Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

The past 10 years—new hormones, new functions, new endocrine organs

Abstract

Since the publication of the first issue of this journal in November 2005, our understanding of the endocrine system has evolved, with the identification of novel hormones and novel endocrine roles for previously identified molecules. Here, we have asked six of our Advisory Board Members to comment on how these insights have led to the recognition that many organs and tissues that were not widely considered part of the classic endocrine system in the past have important endocrine functions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dallas, S. L., Prideaux, M. & Bonewald, L. F. The osteocyte: an endocrine cell ... and more. Endocr. Rev. 34, 658–690 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bouillon, R. et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr. Rev. 29, 726–776 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Quarles, L. D. Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism. Nat. Rev. Endocrinol. 8, 276–286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Komaba, H. & Fukagawa, M. The role of FGF23 in CKD—with or without Kloth. Nat. Rev. Nephrol. 8, 484–490 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Papapoulos, S. E. Anabolic bone therapies in 2014: new bone-forming treatments for osteoporosis. Nat. Rev. Endocrinol. 11, 69–70 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Karsenty, G. & Ferron, M. The contribution of bone to whole-organism physiology. Nature 481, 314–320 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Riddle, R. C. et al. Tsc2 is a molecular checkpoint controlling osteoblast development and glucose homeostasis. Mol. Cell. Biol. 34, 1850–1862 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee, N. K. et al. Endocrine regulation of energy metabolism by the skeleton. Cell 130, 456–469 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oury, F. et al. Endocrine regulation of male fertility by the skeleton. Cell 144, 796–809 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takayanagi, H. Osteoimmunology in 2014: two-faced immunology-from osteogenesis to bone resorption. Nat. Rev. Rheumatol. 11, 74–76 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Spiegelman, B. M. Banting Lecture 2012: regulation of adipogenesis: toward new therapeutics for metabolic disease. Diabetes 62, 1774–1782 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Bouillon, R. et al. Vitamin D and energy homeostasis: of mice and men. Nat. Rev. Endocrinol. 10, 79–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Vella, A. & Drucker, D. J. in Williams Textbook of Endocrinology 12th edn Ch. 39 (eds Melmed, S. et al.) 1697–1718 (Elsevier Saunders, 2012).

    Google Scholar 

  15. Tatemoto, K. & Mutt, V. Chemical determination of polypeptide hormones. Proc. Natl Acad. Sci. USA 75, 4115–4119 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bell, G. I., Sanchez-Pescador, R., Laybourn, P. J. & Najarian, R. C. Exon duplication and divergence in the human preproglucagon gene. Nature 304, 368–371 (1983).

    Article  CAS  PubMed  Google Scholar 

  17. Reimann, F. et al. Glucose sensing in L cells: a primary cell study. Cell Metab. 8, 532–539 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Habib, A. M. et al. Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 153, 3054–3065 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Engelstoft, M. S., Egerod, K. L., Lund, M. L. & Schwartz, T. W. Enteroendocrine cell types revisited. Curr. Opin. Pharmacol. 13, 912–921 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Campbell, J. E. & Drucker, D. J. Pharmacology physiology and mechanisms of incretin hormone action. Cell Metab. 17, 819–837 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Drucker, D. J. & Yusta, B. Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2. Annu. Rev. Physiol. 76, 561–583 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Finan, B. et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat. Med. 21, 27–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Sadry, S. A. & Drucker, D. J. Emerging combinatorial hormone therapies for the treatment of obesity and T2DM. Nat. Rev. Endocrinol. 9, 425–433 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Cani, P. D. et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58, 1091–1103 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Chimerel, C. et al. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep. 9, 1202–1208 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Halberg, N., Wernstedt-Asterholm, I. & Scherer, P. E. The adipocyte as an endocrine cell. Endocrinol. Metab. Clin. North Am. 37, 753–768 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Donath, M. Y., Böni-Schnetzler, M., Ellingsgaard, H., Halban, P. A. & Ehses, J. A. Cytokine production by islets in health and diabetes: cellular origin, regulation and function. Trends Endocrinol. Metab. 21, 261–267 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Maresca, F. et al. Adipokines, vascular wall, and cardiovascular disease: a focused overview of the role of adipokines in the pathophysiology of cardiovascular disease. Angiology 66, 8–24 (2015).

    Article  PubMed  Google Scholar 

  29. Aguilar-Valles, A., Inoue, W., Rummel, C. & Luheshi, G. N. Obesity, adipokines and neuroinflammation. Neuropharmacology 96, 124–134 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Newgard, C. B. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 15, 606–614 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ferrannini, E. et al. Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes 62, 1730–1737 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mezza, T. et al. Insulin resistance alters islet morphology in nondiabetic humans. Diabetes 63, 994–1007 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Talchai, C., Xuan, S., Lin, H. V., Sussel, L. & Accili, D. Pancreatic β-cell dedifferentiation as a mechanism of diabetic β-cell failure. Cell 150, 1223–1234 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ferrannini, E. The stunned β cell: a brief history. Cell Metab. 11, 349–352 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Hodson, D. J. et al. Lipotoxicity disrupts incretin-regulated human β-cell connectivity. J. Clin. Invest. 123, 4182–4194 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Preis, S. R. et al. Abdominal subcutaneous and visceral adipose tissue and insulin resistance in the Framingham heart study. Obesity, 11, 2191–2198 (2010).

    Article  Google Scholar 

  37. Rexrode, K. M. et al. Abdominal obesity and coronary heart disease in women. JAMA 280, 1843–1848 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Batsis, J. A. et al. Normal weight obesity and mortality in United States subjects >60 years of age (from the Third National Health and Nutrition Examination Survey). Am. J. Cardiol. 112, 1592–1598 (2013).

    Article  PubMed  Google Scholar 

  39. Kaess, B. M. The ratio of visceral to subcutaneous fat, a metric of body fat distribution is a unique correlate of cardiometabolic risk. Diabetologia 10, 2622–2630 (2012).

    Article  Google Scholar 

  40. Falutz, J. et al. Effects of tesamorelin (TH9507), a growth hormone-releasing factor analog, in human immunodeficiency virus-infected patients with excess abdominal fat: a pooled analysis of two multicenter, double-blind placebo-controlled phase 3 trials with safety extension data. J. Clin. Endocrinol. Metab. 95, 4291–4304 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Falutz, J. et al. Metabolic effects of a growth hormone-releasing factor in patients with HIV. N. Engl. J. Med. 357, 2359–2370 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Makimura, H., Stanley, T., Mun, D., You, S. M. & Grinspoon, S. The effects of central adiposity on growth hormone (GH) response to GH-releasing hormone-arginine stimulation testing in men. J. Clin. Endocrinol. Metab. 93, 4254–4260 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miller, K. K. et al. Truncal adiposity, relative growth hormone deficiency, and cardiovascular risk. J. Clin. Endocrinol. Metab. 90, 768–774 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Makimura, H. et al. Reduced growth hormone secretion is associated with increased carotid intima-media thickness in obesity. J. Clin. Endocrinol. Metab. 94, 5131–5138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Koutkia, P., Meininger, G., Canavan, B., Breu, J. & Grinspoon, S. Metabolic regulation of growth hormone by free fatty acids, somatostatin, and ghrelin in HIV-lipodystrophy. Am. J. Physiol. Endocrinol. Metab. 286, E296–E303 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Peino, R. et al. Acipimox-mediated plasma free fatty acid depression per se stimulates growth hormone (GH) secretion in normal subjects and potentiates the response to other GH-releasing stimuli. J. Clin. Endocrinol. Metab. 81, 909–913 (1996).

    CAS  PubMed  Google Scholar 

  47. Reitschel, P. et al. Assessment of growth hormone dynamics in human immunodeficiency virus-related lipodystrophy. J. Clin. Endcocrinol. Metab. 86, 504–510 (2001).

    Google Scholar 

  48. Stanley, T. L. et al. Effect of tesamorelin on visceral fat and liver fat in HIV-infected patients with abdominal fat accumulation: a randomized clinical trial. JAMA 312, 380–389 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bonewald, L. F., Kneissel, M. & Johnson, M. Preface: the osteocyte. Bone 54, 181 (2013).

    Article  PubMed  Google Scholar 

  50. Ducy, P. et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100, 197–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Esen, E. et al. WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab. 17, 745–755 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Compton, J. & Lee, F. A review of osteocyte function and the emerging importance of sclerostin. J. Bone Joint Surg. Am. 96, 1659–1668 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bonewald, L. F. & Wacker, M. J. FGF23 production by osteocytes. Pediatr. Nephrol. 28, 563–568 (2013).

    Article  PubMed  Google Scholar 

  54. Nakashima, T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231–1234 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Ferron, M. et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142, 296–308 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Karsenty, G. in Cellular Endocrinology in Health and Disease Ch. 12 (eds Ulloa-Aguirre, A. & Conn, P. M.) 193–205 (Elsevier, 2014).

    Book  Google Scholar 

  57. Rosen, C. J. & Klibanski. A. Bone, fat, and body composition: evolving concepts in the pathogenesis of osteoporosis. Am. J. Med. 122, 409–414 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Guntur, A. R., Le, P. T., Farber, C. R. & Rosen, C. J. Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass. Endocrinology 155, 1589–1595 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Esen, E. & Long, F. Aerobic glycolysis in osteoblasts. Curr. Osteoporos. Rep. 12, 433–438 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cawthorn, W. P. et al. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab. 20, 368–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zimmet, P. Z., Magliano, D. J., Herman, W. H. & Shaw, J. E. Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol. 2, 56–64 (2014).

    Article  PubMed  Google Scholar 

  62. Guariguata, L. et al. Global estimates of diabetes prevalence in adults for 2013 and projections for 2035 for the IDF Diabetes Atlas. Diabetes Res. Clin. Pract. 103, 137–149 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Tuomi, T. et al. The many faces of diabetes: a disease with increasing heterogeneity. Lancet 383, 1084–1094 (2014).

    Article  PubMed  Google Scholar 

  64. Kahn, S. E., Cooper, M. E. & Del Prato, S. Pathophysiology and treatment of type 2 diabetes. Lancet 383, 1068–1083 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Murphy, R., Ellard, S. & Hattersley, A. T. Clinical implications of a molecular genetic classification of monogenic β-cell diabetes. Nat. Clin. Pract. Endocrinol. Metab. 4, 200–213 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Hall, S. S. A gene of rare effect. Nature 496, 152–155 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Zimmet, P. & Alberti, K. G. Surgery or medical therapy for obese patients with type 2 diabetes? N. Engl. J. Med. 366, 1635–1636 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Bernard, C. Lectures on the phenomena common to animals and plants (translated by Hoff, H. E., Guillemin, R. & Guillemin, L.) (Charles C. Thomas, 1974).

    Google Scholar 

  69. Adamovich, Y. Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab. 19, 319–330 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of this manuscript.

Corresponding authors

Correspondence to Roger Bouillon, Daniel J. Drucker, Ele Ferrannini, Steven Grinspoon, Clifford J. Rosen or Paul Zimmet.

Ethics declarations

Competing interests

D.J.D. has served as an advisor or consultant for Arisaph Pharmaceutical, Intarcia Therapeutics, Merck Research Laboratories, MedImmune, Novo Nordisk, NPS Pharmaceutical, Receptos and Sanofi. Neither D.J.D. nor his family members hold stock directly or indirectly in any of these companies. S.G. has received research funding from Amgen, Gilead, KOWA and Theratechnologies; he has also received consulting fees from BMS, Gilead, Merck, Navidea, Takeda and Theratechnologies. P.Z. has received consulting fees from Amgen. R.B., E.F. and C.J.F. declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouillon, R., Drucker, D., Ferrannini, E. et al. The past 10 years—new hormones, new functions, new endocrine organs. Nat Rev Endocrinol 11, 681–686 (2015). https://doi.org/10.1038/nrendo.2015.142

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing