Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of androgen metabolism in women with infertility and hypoandrogenism

Key Points

  • Testosterone activity, via the androgen receptor, on granulosa cells is increasingly recognized as essential for the early stages of folliculogenesis

  • Dehydroepiandrosterone (DHEA) supplementation of women with low functional ovarian reserve (LFOR) is a popular treatment for infertility, as these women almost universally have lower levels of testosterone than healthy women

  • DHEA supplementation has remained controversial primarily due to a lack of adequately powered clinical trials demonstrating its efficacy, but also owing to considerable variability in the metabolism of DHEA to testosterone

  • Approximately 10–15% of women who respond poorly to DHEA supplementation have insufficiently increased levels of testosterone—a major product of DHEA metabolism

  • Abnormally poor metabolism of DHEA to testosterone can be caused by a number of known genetic variants, as well as by endocrine and immune conditions

  • Hormonal responses to DHEA supplementation in women with LFOR can indicate genetic variants associated with poor metabolism of DHEA to testosterone and, thereby, suggest new personalized treatment options for these patients

Abstract

Hypoandrogenism in women with low functional ovarian reserve (LFOR, defined as an abnormally low number of small growing follicles) adversely affects fertility. The androgen precursor dehydroepiandrosterone (DHEA) is increasingly used to supplement treatment protocols in women with LFOR undergoing in vitro fertilization. Due to differences in androgen metabolism, however, responses to DHEA supplementation vary between patients. In addition to overall declines in steroidogenic capacity with advancing age, genetic factors, which result in altered expression or enzymatic function of key steroidogenic proteins or their upstream regulators, might further exacerbate variations in the conversion of DHEA to testosterone. In this Review, we discuss in vitro studies and animal models of polymorphisms and gene mutations that affect the conversion of DHEA to testosterone and attempt to elucidate how these variations affect female hormone profiles. We also discuss treatment options that modulate levels of testosterone by targeting the expression of steroidogenic genes. Common variants in genes encoding DHEA sulphotransferase, aromatase, steroid 5α-reductase, androgen receptor, sex-hormone binding globulin, fragile X mental retardation protein and breast cancer type 1 susceptibility protein have been implicated in androgen metabolism and, therefore, can affect levels of androgens in women. Short of screening for all potential genetic variants, hormonal assessments of patients with low testosterone levels after DHEA supplementation facilitate identification of underlying genetic defects. The genetic predisposition of patients can then be used to design individualized fertility treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metabolism of exogenously administered DHEA.

Similar content being viewed by others

References

  1. Weil, S. J. et al. Androgen receptor gene expression in the primate ovary: cellular localization, regulation, and functional correlations. J. Clin. Endocrinol. Metab. 83, 2479–2485 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Vendola, K. A., Zhou, J., Adesanya, O. O., Weil, S. J. & Bondy, C. A. Androgens stimulate early stages of follicular growth in the primate ovary. J. Clin. Invest. 101, 2622–2629 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Gleicher, N. et al. Hypoandrogenism in association with diminished functional ovarian reserve. Hum. Reprod. 28, 1084–1091 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Janse, F., Tanahatoe, S. J., Eijkemans, M. J. & Fauser, B. C. Testosterone concentrations, using different assays, in different types of ovarian insufficiency: a systematic review and meta-analysis. Hum. Reprod. Update 18, 405–419 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Reproductive Endocrinology and Infertility Committee et al. Advanced reproductive age and fertility. J. Obstet. Gynecol. Can. 33, 1165–1175 (2011).

  6. Kim, C. H., Howles, C. M. & Lee, H. A. The effect of transdermal testosterone gel pretreatment on controlled ovarian stimulation and IVF outcome in low responders. Fertil. Steril. 95, 679–683 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Gleicher, N. et al. Starting and resulting testosterone levels after androgen supplementation determine at all ages in vitro fertilization (IVF) pregnancy rates in women with diminished ovarian reserve (DOR). J. Assist. Reprod. Genet. 30, 49–62 (2013).

    Article  PubMed  Google Scholar 

  8. Fanchin, R. et al. Androgens and poor responders: are we ready to take the plunge into clinical therapy? Fertil. Steril. 96, 1062–1065 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Sunkara, S. K., Coomarasamy, A., Artl, W. & Bhattacharva, S. Should androgen supplementation be used for poor ovarian response in IVF? Hum. Reprod. 27, 637–640 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Urman, B. & Yakin, K. Does dehydroepiandrosterone have any benefit in fertility treatment? Curr. Opin. Obstet. Gynecol. 24, 132–135 (2012).

    Article  PubMed  Google Scholar 

  11. Narkwichean, A., Maalouf, W., Campbell, B. K. & Jayaprakasan, K. Efficacy of dehydroepiandrosterone to improve ovarian response in women with diminished ovarian reserve: a meta-analysis. Reprod. Biol. Endocrinol. 11, 44 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Gleicher, N., Barad, D. H., Kushnir, V. A., Sen, A. & Weghofer, A. Poor responders and androgen adjuvant treatment: “Still haven't found what I'm looking for ...” Reprod. Biomed. Online 29, 650–652 (2014).

    Article  PubMed  Google Scholar 

  13. Wartofsky, L. & Handelsman, D. J. Standardization of hormonal assays for the 21st century. J. Clin. Endocrinol. Metab. 95, 5141–5143 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Gleicher, N. & Barad, D. H. Dehydroepiandrosterone (DHEA) supplementation in diminished ovarian reserve (DOR). Reprod. Biol. Endocrinol. 9, 67 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Prizant, H., Gleicher, N. & Sen, A. Androgen actions in the ovary: balance is key. J. Endocrinol. 222, R141–R151 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Arlt, W. Dehydroepiandrosterone replacement therapy. Semin. Reprod. Med. 22, 379–388 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Urbanski, H. F. et al. Androgen supplementation during aging: development of a physiologically appropriate protocol. Rejuvenation Res. 17, 150–153 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ceci, R., Duranti, G., Rossi, A., Savini, I. & Sabatini, S. Skeletal muscle differentiation: role of dehydroepinadrosterone sulfate. Horm. Metab. Res. 43, 702–707 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Christianson, M. S. & Shen, W. Osteoporosis prevention and management: nonpharmacologic and lifestyle options. Clin. Obstet. Gynecol. 56, 703–710 (2013).

    Article  PubMed  Google Scholar 

  20. Savineau, J. P., Marthan, R. & Dumas de la Roque, E. Role of DHEA in cardiovascular diseases. Biochem. Pharmacol. 15, 718–726 (2013).

    Article  CAS  Google Scholar 

  21. Seawalha, A. H. & Kovats, S. Dehydroepiandrosterone in systemic lupus erythematosus. Clin. Rheumatol. Rep. 10, 286–291 (2008).

    Article  Google Scholar 

  22. Buford, T. W. & Willoughby, D. S. Impact of DHEA(S) and cortisol on immune function in aging: a brief review. Appl. Physiol. Nutr. Metab. 33, 429–433 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Forsblad-d'Elia, H., Carlsten, H., Labrie, F., Konttinen, Y. T. & Ohlsson, C. Low serum levels of sex steroids associated with disease characteristics in primary Sjogren syndrome; supplementation with dehydroepiandrosterone restores the concentrations. J. Clin. Endocrinol. Metab. 94, 2044–2051 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Kritz-Silverstein, D., von Mühlen, D., Laughlin, G. A. & Bettencourt, R. Effects of dehydroepiandrosterone supplementation on cognitive function and quality of life: the DHEA and Well-Ness (DAWN) trial. J. Am. Geriatr. Soc. 56, 1292–1298 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gleicher, N., Weghofer, A. & Barad, D. H. The role of androgens in follicle maturation and ovulation induction: friend or foe of infertility treatment? Reprod. Biol. Endocrinol. 9, 116 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Traish, A. M., Kang, H. P., Saad, F. & Guay, A. T. Dehydroepiandrosterone (DHEA)—a precursor steroid or an active hormone in human physiology. J. Sex. Med. 8, 2960–2982 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Nippoldt, T. B. & Nair, K. S. Is there a case for DHEA replacement? Baillieres Clin. Endocrinol. Metab. 12, 507–520 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Labrie, F., Luu-The, V., Labrie, C. & Simard, J. DHEA and its transformation into androgens and estrogens in peripheral target tissues: intracrinology. Front. Neuroendocrinol. 22, 185–212 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Pluchino, N. et al. One-year therapy with 10 mg/day DHEA alone or in combination with HRT in postmenopausal women: effects on hormonal milieu. Maturitas 59, 293–303 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Labrie, F. et al. Bioavailability and metabolism of oral and percutaneous dehydroepiandrosterone in postmenopausal women. J. Steroid. Biochem. Mol. Biol. 107, 57–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Buster, J. E. et al. Postmenopausal steroid replacement with micronized dehydroepiandrosterone: preliminary oral bioavailability and dose proportionality studies. Am. J. Obstet. Gynecol. 166, 1163–1168 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Wolf, O. T. et al. Effects of a two-week physiological dehydroepiandrosterone substitution on cognitive performance and well-being in healthy elderly women and men. J. Clin. Endocrinol. Metab. 82, 2363–2367 (1997).

    CAS  PubMed  Google Scholar 

  33. Rice, S. P. et al. Effects of dehydroepiandrosterone replacement on vascular function in primary and secondary adrenal insufficiency: a randomized crossover trial. J. Clin. Endocrinol. Metab. 94, 1966–1972 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Gurnell, E. M. et al. Long-term DHEA replacement in primary adrenal insufficiency: a randomized, controlled trial. J. Clin. Endocrinol. Metab. 93, 400–409 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Arlt, W. et al. Dehydroepiandrosterone replacement in women with adrenal insufficiency. N. Engl. J. Med. 341, 1013–1020 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Johannsson, G. et al. Low dose dehydroepiandrosterone affects behavior in hypopituitary androgen-deficient women: a placebo-controlled trial. J. Clin. Endocrinol. Metab. 87, 2046–2052 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Mainwaring, W. I. The mechanism of action of androgens. Monogr. Endocrinol. 10, 1–178 (1977).

    Article  CAS  PubMed  Google Scholar 

  38. Mo, Q., Lu, S. F., Hu, S. & Simon, N. G. DHEA and DHEA sulfate differentially regulate neural androgen receptor and its transcriptional activity. Brain Res. Mol. Brain Res. 126, 165–172 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Mo, Q., Lu, S. F. & Simon, N. G. Dehydroepiandrosterone and its metabolites: differential effects on androgen receptor trafficking and transcriptional activity. J. Steroid Biochem. Mol. Biol. 99, 50–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Lu, S. F., Mo, Q., Hu, S., Garippa, C. & Simon, N. G. Dehydroepiandrosterone upregulates neural androgen receptor level and transcriptional activity. J. Neurobiol. 57, 163–171 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Grino, P. B., Griffin, J. E. & Wilson, J. D. Testosterone at high concentrations interacts with the human androgen receptor similarly to dihydrotestosterone. Endocrinology 126, 1165–1172 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Longcope, C. Adrenal and gonadal androgen secretion in normal females. Clin. Endocrinol. Metab. 15, 213–228 (1986).

    Article  CAS  PubMed  Google Scholar 

  43. Labrie, F. et al. Endocrine and intracrine sources of androgens in women: inhibition of breast cancer and other roles of androgens and their precursor dehydroepiandrosterone. Endocr. Rev. 24, 152–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Shifren, J. L. et al. Transdermal testosterone treatment in women with impaired sexual function after oophorectomy. N. Engl. J. Med. 343, 682–688 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Sunkara, S. K., Coomarasamy, A., Arlt, W. & Bhattacharya, S. Should androgen supplementation be used for poor ovarian response in IVF? Hum. Reprod. 27, 637–640 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Cameron, D. R. & Braunstein, G. D. The use of dehydroepiandrosterone therapy in clinical practice. Treat. Endocrinol. 4, 95–114 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Dhatariya, K. K. & Nair, K. S. Dehydroepiandrosterone: is there a role for replacement? Mayo Clin. Proc. 78, 1257–1273 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Erichsen, M. M., Husebye, E. S., Michelsen, T. M., Dahl, A. A. & Lovas, K. Sexuality and fertility in women with Addison's disease. J. Clin. Endocrinol. Metab. 95, 4354–4360 (2010).

    Article  PubMed  Google Scholar 

  49. Zumoff, B., Strain, G. W., Miller, L. K. & Rosner, W. Twenty-four-hour mean plasma testosterone concentration declines with age in normal premenopausal women. J. Clin. Endocrinol. Metab. 80, 1429–1430 (1995).

    CAS  PubMed  Google Scholar 

  50. Hugues, J. N. et al. Assessment of theca cell function prior to controlled ovarian stimulation: the predictive value of serum basal/stimulated steroid levels. Hum. Reprod. 25, 228–234 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Nardo, L. G., Yates, A. P., Roberts, S. A., Pemberton, P. & Laing, I. The relationships between AMH, androgens, insulin resistance and basal ovarian follicular status in non-obese subfertile women with and without polycystic ovary syndrome. Hum. Reprod. 24, 2917–2923 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Otterness, D. M. & Weinshilboum, R. Human dehydroepiandrosterone sulfotransferase: molecular cloning of cDNA and genomic DNA. Chem. Biol. Interact. 92, 145–59 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Strott, C. A. Sulfonation and molecular action. Endocr. Rev. 23, 703–732 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Longcope, C. Dehydroepiandrosterone metabolism. J. Endocrinol. 150 (Suppl. 3), S125–S127 (1996).

    CAS  PubMed  Google Scholar 

  55. Reed, M. J., Purohit, A., Woo, L. W., Newman, S. P. & Potter, B. V. Steroid sulfatase: molecular biology, regulation, and inhibition. Endocr. Rev. 26, 171–202 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Asif, A. R. et al. Regulation of steroid hormone biosynthesis enzymes and organic anion transporters by forskolin and DHEA-S treatment in adrenocortical cells. Am. J. Physiol. Endocrinol. Metab. 291, E1351–E1359 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Nowell, S. & Falany, C. N. Pharmacogenetics of human cytosolic sulfotransferases. Oncogene 25, 1673–1678 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Parker, C. R. Jr. Dehydroepiandrosterone and dehydroepiandrosterone sulfate production in the human adrenal during development and aging. Steroids 64, 640–647 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Weghofer, A., Kim, A., Barad, D. H. & Gleicher, N. The impact of androgen metabolism and FMR1 genotypes on pregnancy potential and in women with dehydroepiandrosterone (DHEA) supplementation. Hum. Reprod. 27, 3287–3293 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Jaquish, C. E., Blangero, J., Haffner, S. M., Stern, M. P. & Maccluer, J. W. Quantitative genetics of dehydroepiandrosterone sulfate and its relation to possible cardiovascular disease risk factors in Mexican Americans. Hum. Hered. 46, 301–309 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. An, P. et al. Genome-wide linkage scan to detect loci influencing levels of dehydroepiandrosterones in the HERITAGE Family Study. Metabolism 50, 1315–1322 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Meikle, A. W., Stringham, J. D., Woodward, M. G. & Bishop, D. T. Heritability of variation of plasma cortisol levels. Metabolism 37, 514–517 (1988).

    Article  CAS  PubMed  Google Scholar 

  63. Rotter, J. I., Wong, F. L., Lifrak, E. T. & Parker, L. N. A genetic component to the variation of dehydroepiandrosterone sulfate. Metabolism 34, 731–736 (1985).

    Article  CAS  PubMed  Google Scholar 

  64. Rice, T. et al. The Cincinnati Myocardial Infarction and Hormone Family Study: family resemblance for dehydroepiandrosterone sulfate in control and myocardial infarction families. Metabolism 42, 1284–1290 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Zhai, G. et al. Eight common genetic variants associated with serum DHEAS levels suggest a key role in ageing mechanisms. PLoS Genet. 7, e1002025 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kumar, A., Woods, K. S., Bartolucci, A. A. & Azziz, R. Prevalence of adrenal androgen excess in patients with the polycystic ovary syndrome (PCOS). Clin. Endocrinol. (Oxf.) 62, 644–649 (2005).

    Article  CAS  Google Scholar 

  67. Thomae, B. A., Eckloff, B. W., Freimuth, R. R., Wieben, E. D. & Weinshilboum, R. M. Human sulfotransferase SULT2A1 pharmacogenetics: genotype-to-phenotype studies. Pharmacogenomics J. 2, 48–56 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Tal, R. & Seifer, D. in Ethnic Differences in Fertility and Assisted Reproduction (ed. Sharara, F.) 73–84 (Springer, 2013).

    Book  Google Scholar 

  69. Doldi, N., Belvisi, L., Bassan, M., Fusi, F. M. & Ferrari, A. Premature ovarian failure: steroid synthesis and autoimmunity. Gynecol. Endocrinol. 12, 23–28 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Kim, M. S., Shigenaga, J., Moser, A., Grunfeld, C. & Feingold, K. R. Suppression of DHEA sulfotransferase (Sult2A1) during the acute-phase response. Am. J. Physiol. Endocrinol. Metab. 287, E731–E738 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Parker, C. R. Jr. et al. Effects of ACTH and cytokines on dehydroepiandrosterone sulfotransferase messenger RNA in human adrenal cells. Endocr. Res. 24, 669–673 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Stankovic, A. K., Dion, L. D. & Parker, C. R. Jr. Effects of transforming growth factor-β on human fetal adrenal steroid production. Mol. Cell. Endocrinol. 99, 145–151 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. Lebrethon, M. C., Jaillard, C., Naville, D., Begeot, M. & Saez, J. M. Regulation of corticotropin and steroidogenic enzyme mRNAs in human fetal adrenal cells by corticotropin, angiotensin-II and transforming growth factor β1. Mol. Cell. Endocrinol. 106, 137–143 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Lebrethon, M. C., Jaillard, C., Naville, D., Begeot, M. & Saez, J. M. Effects of transforming growth factor-β1 on human adrenocortical fasciculata-reticularis cell differentiated functions. J. Clin. Endocrinol. Metab. 79, 1033–1039 (1994).

    CAS  PubMed  Google Scholar 

  75. Naz, R. K., Thurston, D. & Santoro, N. Circulating tumor necrosis factor (TNF)-α in normally cycling women and patients with premature ovarian failure and polycystic ovaries. Am. J. Reprod. Immunol. 34, 170–175 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Cianci, A. et al. Relationship between tumour necrosis factor α and sex steroid concentrations in the follicular fluid of women with immunological infertility. Hum. Reprod. 11, 265–268 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Guerra-Infante, F. M. et al. Tumor necrosis factor in peritoneal fluid from asymptomatic infertile women. Arch. Med. Res. 30, 138–143 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Horka, P. et al. Intracellular cytokine production in peripheral blood lymphocytes: a comparison of values in infertile and fertile women. Am. J. Reprod. Immunol. 65, 466–469 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Winger, E. E. et al. Treatment with adalimumab (Humira) and intravenous immunoglobulin improves pregnancy rates in women undergoing IVF. Am. J. Reprod. Immunol. 61, 113–120 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Winger, E. E. & Reed, J. L. Treatment with tumor necrosis factor inhibitors and intravenous immunoglobulin improves live birth rates in women with recurrent spontaneous abortion. Am. J. Reprod. Immunol. 60, 8–16 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Chen, S. et al. Autoantibodies to steroidogenic enzymes in autoimmune polyglandular syndrome, Addison's disease, and premature ovarian failure. J. Clin. Endocrinol. Metab. 81, 1871–1876 (1996).

    CAS  PubMed  Google Scholar 

  82. Forges, T., Monnier-Barbarino, P., Faure, G. C. & Bene, M. C. Autoimmunity and antigenic targets in ovarian pathology. Hum. Reprod. Update 10, 163–175 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Reato, G. et al. Premature ovarian failure in patients with autoimmune Addison's disease: clinical, genetic, and immunological evaluation. J. Clin. Endocrinol. Metab. 96, E1255–E1261 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Falorni, A. et al. Progressive decline of residual follicle pool after clinical diagnosis of autoimmune ovarian insufficiency. Clin. Endocrinol. (Oxf.) 77, 453–458 (2012).

    Article  Google Scholar 

  85. Canguven, O. & Albayrak, S. Do low testosterone levels contribute to the pathogenesis of asthma? Med. Hypotheses 76, 585–588 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Cutolo, M. et al. Sex hormones influence on the immune system: basic and clinical aspects in autoimmunity. Lupus 13, 635–638 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Dragojevic-Dikic, S. et al. An immunological insight into premature ovarian failure (POF). Autoimmun. Rev. 9, 771–774 (2010).

    Article  PubMed  Google Scholar 

  88. Sen, A., Kushnir, V. A., Barad, D. H. & Gleicher, N. Endocrine autoimmune disease and female infertility. Nat. Rev. Endocrinol. 10, 37–50 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Simpson, E. R. et al. Tissue-specific promoters regulate aromatase cytochrome P450 expression. J. Steroid Biochem. Mol. Biol. 44, 321–330 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. Petry, C. J. et al. Association of aromatase (CYP19) gene variation with features of hyperandrogenism in two populations of young women. Hum. Reprod. 20, 1837–1843 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, X. L. et al. SNP rs2470152 in CYP19 is correlated to aromatase activity in Chinese polycystic ovary syndrome patients. Mol. Med. Rep. 5, 245–249 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Sowers, M. R., Wilson, A. L., Kardia, S. R., Chu, J. & Ferrell, R. Aromatase gene (CYP19) polymorphisms and endogenous androgen concentrations in a multiracial/multiethnic, multisite study of women at midlife. Am. J. Med. 119, S23–S30 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Kristensen, V. N. et al. Genetic variants of CYP19 (aromatase) and breast cancer risk. Oncogene 19, 1329–1333 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Haiman, C. A., Hankinson, S. E., Spiegelman, D., Brown, M. & Hunter, D. J. No association between a single nucleotide polymorphism in CYP19 and breast cancer risk. Cancer Epidemiol. Biomarkers Prev. 11, 215–216 (2002).

    CAS  PubMed  Google Scholar 

  95. Michaelson-Cohen, R. et al. BRCA mutation carriers do not have compromised ovarian reserve. Int. J. Gynecol. Cancer 24, 233–237 (2014).

    Article  PubMed  Google Scholar 

  96. Titus, S. et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci. Transl Med. 5, 172ra2 (2013).

    Article  CAS  Google Scholar 

  97. Oktay, K. et al. Age-related decline in DNA repair function explains diminished ovarian reserve, earlier menopause, and possible oocyte vulnerability to chemotherapy in women with BRCA mutations. J. Clin. Oncol. 32, 1093–1094 (2014).

    Article  PubMed  Google Scholar 

  98. Wang, E. T. et al. BRCA1 germline mutations may be associated with reduced ovarian reserve. Fertil. Steril. 102, 1723–1728 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Chand, A. L., Simpson, E. R. & Clyne, C. D. Aromatase expression is increased in BRCA1 mutation carriers. BMC Cancer 9, 148 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Hu, Y. et al. Modulation of aromatase expression by BRCA1: a possible link to tissue-specific tumor suppression. Oncogene 24, 8343–8348 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Phillips, K. W. et al. Brca1 is expressed independently of hormonal stimulation in the mouse ovary. Lab. Invest. 76, 419–425 (1997).

    CAS  PubMed  Google Scholar 

  102. Lu, Y. et al. Ubiquitination and proteasome-mediated degradation of BRCA1 and BARD1 during steroidogenesis in human ovarian granulosa cells. Mol. Endocrinol. 21, 651–663 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Oktay, K., Kim, J. Y., Barad, D. & Babayev, S. N. Association of BRCA1 mutations with occult primary ovarian insufficiency: a possible explanation for the link between infertility and breast/ovarian cancer risks. J. Clin. Oncol. 28, 240–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Lenie, S. & Smitz, J. Functional AR signaling is evident in an in vitro mouse follicle culture bioassay that encompasses most stages of folliculogenesis. Biol. Reprod. 80, 685–695 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Tetsuka, M. et al. Developmental regulation of androgen receptor in rat ovary. J. Endocrinol. 145, 535–543 (1995).

    Article  CAS  PubMed  Google Scholar 

  106. Kimura, S. et al. Androgen receptor function in folliculogenesis and its clinical implication in premature ovarian failure. Trends Endocrinol. Metab. 18, 183–189 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Jeppesen, J. V. et al. Which follicles make the most anti-Mullerian hormone in humans? Evidence for an abrupt decline in AMH production at the time of follicle selection. Mol. Hum. Reprod. 19, 519–527 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Mitwally, M. F., Casper, R. F. & Diamond, M. P. The role of aromatase inhibitors in ameliorating deleterious effects of ovarian stimulation on outcome of infertility treatment. Reprod. Biol. Endocrinol. 3, 54 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Simon, C., Cano, F., Valbuena, D., Remohi, J. & Pellicer, A. Clinical evidence for a detrimental effect on uterine receptivity of high serum oestradiol concentrations in high and normal responder patients. Hum. Reprod. 10, 2432–2437 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Feigenberg, T., Simon, A., Ben-Meir, A., Gielchinsky, Y. & Laufer, N. Role of androgens in the treatment of patients with low ovarian response. Reprod. Biomed. Online 19, 888–898 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Casper, R. F. & Mitwally, M. F. Review: aromatase inhibitors for ovulation induction. J. Clin. Endocrinol. Metab. 91, 760–771 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Weil, S., Vendola, K., Zhou, J. & Bondy, C. A. Androgen and follicle-stimulating hormone interactions in primate ovarian follicle development. J. Clin. Endocrinol. Metab. 84, 2951–2956 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Verpoest, W. M. et al. Aromatase inhibitors in ovarian stimulation for IVF/ICSI: a pilot study. Reprod. Biomed. Online 13, 166–172 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Kwee, J., Elting, M. E., Schats, R., McDonnell, J. & Lambalk, C. B. Ovarian volume and antral follicle count for the prediction of low and hyper responders with in vitro fertilization. Reprod. Biol. Endocrinol. 5, 9 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Garcia-Velasco, J. A. et al. The aromatase inhibitor letrozole increases the concentration of intraovarian androgens and improves in vitro fertilization outcome in low responder patients: a pilot study. Fertil. Steril. 84, 82–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Andersen, C. Y. & Lossl, K. Increased intrafollicular androgen levels affect human granulosa cell secretion of anti-Mullerian hormone and inhibin-B. Fertil. Steril. 89, 1760–1765 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Brueggemeier, R. W., Su, B., Sugimoto, Y., Diaz-Cruz, E. S. & Davis, D. D. Aromatase and COX in breast cancer: enzyme inhibitors and beyond. J. Steroid Biochem. Mol. Biol. 106, 16–23 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Davies, G., Martin, L. A., Sacks, N. & Dowsett, M. Cyclooxygenase-2 (COX-2), aromatase and breast cancer: a possible role for COX-2 inhibitors in breast cancer chemoprevention. Ann. Oncol. 13, 669–678 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Lu, M. et al. BRCA1 negatively regulates the cancer-associated aromatase promoters I.3 and II in breast adipose fibroblasts and malignant epithelial cells. J. Clin. Endocrinol. Metab. 91, 4514–1519 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Subbaramaiah, K., Hudis, C., Chang, S. H., Hla, T. & Dannenberg, A. J. EP2 and EP4 receptors regulate aromatase expression in human adipocytes and breast cancer cells. Evidence of a BRCA1 and p300 exchange. J. Biol. Chem. 283, 3433–3444 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Jakimiuk, A. J., Weitsman, S. R. & Magoffin, D. A. 5α-reductase activity in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 84, 2414–2418 (1999).

    CAS  PubMed  Google Scholar 

  122. Russell, D. W. et al. The molecular genetics of steroid 5α-reductases. Recent Prog. Horm. Res. 49, 275–284 (1994).

    CAS  PubMed  Google Scholar 

  123. Abraham, G. E. Ovarian and adrenal contribution to peripheral androgens during the menstrual cycle. J. Clin. Endocrinol. Metab. 39, 340–346 (1974).

    Article  CAS  PubMed  Google Scholar 

  124. Fassnacht, M. et al. Beyond adrenal and ovarian androgen generation: increased peripheral 5α-reductase activity in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 88, 2760–2766 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Bauer, E. R., Daxenberger, A., Petri, T., Sauerwein, H. & Meyer, H. H. Characterisation of the affinity of different anabolics and synthetic hormones to the human androgen receptor, human sex hormone binding globulin and to the bovine progestin receptor. APMIS 108, 838–846 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Askew, E. B., Gampe, R. T. Jr, Stanley, T. B., Faggart, J. L. & Wilson, E. M. Modulation of androgen receptor activation function 2 by testosterone and dihydrotestosterone. J. Biol. Chem. 282, 25801–25816 (2007).

    Article  PubMed  CAS  Google Scholar 

  127. Hamel, M., Vanselow, J., Nicola, E. S. & Price, C. A. Androstenedione increases cytochrome P450 aromatase messenger ribonucleic acid transcripts in nonluteinizing bovine granulosa cells. Mol. Reprod. Dev. 70, 175–183 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Wu, Y. G., Bennett, J., Talla, D. & Stocco, C. Testosterone, not 5α-dihydrotestosterone, stimulates LRH-1 leading to FSH-independent expression of Cyp19 and P450scc in granulosa cells. Mol. Endocrinol. 25, 656–668 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Beigi, A., Sobhi, A. & Zarrinkoub, F. Finasteride versus cyproterone acetate–estrogen regimens in the treatment of hirsutism. Int. J. Gynaecol. Obstet. 87, 29–33 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Tolino, A. et al. Finasteride in the treatment of hirsutism: new therapeutic perspectives. Fertil. Steril. 66, 61–65 (1996).

    Article  CAS  PubMed  Google Scholar 

  131. Goodarzi, M. O. et al. Variants in the 5α-reductase type 1 and type 2 genes are associated with polycystic ovary syndrome and the severity of hirsutism in affected women. J. Clin. Endocrinol. Metab. 91, 4085–40891 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Makridakis, N. M., di Salle, E. & Reichardt, J. K. Biochemical and pharmacogenetic dissection of human steroid 5α-reductase type II. Pharmacogenetics 10, 407–413 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Graupp, M., Wehr, E., Schweighofer, N., Pieber, T. R. & Obermayer-Pietsch, B. Association of genetic variants in the two isoforms of 5α-reductase, SRD5A1 and SRD5A2, in lean patients with polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 157, 175–179 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Munzker, J. et al. Testosterone to dehyrotestosterone ratio as a new biomarker for an adverse metabolic phenotype in the polycystic ovary syndrome J. Clin. Endocrinol. Metab. 100, 653–660 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Ueshiba, H. et al. Serum androgen levels in hyperthyroid women. Exp. Clin. Endocrinol. Diabetes 105, 359–362 (1997).

    Article  CAS  PubMed  Google Scholar 

  136. Buchanan, G. et al. Structural and functional consequences of glutamine tract variation in the androgen receptor. Hum. Mol. Genet. 13, 1677–16792 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Brinkmann, A. O. et al. The human androgen receptor: domain structure, genomic organization and regulation of expression. J. Steroid Biochem. 34, 307–310 (1989).

    Article  CAS  PubMed  Google Scholar 

  138. Kazemi-Esfarjani, P., Trifiro, M. A. & Pinsky, L. Evidence for a repressive function of the long polyglutamine tract in the human androgen receptor: possible pathogenetic relevance for the (CAG)n-expanded neuronopathies. Hum. Mol. Genet. 4, 523–527 (1995).

    Article  CAS  PubMed  Google Scholar 

  139. Chamberlain, N. L., Driver, E. D. & Miesfeld, R. L. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res. 22, 3181–3186 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Tut, T. G., Ghadessy, F. J., Trifiro, M. A., Pinsky, L. & Yong, E. L. Long polyglutamine tracts in the androgen receptor are associated with reduced trans-activation, impaired sperm production, and male infertility. J. Clin. Endocrinol. Metab. 82, 3777–3782 (1997).

    CAS  PubMed  Google Scholar 

  141. Irvine, R. A. et al. Inhibition of p160-mediated coactivation with increasing androgen receptor polyglutamine length. Hum. Mol. Genet. 9, 267–274 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Mhatre, A. N. et al. Reduced transcriptional regulatory competence of the androgen receptor in X-linked spinal and bulbar muscular atrophy. Nat. Genet. 5, 184–188 (1993).

    Article  CAS  PubMed  Google Scholar 

  143. Shiina, H. et al. Premature ovarian failure in androgen receptor-deficient mice. Proc. Natl Acad. Sci. USA 103, 224–229 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Hu, Y. C. et al. Subfertility and defective folliculogenesis in female mice lacking androgen receptor. Proc. Natl Acad. Sci. USA 101, 11209–11214 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sen, A. & Hammes, S. R. Granulosa cell-specific androgen receptors are critical regulators of ovarian development and function. Mol. Endocrinol. 24, 1393–1403 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Walters, K. A. et al. Female mice haploinsufficient for an inactivated androgen receptor (AR) exhibit age-dependent defects that resemble the AR null phenotype of dysfunctional late follicle development, ovulation, and fertility. Endocrinology 148, 3674–3684 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Walters, K. A. et al. Subfertile female androgen receptor knockout mice exhibit defects in neuroendocrine signaling, intraovarian function, and uterine development but not uterine function. Endocrinology 150, 3274–3282 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Chatterjee, S. et al. Longer CAG repeat length in the androgen receptor gene is associated with premature ovarian failure. Hum. Reprod. 24, 3230–3235 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Aruna, M. et al. Role of androgen receptor CAG repeat polymorphism and X-inactivation in the manifestation of recurrent spontaneous abortions in Indian women. PLoS ONE 6, e17718 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Misao, R., Nakanishi, Y., Fujimoto, J., Ichigo, S. & Tamaya, T. Expression of sex hormone-binding globulin and corticosteroid-binding globulin mRNAs in corpus luteum of human subjects. Horm. Res. 48, 191–195 (1997).

    Article  CAS  PubMed  Google Scholar 

  151. Noe, G. Sex hormone binding globulin expression and colocalization with estrogen receptor in the human fallopian tube. J. Steroid Biochem. Mol. Biol. 68, 111–117 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Forges, T., Gerard, A., Hess, K., Monnier-Barbarino, P. & Gerard, H. Expression of sex hormone-binding globulin (SHBG) in human granulosa-lutein cells. Mol. Cell. Endocrinol. 219, 61–68 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Forges, T., Gerard, A., Monnier-Barbarino, P. & Gerard, H. Immunolocalization of sex hormone-binding globulin (SHBG) in human ovarian follicles and corpus luteum. Histochem. Cell Biol. 124, 285–290 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Larrea, F. et al. Evidence that human placenta is a site of sex hormone-binding globulin gene expression. J. Steroid Biochem. Mol. Biol. 46, 497–505 (1993).

    Article  CAS  PubMed  Google Scholar 

  155. Moore, K. H., Bertram, K. A., Gomez, R. R., Styner, M. J. & Matej, L. A. Sex hormone binding globulin mRNA in human breast cancer: detection in cell lines and tumor samples. J. Steroid Biochem. Mol. Biol. 59, 297–304 (1996).

    Article  CAS  PubMed  Google Scholar 

  156. Rosner, W., Hryb, D. J., Khan, M. S., Nakhla, A. M. & Romas, N. A. Androgen and estrogen signaling at the cell membrane via G-proteins and cyclic adenosine monophosphate. Steroids 64, 100–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  157. Hammes, A. et al. Role of endocytosis in cellular uptake of sex steroids. Cell 122, 751–762 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Gomez, J. M. Serum leptin, insulin-like growth factor-I components and sex-hormone binding globulin. Relationship with sex, age and body composition in healthy population. Protein Pept. Lett. 14, 708–711 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Estour, B. et al. Sex hormone binding globulin in women with anorexia nervosa. Clin. Endocrinol. (Oxf.) 24, 571–576 (1986).

    Article  CAS  Google Scholar 

  160. O'Dea, J. P. et al. Effect of dietery weight loss on sex steroid binding sex steroids, and gonadotropins in obese postmenopausal women. J. Lab. Clin. Med. 93, 1004–1008 (1979).

    CAS  PubMed  Google Scholar 

  161. Toscano, V. et al. Steroidal and non-steroidal factors in plasma sex hormone binding globulin regulation. J. Steroid Biochem. Mol. Biol. 43, 431–437 (1992).

    Article  CAS  PubMed  Google Scholar 

  162. Haffner, S. M. Sex hormone-binding protein, hyperinsulinemia, insulin resistance and noninsulin-dependent diabetes. Horm. Res. 45, 233–237 (1996).

    Article  CAS  PubMed  Google Scholar 

  163. Preziosi, P. et al. Interrelation between plasma sex hormone-binding globulin and plasma insulin in healthy adult women: the telecom study. J. Clin. Endocrinol. Metab. 76, 283–287 (1993).

    CAS  PubMed  Google Scholar 

  164. Nestler, J. E. et al. A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 72, 83–89 (1991).

    Article  CAS  PubMed  Google Scholar 

  165. Fritz, M. A. & Speroff, L. Clinical Gynecologic Endocrinology and Infertility (Lippincott Williams & Wilkins, 2011).

    Google Scholar 

  166. Lecomte, P., Lecureuil, N., Lecureuil, M., Osorio Salazar, C. & Valat, C. Age modulates effects of thyroid dysfunction on sex hormone binding globulin (SHBG) levels. Exp. Clin. Endocrinol. Diabetes 103, 339–342 (1995).

    Article  CAS  PubMed  Google Scholar 

  167. Tagawa, N. et al. Serum dehydroepiandrosterone, dehydroepiandrosterone sulfate, and pregnenolone sulfate concentrations in patients with hyperthyroidism and hypothyroidism. Clin. Chem. 46, 523–528 (2000).

    CAS  PubMed  Google Scholar 

  168. Xita, N. & Tsatsoulis, A. Genetic variants of sex hormone-binding globulin and their biological consequences. Mol. Cell. Endocrinol. 316, 60–65 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Hogeveen, K. N., Talikka, M. & Hammond, G. L. Human sex hormone-binding globulin promoter activity is influenced by a (TAAAA)n repeat element within an Alu sequence. J. Biol. Chem. 276, 36383–36390 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Haiman, C. A. et al. Common genetic variation in the sex steroid hormone-binding globulin (SHBG) gene and circulating SHBG levels among postmenopausal women: the multiethnic cohort. J. Clin. Endocrinol. Metab. 90, 2198–2204 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Xita, N., Tsatsoulis, A., Chatzikyriakidou, A. & Georgiou, I. Association of the (TAAAA)n repeat polymorphism in the sex hormone-binding globulin (SHBG) gene with polycystic ovary syndrome and relation to SHBG serum levels. J. Clin. Endocrinol. Metab. 88, 5976–5980 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. Ferk, P., Teran, N. & Gersak, K. The (TAAAA)n microsatellite polymorphism in the SHBG gene influences serum SHBG levels in women with polycystic ovary syndrome. Hum. Reprod. 22, 1031–1036 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Janse, F. et al. Similar phenotype characteristics comparing familial and sporadic premature ovarian failure. Menopause 17, 758–765 (2010).

    PubMed  Google Scholar 

  174. Sutton-Tyrrell, K. et al. Sex-hormone-binding globulin and the free androgen index are related to cardiovascular risk factors in multiethnic premenopausal and perimenopausal women enrolled in the Study of Women Across the Nation (SWAN). Circulation 111, 1242–1249 (2005).

    Article  CAS  PubMed  Google Scholar 

  175. Morales, A. J., Haubrich, R. H., Hwang, J. Y., Asakura, H. & Yen, S. S. The effect of six months treatment with a 100 mg daily dose of dehydroepiandrosterone (DHEA) on circulating sex steroids, body composition and muscle strength in age-advanced men and women. Clin. Endocrinol. (Oxf.) 49, 421–432 (1998).

    Article  CAS  Google Scholar 

  176. Kim, M. & Ceman, S. Fragile X mental retardation protein: past, present and future. Curr. Protein Pept. Sci. 13, 358–371 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Sullivan, S. D., Welt, C. & Sherman, S. FMR1 and the continuum of primary ovarian insufficiency. Semin. Reprod. Med. 29, 299–307 (2011).

    Article  PubMed  Google Scholar 

  178. Pirozzi, F., Tabolacci, E. & Neri, G. The FRAXopathies: definition, overview, and update. Am. J. Med. Genet. A 155A, 1803–1816 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Willemsen, R., Levenga, J. & Oostra, B. A. CGG repeat in the FMR1 gene: size matters. Clin. Genet. 80, 214–225 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Gleicher, N., Weghofer, A., Lee, I. H. & Barad, D. H. FMR1 genotype with autoimmunity-associated polycystic ovary-like phenotype and decreased pregnancy chance. PLoS ONE 5, e15303 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Gleicher, N., Weghofer, A., Lee, I. H. & Barad, D. H. Association of FMR1 genotypes with in vitro fertilization (IVF) outcomes based on ethnicity/race. PLoS ONE 6, e18781 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Gleicher, N., Kim, A., Weghofer, A. & Barad, D. H. Differences in ovarian aging patterns between races are associated with ovarian genotypes and sub-genotypes of the FMR1 gene. Reprod. Biol. Endocrinol. 10, 77 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Kushnir, V. A., Himaya, E., Barad, D. H., Weghofer, N. & Gleicher, N. Early decline in functional ovarian reserve in young oocyte donors based on FMR1 genotypes and sub-genotypes. Fertil. Steril. 100 (Suppl.), S114 (2013).

    Article  Google Scholar 

  184. Geva, E., Amit, A., Lerner-Geva, L. & Lessing, J. B. Autoimmunity and reproduction. Fertil. Steril. 67, 599–611 (1997).

    Article  CAS  PubMed  Google Scholar 

  185. Gleicher, N., Weghofer, A., Oktay, K. & Barad, D. H. Do etiologies of premature ovarian aging (POA) mimic those of premature ovarian failure (POF). Hum. Reprod. 24, 2395–2400 (2009).

    Article  CAS  PubMed  Google Scholar 

  186. Shi, X., Li, N., Liao, C., Shu, Q. & Zhu, F. Glucocorticoid or androgen for autoimmune premature ovary failure in mice. Zhong Nan Da Xue Xue Bao Yi Xue Ban 34, 576–581 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge R. Tal for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.S.-T. and N.G. researched data for the article, provided substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission. A.S., D.H.B and V.K. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Aya Shohat-Tal.

Ethics declarations

Competing interests

N.G. and D.H.B. are listed as co-inventors on four awarded US patents, which claim therapeutic benefits of DHEA and other androgens in women with low functional ovarian reserve (US 7615544: 'Method of improving cumulative embryo score and quantity of fertilized oocytes, increasing euploidy rate and of normalizing ovarian function using an androgen such as dehydroepiandrosterone'; US 8067400: 'Androgen treatment in females'; US 8501719: 'Androgen treatment in females'; US 8501718: 'Androgen treatment in females'). N.G. and D.H.B. are also listed as co-inventors on two awarded US patents, which are not related to the subject of this Review (US 8629120: 'Method of treatment related to the FMR1 gene'; and US 8951724: 'Detection of infertility risk and premature ovarian aging, addressing various claimed effects and diagnostic functions of the FMR1 gene on ovaries and female fertility'). N.G. owns shares in Fertility Nutraceuticals, a company that sells DHEA products, and both N.G. and D.H.B. receive patent royalties from this company. N.G. is also the owner of The Center for Human Reproduction, New York, NY, USA. A.S. T., A.S. and V.K. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shohat-Tal, A., Sen, A., Barad, D. et al. Genetics of androgen metabolism in women with infertility and hypoandrogenism. Nat Rev Endocrinol 11, 429–441 (2015). https://doi.org/10.1038/nrendo.2015.64

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.64

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing