Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The calcium-sensing receptor in bone—mechanistic and therapeutic insights

Key Points

  • The extracellular calcium-sensing receptor (CaSR) expressed in the parathyroid glands and kidneys modulates blood levels of Ca2+; CaSR is also expressed on bone cells, where it regulates skeletal homeostasis

  • In chondrocytes, CaSR contributes to development of the cartilaginous growth plate, whereas in osteoblasts CaSR is required for the proliferation and differentiation of these cells, and for bone matrix production

  • In young animals, activation of CaSR in osteoclasts inhibits bone resorption, which results in enhanced bone anabolism

  • In old animals, although activation of osteoblasts augments bone formation, this activation also increases the expression of receptor activator of nuclear factor κB ligand and bone resorption by osteoclasts

  • The relationship between activation of CaSR in the skeleton and levels of parathyroid hormone can lead to net bone formation in trabecular bone and net bone resorption in cortical bone

  • Although currently available allosteric modulators of CaSR in the parathyroid gland are beneficial in some clinical conditions, future CaSR-based drugs might be developed that have improved effects on bone

Abstract

The extracellular calcium-sensing receptor, CaSR, is a member of the G protein-coupled receptor superfamily and has a critical role in modulating Ca2+ homeostasis via its role in the parathyroid glands and kidneys. New evidence suggests that CaSR expression in cartilage and bone also directly regulates skeletal homeostasis. This Review discusses the role of CaSR in chondrocytes, through which CaSR contributes to the development of the cartilaginous growth plate, as well as in osteoblasts and osteoclasts, through which CaSR has effects on skeletal development and bone turnover in young and mature animals. The interaction of skeletal CaSR activation with parathyroid hormone (PTH), which is secreted by the parathyroid gland, can lead to net bone formation in trabecular bone or net bone resorption in cortical bone. Allosteric modulators of CaSR are beneficial in some clinical conditions, with effects that are mediated by the ability of these agents to alter levels of PTH and improve Ca2+ homeostasis. However, further insights into the action of CaSR in bone cells might lead to CaSR-based drugs that maximize not only the effects of the receptor on the parathyroid glands and kidneys but also on bone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of CaSR action in bone formation and resorption.
Figure 2: Model of bone resorptive action of skeletal CaSR in Ca2+ homeostasis.

Similar content being viewed by others

References

  1. Quinn, S. J. et al. CaSR-mediated interactions between calcium and magnesium homeostasis in mice. Am. J. Physiol. Endocrinol. Metab. 304, E724–E733 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aida, K., Koishi, S., Tawata, M. Y. & Onaya, T. Molecular cloning of a putative Ca2+-sensing receptor cDNA from human kidney. Biochem. Biophys. Res. Commun. 214, 524–529 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Pidasheva, S. et al. Calcium-sensing receptor dimerizes in the endoplasmic reticulum: biochemical and biophysical characterization of novel CASR mutations retained intracellularly. Hum. Mol. Genet. 15, 2200–2209 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Breitwieser, G. E. The calcium sensing receptor life cycle: trafficking, cell surface expression, and degradation. Best Pract. Res. Clin. Endocrinol. Metab. 27, 303–313 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Ward, D. T. & Riccardi, D. New concepts in calcium-sensing receptor pharmacology and signaling. Br. J. Pharmacol. 165, 35–48 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Conigrave, A. D. & Ward, D. T. Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways. Best Pract. Res. Clin. Endocrinol. Metab. 27, 315–331 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Brown, E. M. et al. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 366, 575–580 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Brown, E. M. Calcium receptor and regulation of parathyroid hormone secretion. Rev. Endocr. Metab. Disord. 1, 307–315 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Kantham, L. et al. The calcium-sensing receptor defends against hypercalcemia independently of its regulation of parathyroid hormone secretion. Am. J. Physiol. Endocrinol. Metab. 297, E915–E923 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goltzman, D. Emerging roles for calcium-regulating hormones beyond osteolysis. Trends Endocrinol. Metab. 21, 512–518 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Meir, T. et al. Parathyroid hormone activates the orphan receptor Nurr1 to induce FGF23 transcription. Kidney Int. 86, 1106–1115 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Quinn, S. J. et al. Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo. Am. J. Physiol. Endocrinol. Metab. 304, E310–E320 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Kos, C. H. et al. The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone. J. Clin. Invest. 111, 1021–1028 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Noureldine, S., Genther, D. J., Lopez, M., Agarwal, N. & Tufano, R. P. Early predictors of hypocalcemia after total thyroidectomy: an analysis of 303 patients using a short-stay monitoring protocol. JAMA Otolaryngol. Head Neck Surg. 140, 1006–1013 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Goltzman, D., Potts, J. T. Jr, Ridgeway, E. C. & Maloof, F. Calcitonin as a tumor marker—use of the radioimmunoassay for calcitonin in the postoperative evaluation of patients with medullary thyroid carcinoma. N. Engl. J. Med. 290, 1035–1039 (1974).

    Article  CAS  PubMed  Google Scholar 

  16. Cole, D. E. et al. A986S polymorphism of the calcium-sensing receptor and circulating calcium concentrations. Lancet 353, 112–115 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. O'Seaghdha, C. M. et al. Common variants in the calcium-sensing receptor are associated with total serum calcium levels. Hum. Mol. Genet. 19, 4296–4303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. O'Seaghdha, C. M. et al. Meta-analysis of genome-wide association studies identifies six new loci for serum calcium concentrations. PLoS Genet. 9, e1003796 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hendy, G. N., Canaff, L. & Cole, D. E. The CASR gene: alternative splicing and transcriptional control, and calcium-sensing receptor (CaSR) protein: structure and ligand binding sites. Best Pract. Res. Clin. Endocrinol. Metab. 27, 285–301 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Nemeth, E. F. et al. Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc. Natl Acad. Sci. USA 95, 4040–4045 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nemeth, E. F. Anabolic therapy for osteoporosis: calcilytics. BoneKey 5, 196–208 (2008).

    Article  Google Scholar 

  22. Kumar, S. et al. An orally active calcium-sensing receptor antagonist that transiently increases plasma concentrations of PTH and stimulates bone formation. Bone 46, 534–542 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Gowen, M. et al. Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats. J. Clin. Invest. 105, 1595–1604 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. MacGregor, R. R., Jilka, R. L. & Hamilton, J. W. Formation and secretion of fragments of parathormone. Identification of cleavage sites. J. Biol. Chem. 261, 1929–1934 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Fasciotto, B. H., Denny, J. C., Greeley, G. H. Jr & Cohn. D. V. Processing of chromogranin A in the parathyroid: generation of parastatin-related peptides. Peptides 21, 1389–1401 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. MacGregor, R. R., Hamilton, J. W., Shofstall, R. E. & Cohn, D. V. Isolation and characterization of porcine parathyroid cathepsin B. J. Biol. Chem. 254, 4423–4427 (1979).

    Article  CAS  PubMed  Google Scholar 

  27. Sabbagh, Y., Carpenter, T. O. & Demay, M. B. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc. Natl Acad. Sci. USA 102, 9637–9642 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Panda, D. K. et al. Inactivation of the 25-hydroxyvitamin D 1α-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcum and vitamin D on skeletal and mineral homeostasis. J. Biol. Chem. 279, 16754–16766 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Amizuka, N., Warshawsky, H., Henderson, J. E., Goltzman, D. & Karaplis, A. C. Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J. Cell. Biol. 126, 1611–1623 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Mamillapalli, R. & Wysolmerski, J. The calcium-sensing receptor couples to Gαs and regulates PTHrP and ACTH secretion in pituitary cells. J. Endocrinol. 204, 287–297 (1994).

    Article  CAS  Google Scholar 

  31. Liu, J. et al. The abnormal phenotypes of cartilage and bone in calcium-sensing receptor deficient mice are dependent on the actions of calcium, phosphorus, and PTH. PLoS Genet. 7, e1002294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chang, W. et al. Calcium sensing in cultured chondrogenic RCJ3.1C5.18 cells. Endocrinology 140, 1911–1919 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Chang, W., Tu, C., Pratt, S., Chen, T. H. & Shoback, D. Extracellular Ca2+-sensing receptors modulate matrix production and mineralization in chondrogenic RCJ3.1C5.18 cells. Endocrinology 143, 1467–1474 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Rodriguez, L., Cheng, Z., Chen, T. H., Tu, C. & Chang, W. Extracellular calcium and parathyroid hormone-related peptide signaling modulate the pace of growth plate chondrocyte differentiation. Endocrinology 146, 4597–4608 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Chang, W., Tu, C., Chen, T. H., Bikle, D. & Shoback, D. The extracellular calcium-sensing receptor (CaSR) is a critical modulator of skeletal development. Sci. Signal. 1, ra1 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Nguyen-Yamamoto, L., Bolivar, I., Srugnell, S. A. & Goltzman, D. Comparison of vitamin D compounds and a calcimimetic in mineral homeostasis. J. Am. Soc. Nephrol. 21, 1713–1723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Richard, C. et al. The calcium-sensing receptor and 25-hydroxyvitamin D-1α-hydroxylase interact to modulate skeletal growth and bone turnover. J. Bone Miner. Res. 25, 1627–1636 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Rodriguez, L. et al. Expression and functional assessment of an alternatively spliced extracellular Ca2+-sensing receptor in growth plate chondrocytes. Endocrinology 146, 5294–5303 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Tu, Q. et al. Rescue of the skeletal phenotype in CaSR-deficient mice by transfer onto the Gcm2 null background. J. Clin. Invest. 111, 1029–1037 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miao, D., He, B., Karaplis, A. C. & Goltzman, D. Parathyroid hormone is essential for normal fetal bone formation. J. Clin. Invest. 109, 1173–1182 (2001).

    Article  Google Scholar 

  41. Miao, D. et al. Skeletal abnormalities in Pth-null mice are influenced by calcium. Endocrinology 145, 2046–2053 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Dvorak-Ewell, M. M. et al. Osteoblast extracellular Ca2+-sensing receptor regulates bone development, mineralization, and turnover. J. Bone Miner. Res. 26, 2935–2947 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Chang, W. et al. Expression and signal transduction of calcium-sensing receptors in cartilage and bone. Endocrinology 140, 5883–5893 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Dvorak, M. M. et al. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc. Natl Acad. Sci. USA 101, 5140–5145 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yamaguchi, T. et al. Mouse osteoblastic cell line (MC3T3-E1) expresses extracellular calcium (Ca2+)-sensing receptor and its agonists stimulate chemotaxis and proliferation of MC3T3-E1 cells. J. Bone Miner. Res. 13, 1530–1538 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Chattopadhyay, N. et al. Mitogenic action of calcium-sensing receptor on rat calvarial osteoblasts. Endocrinology 145, 3451–3562 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Yamaguchi, T., Chattopadhyay, N., Kifor, O., Sanders, J. L. & Brown, E. M. Activation of p42/44 and p38 mitogen-activated protein kinases by extracellular calcium-sensing receptor agonists induces mitogenic responses in the mouse osteoblastic MC3T3-E1 cell line. Biochem. Biophys. Res. Commun. 279, 363–368 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Saidak, Z. & Marie, P. J. Strontium signalling: molecular mechanisms and therapeutic implications in osteoporosis. Pharmacol. Ther. 136, 216–226 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Yamauchi, M., Yamaguchi, T., Kaji, H., Sugimoto, T. & Chihara, K. Involvement of calcium-sensing receptor in osteoblastic differentiation of mouse MC3T3-E1 cells. Am. J. Physiol. Endocrinol. Metab. 288, E608–E616 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Chattopadhyay, N. et al. Mitogenic action of calcium-sensing receptor on rat calvarial osteoblasts. Endocrinology 145, 3451–3412 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Takaoka, S., Yamaguchi, T., Yano, S., Yamauchi, M. & Sugimoto, T. The calcium-sensing receptor (CaR) is involved in strontium ranelate-induced osteoblast differentiation and mineralization. Horm. Metab. Res. 42, 627–631 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Brennan, T. C. et al. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br. J. Pharmacol. 157, 1291–1300 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Atkins, G. J., Welldon, K. J., Halbout, P. & Findlay, D. M. Strontium ranelate treatment of human primary osteoblasts promotes and osteocyte-like phenotype while eliciting an osteoprotegerin response. Osteoporosis Int. 20, 653–664 (2009).

    Article  CAS  Google Scholar 

  54. Fromigué, O. et al. Calcium-sensing receptor-dependent and receptor-independent activation of osteoblasts replication and survival by strontium ranelate. J. Cell. Mol. Med. 13, 2189–2199 (2009).

    Article  PubMed  Google Scholar 

  55. Pi, M., Chen, J., Zhu, W. & Quarles, L. D. Dominant negative effect of the extracellular domain of CASR. J. Receptor Ligand Channel Res. 3, 15–23 (2010).

    CAS  Google Scholar 

  56. Cao, G. et al. Parathyroid hormone contributes to regulating milk calcium content and modulates neonatal bone formation cooperatively with calcium. Endocrinology 150, 561–569 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Pi, M. et al. Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J. Biol. Chem. 280, 40201–40209 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Pi, M. et al. GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS ONE 3, e3858 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Wellendorph, P. et al. No evidence for a bone phenotype in GPRC6A knockout mice under normal physiological conditions. J. Mol. Endocrinol. 42, 215–223 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Shu, L. et al. The calcium-sensing receptor mediates bone turnover induced by dietary calcium and parathyroid hormone in neonates. J. Bone Miner. Res. 26, 1057–1071 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Xue, Y. et al. The calcium-sensing receptor complements parathyroid hormone-induced bone turnover in discrete skeletal compartments in mice. Am. J. Physiol. Endocrinol. Metab. 302, E841–E851 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. House, M. G. et al. Expression of an extracellular calcium-sensing receptor in human and mouse bone marrow cells. J. Bone Miner. Res. 12, 1959–1970 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Kanatani, M., Sugimoto, T., Kanazawa, M., Yano, S. & Chihara, K. High extracellular calcium inhibits osteoclast-like cell formation by directly acting on the calcium-sensing receptor existing in osteoclast precursor cells. Biochem. Biophys. Res. Commun. 261, 144–148 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Kameda, T. et al. Calcium-sensing receptor in mature osteoclasts, which are bone resorbing cells. Biochem. Biophys. Res. Commun. 245, 419–427 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Datta, H. K., MacIntyre, I. & Zaidi, M. The effect of extracellular calcium elevation on morphology and function of isolated rat osteoclasts. Biosci. Rep. 9, 747–751 (1989).

    Article  CAS  PubMed  Google Scholar 

  66. Malgaroli, A., Meldolesi, J., Zallone, A. Z. & Teti, A. Control of cytosolic free calcium in rat and chicken osteoclasts. The role of extracellular calcium and calcitonin. J. Biol. Chem. 264, 14342–14347 (1989).

    Article  CAS  PubMed  Google Scholar 

  67. Moonga, B. S., Moss, D. W., Patchell, A. & Zaidi, M. Intracellular regulation of enzyme secretion from rat osteoclasts and evidence for a functional role in bone resorption. J. Physiol. 429, 29–45 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zaidi, M. et al. Divalent cations mimic the inhibitory effect of extracellular ionized calcium on bone resorption by isolated rat osteoclasts: further evidence for a “calcium receptor”. J. Cell. Physiol. 149, 422–427 (1991).

    Article  CAS  PubMed  Google Scholar 

  69. Mentaverri, R. et al. The calcium-sensing receptor is directly involved in both osteoclast differentiation and apoptosis. FASEB J. 20, 2562–2564 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Shaloub, V. et al. In vitro studies with the calcimimetic, cinacalcet HCl, on normal human adult osteoblastic and osteoclastic cells. Crit. Rev. Eukaryot. Gene Expr. 13, 89–106 (2003).

    Google Scholar 

  71. Dvorak, M. M. et al. Constitutive activity of the osteoblast Ca2+-sensing receptor promotes loss of cancellous bone. Endocrinology 148, 3156–3163 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Lieben, L. et al. Normocalcemia is maintained in mice under conditions of malabsorption by vitamin D-induced inhibition of bone mineralization. J. Clin. Invest. 122, 1803–1815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brown, E. M. Extracellular Ca2+ signaling, regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers. Physiol. Rev. 71, 371–411 (1991).

    Article  CAS  PubMed  Google Scholar 

  74. Silver, I. A., Murrills, R. J. & Etherington, D. J. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell Res. 175, 266–276 (1988).

    Article  CAS  PubMed  Google Scholar 

  75. Garner, S. C., Pi, M., Tu, Q. & Quarles, L. D. Rickets in calcium-sensing receptor-deficient mice: an unexpected skeletal phenotype. Endocrinology 142, 3996–4005 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Ho, C. et al. A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat. Genet. 11, 389–394 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Sun, W. et al. Alterations in phosphorus, calcium and PTHrP contribute to defects in dental and dental alveolar bone formation in calcium-sensing receptor-deficient mice. Development 137, 985–992 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gopalakrishnan, R., Suttamanatwong, S., Carlson, S., Carlson, A. E. & Franceschi, R. T. Role of matrix Gla protein in parathyroid hormone inhibition of osteoblast mineralization. Cells Tissues Organs 181, 166–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Imanishi, Y. et al. Primary hyperparathyroidism caused by parathyroid-targeted expression of cyclin D1 in transgenic mice. J. Clin. Invest. 107, 1093–1102 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Parisien, M. et al. The histomorphometry of bone in primary hyperparathyroidism: preservation of cancellous bone structure. J. Clin. Endocrinol. Metab. 70, 930–938 (1990).

    Article  CAS  PubMed  Google Scholar 

  81. Wada, M. et al. NPS R-568 halts or reverses osteotis fibrosa in uremic rats. Kidney Int. 53, 448–453 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Henley, C. et al. The calcimimetic AMG 641 abrogates parathyroid hyperplasia, bone and vascular calcification abnormalities in uremic rats. Eur. J. Pharmacol. 616, 306–313 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Finch, J. L. et al. Effect of paricalcitol and cinacalcet on serum phosphate, FGF-23, and bone in rats with chronic kidney disease. Am. J. Physiol. Renal Physiol. 298, F1315–F1322 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hendy, G. N., Guarnieri, V. & Canaff, L. Calcium-sensing receptor and associated diseases. Prog. Mol. Biol. Transl. Sci. 89, 31–95 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Hannan, F. M. & Thakker, R. V. Calcium-sensing receptor (CaSR) mutations and disorders of calcium, electrolyte and water metabolism. Best Pract. Res. Clin. Endocrinol. Metab. 27, 359–371 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Menko, F. H. et al. Familial benign hypercalcemia. Study of a large family. Quart. J. Med. 206, 120–140 (1983).

    Google Scholar 

  87. Kristiansen, J. H., Rødbro, P., Christiansen, C., Johansen, J. & Jensen, J. T. Familial hypocalciuric hypercalcemia. III: Bone mineral metabolism. Clin. Endocrinol. (Oxf.) 26, 713–716 (1987).

    Article  CAS  Google Scholar 

  88. Jakobsen, N. F. et al. Increased trabecular volumetric bone mass density in familial hypocalciuric hypercalcemia (FHH) type 1: a cross-sectional study. Calcif. Tissue Int. 95, 141–152 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Abugassa, S., Nordenstrom, J. & Jähult, J. Bone mineral density in patients with familial hypocalciuric hypercalcemia (FHH). Eur. J. Surg. 158, 397–402 (1992).

    CAS  PubMed  Google Scholar 

  90. Christensen, S. E. et al. Skeletal consequences of familial hypocalciuric hypercalcaemia vs. primary hyperparathyroidism. Clin. Endocrinol. 71, 798–807 (2009).

    Article  Google Scholar 

  91. Law, W. M. Jr., Wahner, H. W. & Heath, H. 3rd. Bone mineral density and skeletal fractures in familial benign hypercalcemia (hypocalciuric). Mayo Clin. Proc. 59, 811–815 (1984).

    Article  PubMed  Google Scholar 

  92. Isaksen, T. et al. Forearm bone mineral density in familial hypocalciuric hypercalcemia and primary hyperparathyroidism: a comparative study. Calcif. Tissue Int. 89, 285–294 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Reh, C. M., Hendy, G. N., Cole, D. E. & Jeandron, D. D. Neonatal hyperparathyroidism with a heterozygous calcium-sensing receptor (CASR) R185Q mutation: clinical benefits from cinacalcet. J. Clin. Endocrinol. Metab. 96, E707–E712 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Wilhelm-Bals, A., Parvex, P., Magdelaine, C. & Girardin, E. Successful use of bisphosphonate and calcimimetic in neonatal severe primary hyperparathyroidism. Pediatrics 129, e812–e816 (2012).

    Article  PubMed  Google Scholar 

  95. Alon, U. S. & VandeVoorde, R. G. Beneficial effect of cinacalcet in a child with familial hypocalciuric hypercalcemia. Pediatr. Nephrol. 25, 1747–1750 (2010).

    Article  PubMed  Google Scholar 

  96. Theman, T. A. et al. PTH1–34 replacement therapy in a child with hypoparathyroidism caused by a sporadic calcium receptor mutation. J. Bone Miner. Res. 24, 964–973 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Peacock, M. et al. Cinacalcet hydrochloride maintains long-term normocalcemia in patients with primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 90, 135–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Peacock, M. et al. Cinacalcet treatment of primary hyperparathyroidism: biochemical and bone densitometric outcomes in a five-year study. J. Clin. Endocrinol. Metab. 94, 4860–4867 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Marotta, V. et al. Potential role of cinacalcet hydrochloride in sporadic primary hyperparathyroidism without surgery indication. Endocrine http://dx.doi.org/10.1007/s12020-014-0381–0.

  100. Silverberg, S. J. et al. Increased bone mineral density after parathyroidectomy in primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 80, 729–734 (1995).

    CAS  PubMed  Google Scholar 

  101. Christiansen, P. et al. Primary hyperparathyroidism: effect of parathyroidectomy on regional bone mineral density in Danish patients: a three-year follow-up study. Bone 25, 589–595 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Christiansen, P. et al. Primary hyperparathyroidism: short-term changes in bone remodeling and bone mineral density following parathyroidectomy. Bone 25, 237–244 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Moosgaard, B. et al. Vitamin D metabolites and skeletal consequences in primary hyperparathyroidism. Clin. Endocrinol. (Oxf.) 68, 707–715, (2008).

    Article  CAS  Google Scholar 

  104. Leppla, D. C., Snyder, W. & Pak, C. Y. Sequential changes in bone density before and after parathyroidectomy in primary hyperparathyroidism. Invest. Radiol. 17, 604–606 (1982).

    Article  CAS  PubMed  Google Scholar 

  105. Ambrogini, E. et al. Surgery or surveillance for mild asymptomatic primary hyperparathyroidism: a prospective, randomized clinical trial. J. Clin. Endocrinol. Metab. 92, 3114–3121 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Bollerslev, J. et al. Medical observation, compared with parathyroidectomy, for asymptomatic primary hyperparathyroidism: a prospective, randomized trial. J. Clin. Endocrinol. Metab. 92, 1687–1692 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Koumakis, E. et al. Bone mineral density evolution after successful parathyroidectomy in patients with normocalcemic primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 98, 3213–3220 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Eller-Vainicher, C. et al. Factors associated with vertebral fracture risk in patients with primary hyperparathyroidism. Eur. J. Endocrinol. 171, 399–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Ballinger, A. E., Palmer, S. C., Nistor, I., Craig, J. C. & Strippoli, G. F. Calcimimetics for secondary hyperparathyroidism in chronic kidney disease patients. Cochrane Database of Systematic Reviews, Issue 12. Art. No.: CD006254. http://dx.doi.org/10.1002/14651858.CD006254.pub2.

  110. Palmer, S. C. et al. Cinacalcet in patients with chronic kidney disease: a cumulative meta-analysis of randomized controlled trials. PLoS Med. 10, e1001436 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Jean, G. Chazot, C. & Charra, B. 12 months cinacalcet therapy in hemodialysis patients with secondary hyperparathyroidism: effect on bone markers. Clin. Nephrol. 68, 63–64 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Lien, Y. H., Silva, A. L. & Whittman, D. Effects of cinacalcet on bone mineral density in patients with secondary hyperparathyroidism. Nephrol. Dial. Transplant. 20, 1232–1237 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Malluche, H. H. et al. An assessment of cinacalcet HCl effects on bone histology in dialysis patients with secondary hyperparathyroidism. Clin. Nephrol. 69, 269–278 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Behets, G. J. et al. Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism. Kidney Int. http://dx.doi.org/10.1038/ki.2014.349.

  115. Yajima, A., Akizawa, T., Tsukamoto, Y., Kurihara, S. & Ito, A. Impact of cinacalcet hydrochloride on bone histology in patients with secondary hyperparathyroidism. Ther. Apher. Dial. 1, S38–S43 (2008).

    Article  CAS  Google Scholar 

  116. Fitzpatrick, L. A. et al. Ronacaleret, a calcium-sensing receptor antagonist, increases trabecular but not cortical bone in postmenopausal women. J. Bone Miner. Res. 27, 255–262 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Halse, J. et al. A phase 2, randomized, placebo-controlled, dose-ranging study of the calcium-sensing receptor antagonist MK-5442 in the treatment of postmenopausal women with osteoporosis. J. Clin. Endocrinol. Metab. 99, E2207–E2215 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nemeth, E. F. & Shoback, D. Calcimimetic and calcilytic drugs for treating bone and mineral-related disorders. Best Pract. Res. Clin. Endocrinol. Metab. 27, 373–384 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Canadian Institutes of Health Research for supporting their work.

Author information

Authors and Affiliations

Authors

Contributions

D.G. and G.N.H. researched data for the article, provided substantial contributions to discussions of the content, contributed equally to writing the article, and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Geoffrey N. Hendy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goltzman, D., Hendy, G. The calcium-sensing receptor in bone—mechanistic and therapeutic insights. Nat Rev Endocrinol 11, 298–307 (2015). https://doi.org/10.1038/nrendo.2015.30

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.30

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing