek, C. B. et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 342, 1243417 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Jacobi, D. et al. Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell Metab. 22, 709–720 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Noland, R. C. et al. Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J. Biol. Chem. 284, 22840–22852 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ringseis, R., Keller, J. & Eder, K. Role of carnitine in the regulation of glucose homeostasis and insulin sensitivity: evidence from in vivo and in vitro studies with carnitine supplementation and carnitine deficiency. Eur. J. Nutr. 51, 1–18 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Randle, P. J., Garland, P. B., Hales, C. N. & Newsholme, E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1, 785–789 (1963).

    Article  CAS  PubMed  Google Scholar 

  134. Hirschey, M. D. et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 44, 177–190 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Marton, O. et al. Aging and exercise affect the level of protein acetylation and SIRT1 activity in cerebellum of male rats. Biogerontology 11, 679–686 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Davies, M. J. et al. The acetyl group buffering action of carnitine acetyltransferase offsets macronutrient-induced lysine acetylation of mitochondrial proteins. Cell Rep. 14, 1–12 (2016).

    Article  CAS  Google Scholar 

  137. van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Betz, M. J. & Enerback, S. Human brown adipose tissue: what we have learned so far. Diabetes 64, 2352–2360 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Kajimura, S., Spiegelman, B. M. & Seale, P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 22, 546–559 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Shibata, H., Perusse, F., Vallerand, A. & Bukowiecki, L. J. Cold exposure reverses inhibitory effects of fasting on peripheral glucose uptake in rats. Am. J. Physiol. 257, R96–R101 (1989).

    CAS  PubMed  Google Scholar 

  141. Stanford, K. I. et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Invest. 123, 215–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Hanssen, M. J. et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat. Med. 21, 863–865 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Hanssen, M. J. et al. Short-term cold acclimation recruits brown adipose tissue in obese humans. Diabetes 65, 1179–1189 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Bal, N. C. et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat. Med. 18, 1575–1579 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Maurya, S. K. et al. Sarcolipin is a key determinant of the basal metabolic rate, and its overexpression enhances energy expenditure and resistance against diet-induced obesity. J. Biol. Chem. 290, 10840–10849 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Milligan, L. P. & McBride, B. W. Energy costs of ion pumping by animal tissues. J. Nutr. 115, 1374–1382 (1985).

    Article  CAS  PubMed  Google Scholar 

  147. Chinet, A., Decrouy, A. & Even, P. C. Ca(2+)-dependent heat production under basal and near-basal conditions in the mouse soleus muscle. J. Physiol. 455, 663–678 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Levine, J. A. et al. Interindividual variation in posture allocation: possible role in human obesity. Science 307, 584–586 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. van Dijk, J. W. et al. Effect of moderate-intensity exercise versus activities of daily living on 24-hour blood glucose homeostasis in male patients with type 2 diabetes. Diabetes Care 36, 3448–3453 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Henson, J. et al. Breaking up prolonged sitting with standing or walking attenuates the postprandial metabolic response in postmenopausal women: a randomized acute study. Diabetes Care 39, 130–138 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Hooper, P. L. Hot-tub therapy for type 2 diabetes mellitus. N. Engl. J. Med. 341, 924–925 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Bruce, C. R., Carey, A. L., Hawley, J. A. & Febbraio, M. A. Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: evidence that insulin resistance is associated with a disturbed antioxidant defense mechanism. Diabetes 52, 2338–2345 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Kurucz, I. et al. Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes 51, 1102–1109 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Chung, J. et al. HSP72 protects against obesity-induced insulin resistance. Proc. Natl Acad. Sci. USA 105, 1739–1744 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gupte, A. A., Bomhoff, G. L., Swerdlow, R. H. & Geiger, P. C. Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high-fat diet. Diabetes 58, 567–578 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Liu, C. T. & Brooks, G. A. Mild heat stress induces mitochondrial biogenesis in C2C12 myotubes. J. Appl. Physiol. (1985) 112, 354–361 (2012).

    Article  CAS  Google Scholar 

  157. Henstridge, D. C., Whitham, M. & Febbraio, M. A. Chaperoning to the metabolic party: the emerging therapeutic role of heat-shock proteins in obesity and type 2 diabetes. Mol. Metab. 3, 781–793 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Literati-Nagy, B. et al. Improvement of insulin sensitivity by a novel drug, BGP-15, in insulin-resistant patients: a proof of concept randomized double-blind clinical trial. Horm. Metab. Res. 41, 374–380 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Nabben, M. et al. The effect of UCP3 overexpression on mitochondrial ROS production in skeletal muscle of young versus aged mice. FEBS Lett. 582, 4147–4152 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Schrauwen, P. & Hesselink, M. K. Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes 53, 1412–1417 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.K.C.H. is supported by a VIDI Research Grant for innovative research from the Netherlands Organization for Scientific Research (Grant 917.66.359). V.S.-H. is supported by a VENI Research Grant for innovative research from the Netherlands Organization for Scientific Research (Grant 916.11.136). P.S. is supported by a VICI Research Grant for innovative research from the Netherlands Organization for Scientific Research (Grant 918.96.618).

Author information

Authors and Affiliations

Authors

Contributions

M.K.C.H. researched data and wrote the manuscript. All authors contributed to discussion of the content and reviewed and/or edited the article before submission.

Corresponding author

Correspondence to Patrick Schrauwen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hesselink, M., Schrauwen-Hinderling, V. & Schrauwen, P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol 12, 633–645 (2016). https://doi.org/10.1038/nrendo.2016.104

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing