Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Combination immunotherapies for type 1 diabetes mellitus

Key Points

  • As several mechanisms lead to β-cell failure in type 1 diabetes mellitus (T1DM), strategies combining different molecules could target different pathways involved in the pathogenesis of T1DM

  • Different combination therapies have been tested in preclinical studies with encouraging results, but results from clinical trials have not matched expectations

  • Heterogeneity in the age of patients with T1DM and the low rate of human β-cell regeneration are possible explanations for the negative results of clinical trials that should be addressed in future studies

  • Proton pump inhibitors and incretin-based agents can stimulate β-cell regeneration, so future trials in patients with T1DM should investigate their potential in combination with immunomodulatory compounds

  • The issue of patient heterogeneity can be addressed by designing trials evaluating the relative effectiveness of interventions in specific subgroups of patients

Abstract

Immunotherapies for type 1 diabetes mellitus (T1DM) have been the focus of intense basic and clinical research over the past few decades. Restoring β-cell function is the ultimate goal of intervention trials that target the immune system in T1DM. In an attempt to achieve this aim, different combination therapies have been proposed over the past few years that are based on treatments tackling the various mechanisms involved in the destruction of β cells. The results of clinical trials have not matched expectations based on the positive results from preclinical studies. The heterogeneity of T1DM might explain the negative results obtained, but previous trials have not addressed this issue. However, novel promising combination therapies are being developed, including those that couple immunomodulators with drugs that stimulate β-cell regeneration in order to restore normoglycaemia. This strategy is an encouraging one to pursue the goal of finding a cure for T1DM. This Review summarizes the available data about combination immunotherapies in T1DM, particularly addressing their clinical importance. The available data supporting the use of registered drugs, such as proton pump inhibitors and incretin-based agents, that have been shown to induce β-cell regeneration will also be discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DPP-4 inhibitors and PPIs could be combined with immunomodulators to cure type 1 diabetes mellitus.

Similar content being viewed by others

References

  1. Levetan, C., Pozzilli, P., Jovanovic, L. & Schatz, D. Proposal for generating new β cells in a muted immune environment for type 1 diabetes. Diabetes Metab. Res. Rev. 29, 604–606 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Baekkeskov, S. et al. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 347, 151–156 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Mannering, S. I. et al. The insulin A-chain epitope recognized by human T cells is posttranslationally modified. J. Exp. Med. 202, 1191–1197 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Stadinski, B. D. et al. Chromogranin A is an autoantigen in type 1 diabetes. Nat. Immunol. 11, 225–231 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Strollo, R. et al. HLA-dependent autoantibodies against post-translationally modified collagen type II in type 1 diabetes mellitus. Diabetologia 56, 563–572 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Van Lummel, M. et al. Posttranslational modification of HLA-DQ binding islet autoantigens in type 1 diabetes. Diabetes 63, 237–247 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Rondas, D. et al. Citrullinated glucose-regulated protein 78 is an autoantigen in type 1 diabetes. Diabetes 64, 573–586 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Pescovitz, M. D. et al. Rituximab, B-lymphocyte depletion, and preservation of β-cell function. N. Engl. J. Med. 361, 2143–2152 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Orban, T. et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet 378, 412–419 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Harrison, L. C. et al. Pancreatic β-cell function and immune responses to insulin after administration of intranasal insulin to humans at risk for type 1 diabetes. Diabetes Care 27, 2348–2355 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Walter, M., Philotheou, A., Bonnici, F., Ziegler, A.-G. & Jimenez, R. No effect of the altered peptide ligand NBI-6024 on β-cell residual function and insulin needs in new-onset type 1 diabetes. Diabetes Care 32, 2036–2040 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ludvigsson, J. et al. GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus. N. Engl. J. Med. 366, 433–442 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Suarez-Pinzon, W. L., Lakey, J. R. T. & Rabinovitch, A. Combination therapy with glucagon-like peptide-1 and gastrin induces β-cell neogenesis from pancreatic duct cells in human islets transplanted in immunodeficient diabetic mice. Cell Transplant. 17, 631–640 (2008).

    Article  PubMed  Google Scholar 

  14. Griffin, K. J., Thompson, P. A., Gottschalk, M., Kyllo, J. H. & Rabinovitch, A. Combination therapy with sitagliptin and lansoprazole in patients with recent-onset type 1 diabetes (REPAIR-T1D): 12-month results of a multicentre, randomised, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. 2, 710–718 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Ferrannini, E. The stunned β cell: a brief history. Cell Metab. 11, 349–352 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Lebastchi, J. & Herold, K. C. Immunologic and metabolic biomarkers of β-cell destruction in the diagnosis of type 1 diabetes. Cold Spring Harb. Perspect. Med. 2, a007708 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Atkinson, M. A., Eisenbarth, G. S. & Michels, A. W. Type 1 diabetes. Lancet 383, 69–82 (2014).

    Article  PubMed  Google Scholar 

  18. Chianelli, M. et al. Pancreatic scintigraphy with 99mTc-interleukin-2 at diagnosis of type 1 diabetes and after 1 year of nicotinamide therapy. Diabetes Metab. Res. Rev. 24, 115–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Ueberberg, S. et al. Generation of novel single-chain antibodies by phage-display technology to direct imaging agents highly selective to pancreatic β- or α-cells in vivo. Diabetes 58, 2324–2334 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Goland, R. et al. 11C-dihydrotetrabenazine PET of the pancreas in subjects with long-standing type 1 diabetes and in healthy controls. J. Nucl. Med. 50, 382–9 (2009).

    Article  PubMed  CAS  Google Scholar 

  21. Robertson, R. P. Estimation of β-cell mass by metabolic tests: necessary, but how sufficient? Diabetes 56, 2420–2424 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Cernea, S. et al. Challenges in developing endpoints for type 1 diabetes intervention studies. Diabetes Metab. Res. Rev. 25, 694–704 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Block, M. B., Rosenfield, R. L., Mako, M. E., Steiner, D. F. & Rubenstein, A. H. Sequential changes in β-cell function in insulin-treated diabetic patients assessed by C-peptide immunoreactivity. N. Engl. J. Med. 288, 1144–1148 (1973).

    Article  CAS  PubMed  Google Scholar 

  24. Palmer, J. P. et al. C-peptide is the appropriate outcome measure for type 1 diabetes clinical trials to preserve β-cell function. ADA workshop report. Diabetes 53, 250–264 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Greenbaum, C. J. et al. Mixed-meal tolerance test versus glucagon stimulation test for the assessment of β-cell function in therapeutic trials in type 1 diabetes. Diabetes Care 31, 1966–1971 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pozzilli, P. et al. Evaluation of long-term treatment effect in a type 1 diabetes intervention trial: differences after stimulation with glucagon or a mixed meal. Diabetes Care 37, 1384–1391 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Kaas, A. et al. Proinsulin, GLP-1, and glucagon are associated with partial remission in children and adolescents with newly diagnosed type 1 diabetes. Pediatr. Diabetes 13, 51–58 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. [No authors listed] Effects of age, duration and treatment of insulin-dependent diabetes mellitus on residual β-cell function: observations during eligibility testing for the Diabetes Control and Complications Trial (DCCT). The DCCT Research Group. J. Clin. Endocrinol. Metab. 65, 30–36 (1987).

  29. [No authors listed] Effect of intensive therapy on residual β-cell function in patients with type 1 diabetes in the diabetes control and complications trial. A randomized, controlled trial. The Diabetes Control and Complications Trial Research Group. Ann. Intern. Med. 128, 517–523 (1998).

  30. Sosenko, J. M. et al. Glucose and C-peptide changes in the perionset period of type 1 diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care 31, 2188–2192 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Pozzilli, P. et al. Metabolic and immune parameters at clinical onset of insulin-dependent diabetes: a population-based study. IMDIAB Study Group. Immunotherapy Diabetes. Metabolism 47, 1205–1210 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Pozzilli, P. et al. Is the process of β-cell destruction in type 1 diabetes at time of diagnosis more extensive in females than in males? Eur. J. Endocrinol. 145, 757–761 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Dabelea, D. et al. Clinical evolution of β-cell function in youth with diabetes: the SEARCH for Diabetes in Youth study. Diabetologia 55, 3359–3368 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Greenbaum, C. J. et al. Fall in C-peptide during first 2 years from diagnosis: evidence of at least two distinct phases from composite Type 1 Diabetes TrialNet data. Diabetes 61, 2066–2073 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Barker, A. et al. Age-dependent decline of β-cell function in type 1 diabetes after diagnosis: a multi-centre longitudinal study. Diabetes. Obes. Metab. 16, 262–267 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Törn, C. et al. Prognostic factors for the course of β-cell function in autoimmune diabetes. J. Clin. Endocrinol. Metab. 85, 4619–4623 (2000).

    PubMed  Google Scholar 

  37. Picardi, A. et al. Metabolic factors affecting residual β-cell function assessed by C-peptide secretion in patients with newly diagnosed type 1 diabetes. Horm. Metab. Res. 38, 668–672 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Weets, I. et al. Sex- and season-dependent differences in C-peptide levels at diagnosis of immune-mediated type 1 diabetes. Diabetologia 49, 1158–1162 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Petrone, A. et al. Residual insulin secretion at diagnosis of type 1 diabetes is independently associated with both, age of onset and HLA genotype. Diabetes Metab. Res. Rev. 21, 271–275 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Pozzilli, P. Type 1 diabetes mellitus in 2011: Heterogeneity of T1DM raises questions for therapy. Nat. Rev. Endocrinol. 8, 78–80 (2012).

    Article  Google Scholar 

  41. Buzzetti, R. et al. C-peptide response and HLA genotypes in subjects with recent-onset type 1 diabetes after immunotherapy with DiaPep277: an exploratory study. Diabetes 60, 3067–3072 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Dor, Y., Brown, J., Martinez, O. I. & Melton, D. A. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Meier, J. J., Bhushan, A., Butler, A. E., Rizza, R. A. & Butler, P. C. Sustained β cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 48, 2221–2228 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Akerblom, H. K. et al. The case for elimination of cow's milk in early infancy in the prevention of type 1 diabetes: the Finnish experience. Diabetes Metab. Rev. 9, 269–278 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Roep, B. O. et al. Molecular mimicry in type 1 diabetes: immune cross-reactivity between islet autoantigen and human cytomegalovirus but not Coxsackie virus. Ann. NY Acad. Sci. 958, 163–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Afonso, G. & Mallone, R. Infectious triggers in type 1 diabetes: is there a case for epitope mimicry? Diabetes. Obes. Metab. 15 (Suppl. 3), 82–88 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Brugman, S. et al. Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia 49, 2105–2108 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Fousteri, G., von Herrath, M. & Bresson, D. Mucosal exposure to antigen: cause or cure of type 1 diabetes? Curr. Diab. Rep. 7, 91–98 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Richardson, S. J., Morgan, N. G. & Foulis, A. K. Pancreatic pathology in type 1 diabetes mellitus. Endocr. Pathol. 25, 80–92 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Chen, Z., Herman, A. E., Matos, M., Mathis, D. & Benoist, C. Where CD4+CD25+ T reg cells impinge on autoimmune diabetes. J. Exp. Med. 202, 1387–1397 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Moran, A. et al. Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials. Lancet 381, 1905–1915 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Peakman, M. & von Herrath, M. Antigen-specific immunotherapy for type 1 diabetes: maximizing the potential. Diabetes 59, 2087–2093 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Herold, K. C. et al. Teplizumab treatment may improve C-peptide responses in participants with type 1 diabetes after the new-onset period: a randomised controlled trial. Diabetologia 56, 391–400 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Herold, K. C. et al. Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders. Diabetes 62, 3766–3774 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Aronson, R. et al. Low-dose otelixizumab anti-CD3 monoclonal antibody DEFEND-1 study: results of the randomized phase III study in recent-onset human type 1 diabetes. Diabetes Care 37, 2746–2754 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gitelman, S. E. et al. Antithymocyte globulin treatment for patients with recent-onset type 1 diabetes: 12-month results of a randomised, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. 1, 306–316 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Rigby, M. R. et al. Targeting of memory T cells with alefacept in new-onset type 1 diabetes (T1DAL study): 12 month results of a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Diabetes Endocrinol. 1, 284–294 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sherry, N. A. et al. Exendin-4 improves reversal of diabetes in NOD mice treated with anti-CD3 monoclonal antibody by enhancing recovery of β cells. Endocrinology 148, 5136–5144 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Ablamunits, V. et al. Synergistic reversal of type 1 diabetes in NOD mice with anti-CD3 and interleukin-1 blockade: evidence of improved immune regulation. Diabetes 61, 145–154 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Perl, S. et al. Addition of rapamycin to anti-CD3 antibody improves long-term glycaemia control in diabetic NOD mice. PLoS ONE 8, e67189 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Matthews, J. B., Staeva, T. P., Bernstein, P. L., Peakman, M. & von Herrath, M. Developing combination immunotherapies for type 1 diabetes: recommendations from the ITN-JDRF Type 1 Diabetes Combination Therapy Assessment Group. Clin. Exp. Immunol. 160, 176–184 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Long, S. A. et al. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs β-cell function. Diabetes 61, 2340–2348 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Gottlieb, P. A. et al. Failure to preserve β-cell function with mycophenolate mofetil and daclizumab combined therapy in patients with new- onset type 1 diabetes. Diabetes Care 33, 826–832 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Pozzilli, P. & Di Mario, U. Autoimmune diabetes not requiring insulin at diagnosis (latent autoimmune diabetes of the adult): definition, characterization, and potential prevention. Diabetes Care 24, 1460–1467 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Mollo, A. et al. Latent autoimmune diabetes in adults is perched between type 1 and type 2: evidence from adults in one region of Spain. Diabetes. Metab. Res. Rev. 29, 446–451 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Gruessner, R. W. G. & Gruessner, A. C. The current state of pancreas transplantation. Nat. Rev. Endocrinol. 9, 555–562 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Bruni, A., Gala-Lopez, B., Pepper, A. R., Abualhassan, N. S. & Shapiro, A. J. Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes Metab. Syndr. Obes. 7, 211–223 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Aguayo-Mazzucato, C. & Bonner-Weir, S. Stem cell therapy for type 1 diabetes mellitus. Nat. Rev. Endocrinol. 6, 139–148 (2010).

    Article  PubMed  Google Scholar 

  69. Orlando, G. et al. Cell replacement strategies aimed at reconstitution of the β-cell compartment in type 1 diabetes. Diabetes 63, 1433–1444 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Bouwens, L., Houbracken, I. & Mfopou, J. K. The use of stem cells for pancreatic regeneration in diabetes mellitus. Nat. Rev. Endocrinol. 9, 598–606 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Baeyens, L. et al. In vitro generation of insulin-producing β cells from adult exocrine pancreatic cells. Diabetologia 48, 49–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Collombat, P. et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into α and subsequently β cells. Cell 138, 449–462 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Wu, F. et al. TNF-like weak inducer of apoptosis (TWEAK) promotes β-cell neogenesis from pancreatic ductal epithelium in adult mice. PLoS ONE 8, e72132 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Avolio, F. et al. From pancreas morphogenesis to β-cell regeneration. Curr. Top. Dev. Biol. 106, 217–238 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Wang, R. N., Rehfeld, J. F., Nielsen, F. C. & Klöppel, G. Expression of gastrin and transforming growth factor-α during duct to islet cell differentiation in the pancreas of duct-ligated adult rats. Diabetologia 40, 887–893 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Boj-Carceller, D. Proton pump inhibitors: impact on glucose metabolism. Endocrine 43, 22–32 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Mefford, I. N. & Wade, E. U. Proton pump inhibitors as a treatment method for type II diabetes. Med. Hypotheses 73, 29–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Boj-Carceller, D. et al. Are proton pump inhibitors a new antidiabetic drug? A cross sectional study. World J. Diabetes 2, 217–220 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hove, K. D. et al. Treatment with a proton pump inhibitor improves glycaemic control in type 2 diabetic patients—a retrospective analysis. Diabetes Res. Clin. Pract. 90, e72–e74 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Crouch, M. A., Mefford, I. N. & Wade, E. U. Proton pump inhibitor therapy associated with lower glycosylated hemoglobin levels in type 2 diabetes. J. Am. Board Fam. Med. 25, 50–54 (2012).

    Article  PubMed  Google Scholar 

  81. Guglielmi, C., Secchi, C., Maddaloni, E., Manfrini, S. & Pozzilli, P. Effects of Treatment with Proton Pump Inhibitors in Metabolic Control in Patients with type 2 Diabetes [abstract 2425PO]. Diabetes 63 (Suppl. 1), A615 (2014).

    Google Scholar 

  82. Singh, P. K. et al. Pantoprazole improves glycemic control in type 2 diabetes: a randomized, double-blind, placebo-controlled trial. J. Clin. Endocrinol. Metab. 97, E2105–E2108 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Hove, K. D. et al. Effects of 12 weeks' treatment with a proton pump inhibitor on insulin secretion, glucose metabolism and markers of cardiovascular risk in patients with type 2 diabetes: a randomised double-blind prospective placebo-controlled study. Diabetologia 56, 22–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Pettus, J., Hirsch, I. & Edelman, S. GLP-1 agonists in type 1 diabetes. Clin. Immunol. 149, 317–323 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Farilla, L. et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 144, 5149–5158 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Bunck, M. C. et al. Effects of exenatide on measures of β-cell function after 3 years in metformin-treated patients with type 2 diabetes. Diabetes Care 34, 2041–2047 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Poucher, S. M. et al. Effects of saxagliptin and sitagliptin on glycaemic control and pancreatic β-cell mass in a streptozotocin-induced mouse model of type 2 diabetes. Diabetes Obes. Metab. 14, 918–926 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Liang, J., Leung, K. K., Lam, S. Y. & Leung, P. S. Combined treatment with a dipeptidyl peptidase-IV inhibitor (sitagliptin) and an angiotensin II type 1 receptor blocker (losartan) promotes islet regeneration via enhanced differentiation of pancreatic progenitor cells. Diabetes Obes. Metab. 14, 842–851 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Pospisilik, J. A. et al. Dipeptidyl peptidase IV inhibitor treatment stimulates β-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes 52, 741–750 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Jelsing, J., Vrang, N., van Witteloostuijn, S. B., Mark, M. & Klein, T. The DPP4 inhibitor linagliptin delays the onset of diabetes and preserves β-cell mass in non-obese diabetic mice. J. Endocrinol. 214, 381–387 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Kim, D.-H., Lee, J.-C., Lee, M.-K., Kim, K.-W. & Lee, M.-S. Treatment of autoimmune diabetes in NOD mice by Toll-like receptor 2 tolerance in conjunction with dipeptidyl peptidase 4 inhibition. Diabetologia 55, 3308–3317 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Cai, X., Han, X., Luo, Y. & Ji, L. Efficacy of dipeptidyl-peptidase-4 inhibitors and impact on β-cell function in Asian and Caucasian type 2 diabetes mellitus patients: A meta-analysis. J. Diabetes http://dx.doi.org/10.1111/1753-0407.12196.

  93. Zhao, Y., Yang, L. & Zhou, Z. Dipeptidyl peptidase-4 inhibitors: multitarget drugs, not only antidiabetes drugs. J. Diabetes 6, 21–29 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Tian, L. et al. Reversal of new-onset diabetes through modulating inflammation and stimulating β-cell replication in nonobese diabetic mice by a dipeptidyl peptidase IV inhibitor. Endocrinology 151, 3049–3060 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Zhao, Y., Yang, L., Wang, X. & Zhou, Z. The new insights of DPP-4 inhibitors: their potential immune modulatory function in autoimmune diabetes. Diabetes Metab. Res. Rev. 30, 646–653 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Goodwin, S. R. et al. Dipeptidyl peptidase IV inhibition does not adversely affect immune or virological status in HIV infected men and women: a pilot safety study. J. Clin. Endocrinol. Metab. 98, 743–751 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Ellis, S. L. et al. Effect of sitagliptin on glucose control in adult patients with type 1 diabetes: a pilot, double-blind, randomized, crossover trial. Diabet. Med. 28, 1176–1181 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Garg, S. K. et al. Effect of sitagliptin on post-prandial glucagon and GLP-1 levels in patients with type 1 diabetes: investigator-initiated, double-blind, randomized, placebo-controlled trial. Endocr. Pract. 19, 19–28 (2013).

    Article  PubMed  Google Scholar 

  99. Zhao, Y. et al. Dipeptidyl peptidase 4 inhibitor sitagliptin maintains β-cell function in patients with recent-onset latent autoimmune diabetes in adults: one year prospective study. J. Clin. Endocrinol. Metab. 99, E876–E880 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Johansen, O. E. et al. C-peptide levels in latent autoimmune diabetes in adults treated with linagliptin versus glimepiride: exploratory results from a 2-year double-blind, randomized, controlled study. Diabetes Care 37, e11–e12 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Pozzilli, P., Buzzetti, R., Frederich, R., Iqbal, N. & Hirshberg, B. Saxagliptin increases β-cell function and improves HOMA index in patients with latent autoimmune diabetes in adults [152-OR]. Diabetes 63, A41 (2014).

    Google Scholar 

  102. Ansarullah et al. Stimulating β-cell regeneration by combining a GPR119 agonist with a DPP-IV inhibitor. PLoS ONE 8, e53345 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Suarez-Pinzon, W. L., Cembrowski, G. S. & Rabinovitch, A. Combination therapy with a dipeptidyl peptidase-4 inhibitor and a proton pump inhibitor restores normoglycaemia in non-obese diabetic mice. Diabetologia 52, 1680–1682 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Suarez-Pinzon, W. L. et al. Combination therapy with glucagon-like peptide-1 and gastrin restores normoglycemia in diabetic NOD mice. Diabetes 57, 3281–3288 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Suarez-Pinzon, W. L. & Rabinovitch, A. Combination therapy with a dipeptidyl peptidase-4 inhibitor and a proton pump inhibitor induces β-cell neogenesis from adult human pancreatic duct cells implanted in immunodeficient mice. Cell Transplant. 20, 1343–1349 (2011).

    Article  PubMed  Google Scholar 

  106. World Health Organization. Consolidated Guidelines on the use of antiretroviral drugs for treating and preventing HIV Infection [online], (2013).

  107. Maddaloni, E. & Pozzilli, P. SMART diabetes: the way to go (Safe and Multifactorial Approach to reduce the Risk for Therapy in diabetes). Endocrine 46, 3–5 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Yacoub, T. G. Application of clinical judgment and guidelines to achieving glycemic goals in type 2 diabetes: focus on pharmacologic therapy. Postgrad. Med. 126, 95–106 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge V. Greto, PhD student, for her invaluable help in searching PubMed for data for this Review.

Author information

Authors and Affiliations

Authors

Contributions

P.P. and E.M. researched data and wrote the manuscript. R.B. contributed to the discussion, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Paolo Pozzilli.

Ethics declarations

Competing interests

P.P. has received honoraria and travel grants from Astra Zeneca, Eli Lilly, Merck Sharp & Dohme, Novartis, Takeda and Sanofi. R.B. has received honoraria from Astra Zeneca, Eli Lilly, Novartis, Novo Nordisk and Sanofi. E.M. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozzilli, P., Maddaloni, E. & Buzzetti, R. Combination immunotherapies for type 1 diabetes mellitus. Nat Rev Endocrinol 11, 289–297 (2015). https://doi.org/10.1038/nrendo.2015.8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing