Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Paraganglioma and phaeochromocytoma: from genetics to personalized medicine

Key Points

  • Over half of all phaeochromocytoma and/or paraganglioma (PPGL) can be attributed to genetic alterations

  • 80% of inherited PPGLs are caused by a germline mutation in VHL or the SDHx group of genes

  • Genetic testing is indicated for all patients with PPGLs, as identification of the underlying mutation guides patient management and genetic counselling

  • Gene expression profiling can be used to classify PPGLs, assigning them to either an angiogenic cluster or a kinase signalling cluster, each of which has specific treatment targets

  • DNA methylation profiling has revealed a hypermethylated cluster that is specific to tumours related to the SDHx genes and FH that accounts for the malignant and noradrenergic phenotype of tumours related to mutations in these genes

  • Genomic studies of PPGLs are generating important findings that should pave the way for personalized medicine for affected patients

Abstract

Paragangliomas and phaeochromocytomas are neuroendocrine tumours whose pathogenesis and progression are very strongly influenced by genetics. A germline mutation in one of the susceptibility genes identified so far explains 40% of all cases; the remaining 60% are thought to be sporadic cases. At least one-third of these sporadic tumours contain a somatic mutation in a predisposing gene. Genetic testing, which is indicated in every patient, is guided by the clinical presentation as well as by the secretory phenotype and the immunohistochemical characterization of the tumours. The diagnosis of an inherited form drives clinical management and tumour surveillance. Different 'omics' profiling methods have provided a neat classification of these tumours in accordance with their genetic background. Transcriptomic studies have identified two main molecular pathways that underlie development of these tumours, one in which the hypoxic pathway is activated (cluster 1) and another in which the MAPK and mTOR (mammalian target of rapamycin) signalling pathways are activated (cluster 2). DNA methylation profiling has uncovered a hypermethylator phenotype in tumours related to SDHx genes (a group of genes comprising SDHA, SDHB, SDHC, SDHD and SDHAF2) and revealed that succinate acts as an oncometabolite, inhibiting 2-oxoglutarate-dependent dioxygenases, such as hypoxia-inducible factor prolyl-hydroxylases and histone and DNA demethylases. 'Omics' data have suggested new therapeutic targets for patients with a malignant tumour. In the near future, new 'omics'-based tests are likely to be transferred into clinical practice with the goal of establishing personalized medical management for affected patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timescale of the discovery of PPGL susceptibility genes.
Figure 2: Algorithms for PPGL genetic testing by Sanger or by next-generation sequencing.
Figure 3: From integrative genomics studies to molecular targeted therapies.

Similar content being viewed by others

References

  1. Baysal, B. E. et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287, 848–851 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Astuti, D. et al. Germline SDHD mutation in familial phaeochromocytoma. Lancet 357, 1181–1182 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Dluhy, R. G. Pheochromocytoma—death of an axiom. N. Engl. J. Med. 346, 1486–1488 (2002).

    Article  PubMed  Google Scholar 

  4. Pacak, K. et al. Pheochromocytoma: recommendations for clinical practice from the First International Symposium. October 2005. Nat. Clin. Pract. Endocrinol. Metab. 3, 92–102 (2007).

    Article  PubMed  Google Scholar 

  5. Dahia, P. L. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat. Rev. Cancer 14, 108–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Buffet, A. et al. A decade (2001–2010) of genetic testing for pheochromocytoma and paraganglioma. Horm. Metab. Res. 44, 359–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Viskochil, D. et al. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 62, 187–192 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Gutmann, D. H. et al. The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA 278, 51–57 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Walther, M. M., Herring, J., Enquist, E., Keiser, H. R. & Linehan, W. M. von Recklinghausen's disease and pheochromocytomas. J. Urol. 162, 1582–1586 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Bausch, B. et al. Comprehensive mutation scanning of NF1 in apparently sporadic cases of pheochromocytoma. J. Clin. Endocrinol. Metab. 91, 3478–3481 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Bausch, B. et al. Clinical and genetic characteristics of patients with neurofibromatosis type 1 and pheochromocytoma. N. Engl. J. Med. 354, 2729–2731 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Hersh, J. H. et al. Health supervision for children with neurofibromatosis. Pediatrics 121, 633–642 (2008).

    Article  PubMed  Google Scholar 

  13. Burnichon, N. et al. Somatic NF1 inactivation is a frequent event in sporadic pheochromocytoma. Hum. Mol. Genet. 21, 5397–5405 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Mulligan, L. M. et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363, 458–460 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Wagner, A. J. et al. Loss of expression of SDHA predicts SDHA mutations in gastrointestinal stromal tumors. Mod. Pathol. 26, 289–294 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Brandi, M. L. et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J. Clin. Endocrinol. Metab. 86, 5658–5671 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. American Thyroid Association Guidelines Task Force. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 19, 565–612 (2009).

  18. Latif, F. et al. Identification of the von Hippel–Lindau disease tumor suppressor gene. Science 260, 1317–1320 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Maher, E. R., Neumann, H. P. & Richard, S. von Hippel–Lindau disease: a clinical and scientific review. Eur. J. Hum. Genet. 19, 617–623 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Castro-Vega, L. J. et al. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum. Mol. Genet. 23, 2440–2446 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Amar, L. et al. Genetic testing in pheochromocytoma or functional paraganglioma. J. Clin. Oncol. 23, 8812–8818 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Lenders, J. W. et al. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 99, 1915–1942 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Niemann, S. & Muller, U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat. Genet. 26, 268–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Burnichon, N. et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum. Mol. Genet. 19, 3011–3020 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Astuti, D. et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am. J. Hum. Genet. 69, 49–54 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hao, H. X. et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325, 1139–1142 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Pollard, P. J. et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet. 14, 2231–2239 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Briere, J. J. et al. Mitochondrial succinate is instrumental for HIF1α nuclear translocation in SDHA-mutant fibroblasts under normoxic conditions. Hum. Mol. Genet. 14, 3263–3269 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Letouze, E. et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23, 739–752 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Baysal, B. E. Mitochondrial complex II and genomic imprinting in inheritance of paraganglioma tumors. Biochim. Biophys. Acta 1827, 573–577 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Pasini, B. & Stratakis, C. A. SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma–paraganglioma syndromes. J. Intern. Med. 266, 19–42 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Gimenez-Roqueplo, A. P. et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res. 63, 5615–5621 (2003).

    CAS  PubMed  Google Scholar 

  33. Amar, L. et al. Succinate dehydrogenase B gene mutations predict survival in patients with malignant pheochromocytomas or paragangliomas. J. Clin. Endocrinol. Metab. 92, 3822–3828 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Else, T. et al. The clinical phenotype of SDHC-associated hereditary paraganglioma syndrome (PGL3). J. Clin. Endocrinol. Metab. 99, E1482–E1486 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ricketts, C. et al. Germline SDHB mutations and familial renal cell carcinoma. J. Natl Cancer Inst. 100, 1260–1262 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Pasini, B. et al. Clinical and molecular genetics of patients with the Carney–Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur. J. Hum. Genet. 16, 79–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Qin, Y. et al. Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat. Genet. 42, 229–233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Comino-Mendez, I. et al. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat. Genet. 43, 663–667 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Qin, Y. et al. The tumor susceptibility gene TMEM127 is mutated in renal cell carcinomas and modulates endolysosomal function. Hum. Mol. Genet. 23, 2428–2439 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Cascon, A. & Robledo, M. MAX and MYC: a heritable breakup. Cancer Res. 72, 3119–3124 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Abermil, N. et al. TMEM127 screening in a large cohort of patients with pheochromocytoma and/or paraganglioma. J. Clin. Endocrinol. Metab. 97, E805–E809 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Burnichon, N. et al. MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin. Cancer Res. 18, 2828–2837 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Zhuang, Z. et al. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N. Engl. J. Med. 367, 922–30 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Buffet, A. et al. Mosaicism in HIF2A-related polycythemia–paraganglioma syndrome. J. Clin. Endocrinol. Metab. 99, E369–E373 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Schlisio, S. et al. The kinesin KIF1Bβ acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor. Genes Dev. 22, 884–93 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ladroue, C. et al. Distinct deregulation of the hypoxia inducible factor by PHD2 mutants identified in germline DNA of patients with polycythemia. Haematologica 97, 9–14 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gaal, J. et al. Isocitrate dehydrogenase mutations are rare in pheochromocytomas and paragangliomas. J. Clin. Endocrinol. Metab. 95, 1274–1278 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Crona, J. et al. Somatic mutations in H-RAS in sporadic pheochromocytoma and paraganglioma identified by exome sequencing. J. Clin. Endocrinol. Metab. 98, E1266–E1271 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Oudijk, L. et al. H-RAS mutations are restricted to sporadic pheochromocytomas lacking specific clinical or pathological features: data from a multi-institutional series. J. Clin. Endocrinol. Metab. 99, E1376–E1380 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. van Hulsteijn, L. T., Dekkers, O. M., Hes, F. J., Smit, J. W. & Corssmit, E. P. Risk of malignant paraganglioma in SDHB-mutation and SDHD-mutation carriers: a systematic review and meta-analysis. J. Med. Genet. 49, 768–776 (2012).

    Article  PubMed  Google Scholar 

  51. King, K. S. et al. Metastatic pheochromocytoma/paraganglioma related to primary tumor development in childhood or adolescence: significant link to SDHB mutations. J. Clin. Oncol. 29, 4137–4142 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lenders, J. W. et al. Biochemical diagnosis of pheochromocytoma: which test is best? JAMA 287, 1427–1434 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Peitzsch, M. et al. Analysis of plasma 3-methoxytyramine, normetanephrine and metanephrine by ultraperformance liquid chromatography-tandem mass spectrometry: utility for diagnosis of dopamine-producing metastatic phaeochromocytoma. Ann. Clin. Biochem. 50, 147–155 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. van Nederveen, F. H. et al. An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol. 10, 764–771 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Korpershoek, E. et al. SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J. Clin. Endocrinol. Metab. 96, E1472–E1476 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Bardella, C. et al. Aberrant succination of proteins in fumarate hydratase-deficient mice and HLRCC patients is a robust biomarker of mutation status. J. Pathol. 225, 4–11 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Crona, J. et al. Next-generation sequencing in the clinical genetic screening of patients with pheochromocytoma and paraganglioma. Endocr. Connect. 2, 104–111 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Welander, J. et al. Rare germline mutations identified by targeted next-generation sequencing of susceptibility genes in pheochromocytoma and paraganglioma. J. Clin. Endocrinol. Metab. 99, E1352–E1360 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McInerney-Leo, A. M. et al. Whole exome sequencing is an efficient and sensitive method for detection of germline mutations in patients with phaeochromcytomas and paragangliomas. Clin. Endocrinol. (Oxf.) 80, 25–33 (2014).

    Article  CAS  Google Scholar 

  60. MacArthur, D. G. et al. Guidelines for investigating causality of sequence variants in human disease. Nature 508, 469–476 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Canu, L. et al. Pitfalls in genetic analysis of pheochromocytomas/paragangliomas—case report. J. Clin. Endocrinol. Metab. 99, 2321–2326 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Gimenez-Roqueplo, A. P. et al. Imaging work-up for screening of paraganglioma and pheochromocytoma in SDHx mutation carriers: a multicenter prospective study from the PGL.EVA Investigators. J. Clin. Endocrinol. Metab. 98, E162–E173 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Kaji, P. et al. The role of 6-18F-fluorodopamine positron emission tomography in the localization of adrenal pheochromocytoma associated with von Hippel–Lindau syndrome. Eur. J. Endocrinol. 156, 483–487 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Taieb, D. et al. EANM 2012 guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur. J. Nucl. Med. Mol. Imaging 39, 1977–1995 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Timmers, H. J. et al. Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J. Clin. Endocrinol. Metab. 94, 4757–4767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Walz, M. K. Adrenalectomy for preservation of adrenocortical function. Indication and results [German]. Chirurg. 80, 99–104 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Grubbs, E. G. et al. Long-term outcomes of surgical treatment for hereditary pheochromocytoma. J. Am. Coll. Surg. 216, 280–289 (2013).

    Article  PubMed  Google Scholar 

  68. Alesina, P. F. et al. Minimally invasive cortical-sparing surgery for bilateral pheochromocytomas. Langenbecks Arch. Surg. 397, 233–238 (2012).

    Article  PubMed  Google Scholar 

  69. Rohmer, V. et al. Prognostic factors of disease-free survival after thyroidectomy in 170 young patients with a RET germline mutation: a multicenter study of the Groupe Francais d'Etude des Tumeurs Endocrines. J. Clin. Endocrinol. Metab. 96, E509–E518 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Thosani, S. et al. The characterization of pheochromocytoma and its impact on overall survival in multiple endocrine neoplasia type 2. J. Clin. Endocrinol. Metab. 98, E1813–E1819 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bickmann, J. K. et al. Phenotypic variability and risk of malignancy in SDHC-linked paragangliomas: lessons from 3 unrelated cases with an identical germline mutation (p.Arg133*). J. Clin. Endocrinol. Metab. 99, E489–E496 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Jasperson, K. W. et al. Role of rapid sequence whole-body MRI screening in SDH-associated hereditary paraganglioma families. Fam. Cancer 13, 257–265 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Timmers, H. J. et al. Staging and functional characterization of pheochromocytoma and paraganglioma by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography. J. Natl Cancer Inst. 104, 700–708 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Eisenhofer, G. et al. Distinct gene expression profiles in norepinephrine- and epinephrine-producing hereditary and sporadic pheochromocytomas: activation of hypoxia-driven angiogenic pathways in von Hippel–Lindau syndrome. Endocr. Relat. Cancer 11, 897–911 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Dahia, P. L. et al. A HIF1α regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet. 1, 72–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Favier, J. et al. The Warburg effect is genetically determined in inherited pheochromocytomas. PLoS ONE 4, e7094 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Lopez-Jimenez, E. et al. Research resource: Transcriptional profiling reveals different pseudohypoxic signatures in SDHB and VHL-related pheochromocytomas. Mol. Endocrinol. 24, 2382–2391 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Favier, J., Buffet, A. & Gimenez-Roqueplo, A. P. HIF2A mutations in paraganglioma with polycythemia. N. Engl. J. Med. 367, 2161 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Welander, J. et al. Integrative genomics reveals frequent somatic NF1 mutations in sporadic pheochromocytomas. Hum. Mol. Genet. 21, 5406–5416 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Joshua, A. M. et al. Rationale and evidence for sunitinib in the treatment of malignant paraganglioma/pheochromocytoma. J. Clin. Endocrinol. Metab. 94, 5–9 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Jimenez, C. et al. Use of the tyrosine kinase inhibitor sunitinib in a patient with von Hippel–Lindau disease: targeting angiogenic factors in pheochromocytoma and other von Hippel–Lindau disease-related tumors. J. Clin. Endocrinol. Metab. 94, 386–391 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Hahn, N. M. et al. Patient with malignant paraganglioma responding to the multikinase inhibitor sunitinib malate. J. Clin. Oncol. 27, 460–463 (2009).

    Article  PubMed  Google Scholar 

  83. Ayala-Ramirez, M. et al. Treatment with sunitinib for patients with progressive metastatic pheochromocytomas and sympathetic paragangliomas. J. Clin. Endocrinol. Metab. 97, 4040–4050 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. US National Library of Medicine. ClinicalTrials.gov[online], (2012).

  85. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  86. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  87. Bergers, G. & Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 8, 592–603 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Druce, M. R., Kaltsas, G. A., Fraenkel, M., Gross, D. J. & Grossman, A. B. Novel and evolving therapies in the treatment of malignant phaeochromocytoma: experience with the mTOR inhibitor everolimus (RAD001). Horm. Metab. Res. 41, 697–702 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Oh, D. Y. et al. Phase 2 study of everolimus monotherapy in patients with nonfunctioning neuroendocrine tumors or pheochromocytomas/paragangliomas. Cancer 118, 6162–6170 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Giubellino, A. et al. Combined inhibition of mTORC1 and mTORC2 signaling pathways is a promising therapeutic option in inhibiting pheochromocytoma tumor growth: in vitro and in vivo studies in female athymic nude mice. Endocrinology 154, 646–655 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Killian, J. K. et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov. 3, 648–657 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Loriot, C. et al. Epithelial to mesenchymal transition is activated in metastatic pheochromocytomas and paragangliomas caused by SDHB gene mutations. J. Clin. Endocrinol. Metab. 97, E954–E962 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Hadoux, J. et al. SDHB mutations are associated with response to temozolomide in patients with metastatic pheochromocytoma or paraganglioma. Int. J. Cancer 135, 2711–2720 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Cameron, E. & Pauling, L. Supplemental ascorbate in the supportive treatment of cancer: reevaluation of prolongation of survival times in terminal human cancer. Proc. Natl Acad. Sci. USA 75, 4538–4542 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs Julie Sappa for English-language assistance (service provided by Alex Edelman & Associates). The research led by A.-P.G.-R. and J.F. is supported by the Programme Hospitalier de Recherche Clinique grant COMETE 3 (AOM 06 179), by grants from the Agence Nationale de la Recherche (ANR 08 GENOPATH 029 MitOxy & ANR 2011-JCJC-00701 MODEOMAPP) and from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 259735.

Author information

Authors and Affiliations

Authors

Contributions

J.F. researched data for the article, contributed to discussion of the content, and reviewed and edited the manuscript before submission. L.A. researched data for the article and contributed to discussion of the content. A.-P.G.-R. researched data for the article, contributed to discussion of the content, wrote the article and reviewed and edited the article before submission.

Corresponding author

Correspondence to Anne-Paule Gimenez-Roqueplo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Favier, J., Amar, L. & Gimenez-Roqueplo, AP. Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nat Rev Endocrinol 11, 101–111 (2015). https://doi.org/10.1038/nrendo.2014.188

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing