Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Preventing and treating foot complications associated with diabetes mellitus

Key Points

  • A comprehensive foot examination is essential for the appropriate assessment, prevention and management of diabetic foot complications

  • Peripheral neuropathy is concurrent with 90% of foot ulcers and is a major contributor to the development of ulcers in patients with diabetes mellitus

  • Many patients with diabetes mellitus who have peripheral vascular disease are asymptomatic until they develop tissue loss

  • In the context of tissue loss, increasing ischaemia elevates the risk of limb loss and, therefore, healing usually requires revascularization

  • Revascularization can be performed using endovascular or open surgery techniques, or a combination of both, and depends on the patient's health, the location of the disease and local surgical expertise

  • Offloading, debridement, antibiotics, optimal glycaemic control and a multidisciplinary team are fundamental to the effective treatment of diabetic foot complications

Abstract

Diabetes mellitus is associated with a series of macrovascular and microvascular changes that can manifest as a wide range of complications. Foot ulcerations affect 2–4% of patients with diabetes mellitus. Risk factors for foot lesions include peripheral and autonomic neuropathy, vascular disease and previous foot ulceration, as well as other microvascular complications, such as retinopathy and end-stage renal disease. Ulceration is the result of a combination of components that together lead to tissue breakdown. The most frequently occurring causal pathways to the development of foot ulcers include peripheral neuropathy and vascular disease, foot deformity or trauma. Peripheral vascular disease is often not diagnosed in patients with diabetes mellitus until tissue loss is evident, usually in the form of a nonhealing ulcer. Identification of patients with diabetes mellitus who are at high risk of ulceration is important and can be achieved via annual foot screening with subsequent multidisciplinary foot-care interventions. Understanding the factors that place patients with diabetes mellitus at high risk of ulceration, together with an appreciation of the links between different aspects of the disease process, is essential to the prevention and management of diabetic foot complications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 5-year patency estimates for surgical bypass in critical limb ischaemia.

Similar content being viewed by others

References

  1. Boulton, A. J. The pathway to foot ulceration in diabetes. Med. Clin. North Am. 97, 775–790 (2013).

    PubMed  Google Scholar 

  2. Singh, N., Armstrong, D. G. & Lipsky, B. A. Preventing foot ulcers in patients with diabetes. JAMA 293, 217–228 (2005).

    CAS  PubMed  Google Scholar 

  3. Kerr, M., Rayman, G. & Jeffcoate, W. J. Cost of diabetic foot disease to the National Health Service in England. Diabetic Med. 31, 1498–1504 (2014).

    CAS  PubMed  Google Scholar 

  4. Armstrong, D. G. et al. Mind the gap: disparity between research funding and costs of care for diabetic foot ulcers. Diabetes Care 36, 1815–1817 (2013).

    PubMed  PubMed Central  Google Scholar 

  5. Armstrong, D. G., Wrobel, J. & Robbins, J. M. Are diabetes-related wounds worse than cancer? Int. Wound J. 4, 286–287 (2007).

    PubMed  Google Scholar 

  6. Lavery, L. A., Hunt, N. A., Ndip, A., Lavery, D. C. & Boulton, A. J. Impact of chronic kidney disease on survival after amputation in individuals with diabetes. Diabetes Care 33, 2365–2369 (2010).

    PubMed  PubMed Central  Google Scholar 

  7. Buse, J. B. et al. Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American heart association and the American diabetes association. Diabetes Care 115, 114–126 (2007).

    Google Scholar 

  8. NICE. Lower limb peripheral arterial disease: diagnosis and management. NICE guidelines [CG147] [online], (2012).

  9. Jeffcoate, W. J. & Harding, K. Diabetic foot ulcers. Lancet 361, 1545–1551 (2003).

    PubMed  Google Scholar 

  10. Abbott, C. A. et al. The North West Diabetes Foot Care Study: Incidence of and risk factors for new diabetic foot ulceration in a community-based cohort. Diabetic Med. 19, 377–384 (2002).

    CAS  PubMed  Google Scholar 

  11. Muller, I. S. et al. Foot ulceration and lower limb amputation in type 2 diabetic patients in Dutch primary health care. Diabetes Care 25, 570–574 (2002).

    PubMed  Google Scholar 

  12. Abbott, C. A. et al. Foot ulcer risk is lower in South Asian and African-Caribbean compared to European diabetic patients in the UK: the North-West diabetes foot care study. Diabetes Care 28, 1869–1875 (2005).

    PubMed  Google Scholar 

  13. Monteiro-Soares, M. et al. Predictive factors for diabetic foot ulceration: a systematic review. Diabetes Metab. Res. Rev. 28, 574–600 (2012).

    CAS  PubMed  Google Scholar 

  14. Leese, G., Stang, D. & McKnight, J. A national strategic approach to diabetic foot disease in Scotland: a changing culture. Br. J. Diabetes Vasc. Dis. 11, 69–73 (2011).

    Google Scholar 

  15. Margolis, D. J. & Jeffcoate, W. J. Epidemiology of foot ulceration and amputation. Med. Clin. N. Amer. 97, 7791–7805 (2013).

    Google Scholar 

  16. Boulton, A. J. M. in Evidence Based Management of Diabetes (eds Giten, V. & Busen, J.) 367–382 (TFM Publishing, 2012).

    Google Scholar 

  17. Vamos, E. P., Bottle, A. & Edmonds, M. E. Changes in the incidence of lower extremity amputations in individuals with and without diabetes in England between 2004 and 2008. Diabetes Care 33, 2592–2597 (2010).

    PubMed  PubMed Central  Google Scholar 

  18. Holman, N., Young, R. J. & Jeffcoate, W. J. Variation in the recorded incidence of amputation of the lower limb in England. Diabetologia 55, 1919–1925 (2012).

    CAS  PubMed  Google Scholar 

  19. Kennon, B., Leese, G. P. & Cochrane, L. Reduced incidence of lower-extremity amputations in people with diabetes in Scotland: a nationwide study. Diabetes Care 35, 2588–2590 (2012).

    PubMed  PubMed Central  Google Scholar 

  20. Chevreul, K., Berg Brigham, K. & Bouché, C. The burden and treatment of diabetes in France. Global Health 10, 6 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. Pickwell, K. et al. Predictors of lower extremity amputation in patients with an infected diabetic foot ulcer. Diabetes Care 38, 852–857 (2015).

    PubMed  Google Scholar 

  22. Hadadi, A. et al. Diabetic foot: infections and outcomes in Iranian admitted patients. Jundishapur J. Microbiol. 7, e11680 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. Boulton, A. J. M., Vileikyte, L., Ragnarson-Tennvall, G. & Apelqvist, J. The global burden of diabetic foot disease. Lancet 366, 1721–1726 (2005).

    Google Scholar 

  24. Boulton, A. J. M., Gries, J. A. & Jervell, J. A. Guidelines for the diagnosis and outpatient management of diabetic peripheral neuropathy. Special Report. Diabetic Med. 15, 508–514 (1998).

    CAS  PubMed  Google Scholar 

  25. Boulton, A. J. M., Malik, R. A., Arezzo, J. & Sosenko, J. M. Diabetic somatic neuropathies. Diabetes Care 27, 1458–1486 (2004).

    PubMed  Google Scholar 

  26. Dyck, P. J. et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology 43, 817–824 (1993).

    CAS  PubMed  Google Scholar 

  27. Tesfaye, S., Boulton, A. J. M. & Dickenson, A. H. Mechanisms and management of diabetic painful distal symmetrical polyneuropathy. Diabetes Care 36, 2456–2465 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dyck, P. J. et al. Diabetic polyneuropathies: update on research definition, diagnostic criteria and estimation of severity. Diabetes Metab. Res. Rev. 27, 620 (2011).

    PubMed  Google Scholar 

  29. Vileikyte, L. et al. Foot ulcer risk is lower in South Asian and African-Caribbean compared to European diabetic patients in the UK. The North-West diabetes foot care study. Diabetes Care 28, 1869–1875 (2005).

    Google Scholar 

  30. Smith, A. G. & Singleton, J. R. Impaired glucose tolerance and neuropathy. Neurologist 14, 23–29 (2008).

    PubMed  Google Scholar 

  31. Tesfaye, S. et al. Painful diabetic peripheral neuropathy: consensus recommendations on diagnosis, assessment and management. Diabetes Metab. Res. Rev. 12, 65–68 (2011).

    Google Scholar 

  32. Davis, J. L. et al. Peripheral diabetic neuropathy treated with amitryptiline and fluphenazine. JAMA 238, 2291–2292 (1977).

    CAS  PubMed  Google Scholar 

  33. Sultan, A., Gaskell, H., Derry, S. & Moore, R. A. Duloxetine for painful diabetic neuropathy and fibromyalgia pain: a systematic review of randomised trials. BMC Neurol. 29, 1471–2377 (2008).

    Google Scholar 

  34. Caraceni, A. et al. Gabapentin for neuropathic cancer pain: a randomized controlled trial from the Gabapentin Cancer Pain Study Group. J. Clin. Oncol. 22, 2909–2917 (2004).

    CAS  PubMed  Google Scholar 

  35. Backonja, M. et al. Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: a randomized controlled trial. JAMA 280, 1831–1836 (1998).

    CAS  PubMed  Google Scholar 

  36. Freeman, R., Durso-Decruz, E. & Emir, B. Efficacy, safety and tolerability of pregabalin treatment for painful peripheral neuropathy: findings from seven randomised, controlled trials across a range of doses. Diabetes Care 31, 1448–1454 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Morris, S. J., Shore, A. C. & Tooke, J. E. Responses of the skin microcirculation to acetylcholine and sodium nitroprusside in patients with non-insulin dependent diabetes mellitus. Diabetologia 38, 1337–1344 (1995).

    CAS  PubMed  Google Scholar 

  38. Ryder, R. E. et al. Autonomic dennervation may be a prerequisite of diabetic neuropathic foot ulceration. Diabetic Med. 7, 726–730 (1990).

    CAS  PubMed  Google Scholar 

  39. LeFrandt, J. D. et al. Sympathetic mediated vasomotion and skin capillary permeability in diabetic patients with peripheral neuropathy. Diabetologia 246, 40–47 (2003).

    Google Scholar 

  40. Norgren, L. et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). J. Vasc. Surg. 45 (Suppl.), S5–S67 (2007).

    PubMed  Google Scholar 

  41. McDermott, M. M. et al. Asymptomatic peripheral arterial disease is associated with more adverse lower extremity characteristics than intermittent claudication. Circulation 117, 2484–2491 (2008).

    PubMed  PubMed Central  Google Scholar 

  42. Fowkes F. G. et al. Edinburgh Artery Study: prevalence of asymptomatic and symptomatic peripheral arterial disease in the general population. Int. J. Epidemiol. 20, 384–392 (1991).

    CAS  PubMed  Google Scholar 

  43. Becker, F. et al. Chapter I: Definitions, epidemiology, clinical presentation and prognosis. Eur. J. Vasc. Endovasc. Surg. 42 (Suppl. 2), S4–S12 (2011).

    PubMed  Google Scholar 

  44. Boyko, E. J., Ahroni, J. H., Cohen, V., Nelson, K. M. & Heagerty, P. J. Prediction of diabetic foot ulcer occurrence using commonly available clinical information: the Seattle Diabetic Foot Study. Diabetes Care 29, 1202–1207 (2006).

    PubMed  Google Scholar 

  45. Game, F. L., Chipchase, S. Y., Hubbard, R., Burden, R. P. & Jeffcoate, W. J. Temporal association between the incidence of foot ulceration and the start of dialysis in diabetes mellitus. Nephrol. Dial. Transplant. 21, 3207–3210 (2006).

    PubMed  Google Scholar 

  46. Ndip, A. et al. Dialysis treatment is an independent risk factor for foot ulceration in patients with diabetes and stage 4 or 5 chronic kidney disease. Diabetes Care 33, 1811–1816 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ndip, A. et al. High levels of foot ulceration and amputation risk in a multiracial cohort of diabetic patients on dialysis therapy. Diabetes Care 33, 878–880 (2010).

    PubMed  PubMed Central  Google Scholar 

  48. Reiber, G. E. et al. Causal pathways for incident lower extremity ulcers in patients with diabetes from two settings. Diabetes Care 22, 157–162 (1999).

    CAS  PubMed  Google Scholar 

  49. Boulton, A. J. M. et al. Comprehensive foot examination and risk assessment: a report of the task force of the foot care interest group of the American Diabetes Association, with endorsement by the American Association of Clinical Endocrinologists. Diabetes Care 31, 1679–1685 (2008).

    PubMed  PubMed Central  Google Scholar 

  50. Krishnan, S., Nash, F., Baker, N., Fowler, D. & Rayman, G. Reduction in diabetic amputations over eleven years in a defined UK population: benefits of multi-disciplinary team work and continuous prospective audit. Diabetes Care 31, 99–101 (2008).

    PubMed  Google Scholar 

  51. Kuehn, B. M. Prompt response, multi-disciplinary care: key to reducing diabetic foot amputation. JAMA 308, 19–20 (2012).

    CAS  PubMed  Google Scholar 

  52. Cao, P. et al. Chapter II: Diagnostic methods. Eur. J. Vasc. Endovasc. Surg. 42 (Suppl. 2), S13–S32 (2011).

    PubMed  Google Scholar 

  53. Carter, S. A. & Tate, R. B. The relationship of the transcutaneous oxygen tension, pulse waves and systolic pressures to the risk for limb amputation in patients with peripheral arterial disease and skin ulcers or gangrene. Int. Angiol. 25, 67–72 (2006).

    CAS  PubMed  Google Scholar 

  54. Collins, R. et al. Duplex ultrasonography, magnetic resonance angiography, and computed tomography angiography for diagnosis and assessment of symptomatic, lower limb peripheral arterial disease: systematic review. BMJ 334, 1257 (2007).

    PubMed  PubMed Central  Google Scholar 

  55. Met, R., Bipat, S., Legemate, D. A., Reekers, J. A. & Koelemay, M. J. W. Diagnostic performance of computed tomography angiography in peripheral arterial disease: a systematic review and meta-analysis. JAMA 301, 415–424 (2009).

    CAS  PubMed  Google Scholar 

  56. Diehm, N. et al. Chapter III: Management of cardiovascular risk factors and medical therapy. Eur. J. Vasc. Endovasc. Surg. 42 (Suppl. 2), S33–S42 (2011).

    PubMed  Google Scholar 

  57. Ruffolo, A. A. J., Romano, M. & Ciapponi, A. Prostanoids for critical limb ischaemia. Cochrane Database of Systematic Reviews Issue 1. Art. No.: CD006544 http://dx.doi.org/10.1002/14651858.CD006544.pub2.

  58. Brock, F. E. et al. Iloprost in the treatment of ischemic tissue lesions in diabetics. Results of a placebo-controlled multicenter study with a stable prostacyclin derivative. Schweiz. Med. Wochenschr. 120, 1477–1482 (1990).

    CAS  PubMed  Google Scholar 

  59. Altstaedt, H. O. et al. Treatment of patients with peripheral arterial occlusive disease Fontaine stage IV with intravenous iloprost and PGE1: a randomized open controlled study. Prostaglandins Leukot. Essent. Fatty Acids 49, 573–578 (1993).

    CAS  PubMed  Google Scholar 

  60. Stiegler, H. et al. Placebo controlled, double-blind study of the effectiveness of i.v. prostaglandin E1 in diabetic patients with stage IV arterial occlusive disease [German]. Vasa. Suppl. 35, 164–166 (1992).

    CAS  PubMed  Google Scholar 

  61. Bakker, K. et al. Practical guidelines on the management and prevention of the diabetic foot. Diabetes Metab. Res. Rev. 28, 225–231 (2011).

    Google Scholar 

  62. Marston, W. A. et al. Natural history of limbs with arterial insufficiency and chronic ulceration treated without revascularization. J. Vasc. Surg. 44, 108–114 (2006).

    PubMed  Google Scholar 

  63. Lepäntalo, M. & Mätzke, S. Outcome of unreconstructed chronic critical leg ischaemia. Eur. J. Vasc. Endovasc. Surg. 11, 153–157 (1996).

    PubMed  Google Scholar 

  64. Benoit, E., O'Donnell, T. F., Kitsios, G. D. & Iafrati, M. D. Improved amputation-free survival in unreconstructable critical limb ischemia and its implications for clinical trial design and quality measurement. J. Vasc. Surg. 55, 781–789 (2012).

    PubMed  Google Scholar 

  65. Faglia, E. et al. Early and five-year amputation and survival rate of diabetic patients with critical limb ischemia: data of a cohort study of 564 patients. Eur. J. Vasc. Endovasc. Surg. 32, 484–490 (2006).

    CAS  PubMed  Google Scholar 

  66. Baldwin, Z. K. et al. Limb salvage after infrainguinal bypass graft failure. J. Vasc. Surg. 39, 951–957 (2004).

    PubMed  Google Scholar 

  67. Dick, F. et al. Surgical or endovascular revascularization in patients with critical limb ischemia: influence of diabetes mellitus on clinical outcome. J. Vasc. Surg. 45, 751–761 (2007).

    PubMed  Google Scholar 

  68. Kalish, J. & Hamdan, A. Management of diabetic foot problems. J. Vasc. Surg. 51, 476–486 (2010).

    PubMed  Google Scholar 

  69. Wu, R. et al. Percutaneous transluminal angioplasty versus primary stenting in infrapopliteal arterial disease: a meta-analysis of randomized trials. J. Vasc. Surg. 59, 1711–1720 (2014).

    PubMed  Google Scholar 

  70. Bekken, J. A., Jongsma, H., de Vries, J. P. & Fioole, B. Self-expanding stents and aortoiliac occlusive disease: a review of the literature. Med. Devices 7, 99–105 (2014).

    Google Scholar 

  71. Albers, M., Romiti, M., Brochado-Neto, F. C., De Luccia, N. & Pereira, C. A. B. Meta-analysis of popliteal-to-distal vein bypass grafts for critical ischemia. J. Vasc. Surg. 43, 498–503 (2006).

    PubMed  Google Scholar 

  72. Skrepnek, G. H., Armstrong, D. G. & Mills, J. L. Open bypass and endovascular procedures among diabetic foot ulcer cases in the United States from 2001 to 2010. J. Vasc. Surg. 60, 1255–1264 (2014).

    PubMed  Google Scholar 

  73. Adam, D. J. et al. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet 366, 1925–1934 (2005).

    CAS  PubMed  Google Scholar 

  74. Bosanquet, D. C., Glasbey, J. C., Williams, I. M. & Twine, C. P. Systematic review and meta-analysis of direct versus indirect angiosomal revascularisation of infrapopliteal arteries. Eur. J. Vasc. Endovasc. Surg. 48, 88–97 (2014).

    CAS  PubMed  Google Scholar 

  75. Iida, O. et al. Long-term results of direct and indirect endovascular revascularization based on the angiosome concept in patients with critical limb ischemia presenting with isolated below-the-knee lesions. J. Vasc. Surg. 55, 363–370 (2012).

    PubMed  Google Scholar 

  76. Söderström, M. et al. Angiosome-targeted infrapopliteal endovascular revascularization for treatment of diabetic foot ulcers. J. Vasc. Surg. 57, 427–435 (2013).

    PubMed  Google Scholar 

  77. Sumpio, B. E. et al. Clinical implications of the angiosome model in peripheral vascular disease. J. Vasc. Surg. 58, 814–826 (2013).

    PubMed  Google Scholar 

  78. Neville, R. F. & Sidawy, A. N. Surgical bypass: when is it best and do angiosomes play a role? Semin. Vasc. Surg. 25, 102–107 (2012).

    PubMed  Google Scholar 

  79. Hinchliffe, R. & Andros, G. A systematic review of the effectiveness of revascularization of the ulcerated foot in patients with diabetes and peripheral arterial disease. Diabetes Metab. Res. Rev. 28 (Suppl. 1), 179–217 (2012).

    PubMed  Google Scholar 

  80. Söderström, M., Arvela, E., Albäck, A., Aho, P. S. & Lepäntalo, M. Healing of ischaemic tissue lesions after infrainguinal bypass surgery for critical leg ischaemia. Eur. J. Vasc. Endovasc. Surg. 36, 90–95 (2008).

    PubMed  Google Scholar 

  81. University of Birmingham BASIL-2 Trial [online], (2015).

  82. Pitei, D. L., Foster, A. & Edmonds, M. The effect of regular callus removal on foot pressures. J. Foot Ankle Surg. 38, 251–255 (1999).

    CAS  PubMed  Google Scholar 

  83. Armstrong, D. G. et al. Evaluation of removable and irremovable cast walkers in the healing of diabetic foot wounds: a randomised controlled trial. Diabetes Care 28, 551–554 (2005).

    PubMed  Google Scholar 

  84. Bus, S. A., Haspels, R. & Busch-Westbroek, T. E. Evaluation and optimisation of therapeutic footwear for neuropathic diabetic foot patients using in-shoe plantar pressure analysis. Diabetes Care 34, 1595–1600 (2011).

    PubMed  PubMed Central  Google Scholar 

  85. Katz, I. A. et al. A randomised controlled trial of two irremovable off-loading devices in the management of plantar neuropathic diabetic foot ulcers. Diabetes Care 28, 555–559 (2005).

    PubMed  Google Scholar 

  86. Armstrong, D. G. et al. Activity patterns of patients with diabetic foot ulceration: patients with active ulceration may not adhere to standard pressure off-loading regimen. Diabetes Care 26, 2595–2597 (2003).

    PubMed  Google Scholar 

  87. Dumville, J. C., Deschpande, S., O'Meara, S. & Speak, K. Hydrocolloid dressings for healing diabetic foot ulcers. Cochrane Database of Systematic Reviews Issue 8. Art. No.: CD009099 http://dx.doi.org/10.1002/14651858.CD009099.pub3.

  88. Jude, E. B., Apelqvist, J., Spraul, M. & Martini, J. Silver dressing study group. Prospective randomised controlled study of Hydrofiber dressing containing ionic silver or calcium alginate dressing in non-ischameic diabetic foot ulcers. Diabetic Med. 24, 280–288 (2007).

    CAS  PubMed  Google Scholar 

  89. Jeffcoate, W. J. et al. Randomised controlled trial of the use of three dressing preparations in the management of chronic ulceration of the foot in diabetes. Health Technol. Assess. 13, 1–86 (2009).

    CAS  PubMed  Google Scholar 

  90. Saxena, V. et al. Vacuum assisted closure: microdeformations of wound and cell proliferation. Plast. Reconstr. Surg. 114, 1086–1098 (2004).

    PubMed  Google Scholar 

  91. Armstrong, D. G. & Lavery, L. A. Negative pressure wound therapy after partial diabetic foot amputation: a multicentre, randomised controlled trial. Lancet 366, 1704–1710 (2005).

    PubMed  Google Scholar 

  92. Krug, E. et al. Evidence-based recommendations for the use of negative pressure wound therapy in traumatic wounds and reconstructive surgery: steps towards an international consensus. Injury 42 (Suppl. 1), S1–S12 (2011).

    PubMed  Google Scholar 

  93. Werner, S. & Grose, R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 83, 835–870 (2003).

    CAS  PubMed  Google Scholar 

  94. Henshaw, F. R., Boughton, P., Lo, L., McLennan, S. V. & Twigg, S. M. Topically applied connective tissue growth factor/CCN2 improves diabetic preclinical cutaneous wound healing: potential role for CTGF in human diabetic foot ulcer healing. J. Diabetes Res. http://dx.doi.org/10.1155/2015/236238.

  95. Pappanas, N. & Maltosze, E. Becaplermin is form recombinant platelet-derived growth factor available as an ointment and has shown some benefit. Clin.Interv.Aging 3, 233–240 (2008).

    Google Scholar 

  96. Dignani, M. C. et al. Treatment of neutropenia-related fungal infections with granulocyte colony-stimulating factor-elicited white blood cell transfusions: a pilot study. Leukemia 11, 1621–1630 (1997).

    CAS  PubMed  Google Scholar 

  97. Cruciani, M., Lipsky, B. A., Mengoli, C. & de Lalla, F. Are granulocyte colony-stimulating factors beneficial in treating diabetic foot infections? A meta-analysis. Diabetes Care 28, 454–460 (2005).

    CAS  PubMed  Google Scholar 

  98. Choi, J. S., Kim, J. D., Yoon, H. S. & Cho, Y. W. Full-thickness skin wound healing using human placenta-derived extracellular matrix containing bioactive molecules. Tissue Eng. Part A 19, 329–339 (2013).

    CAS  PubMed  Google Scholar 

  99. Antoline, C., Kramer, A. & Roth, M. Implementation and methodology of a multidisciplinary disease-state-management program for comprehensive diabetes care. Permanenta J. 15, 43–48 (2011).

    Google Scholar 

  100. Krishnan, S., Nash, F., Baker, N., Fowler, D. & Rayman, G. Reduction in diabetic amputations over eleven years in a defined UK population: benefits of multi-disciplinary team work and continuous prospective audit. Diabetes Care 31, 99–101 (2008).

    PubMed  Google Scholar 

  101. Rayman, G. et al. The Ipswich Touch Test: a simple and novel method to identify inpatients with diabetes at risk of foot ulceration. Diabetes Care 34, 1517–1518 (2011).

    PubMed  PubMed Central  Google Scholar 

  102. Bowling, F. L. et al. A pocket-sized disposable device for testing the integrity of sensation in the outpatient setting. Diabetic Med. 29, 1550–1552 (2012).

    CAS  PubMed  Google Scholar 

  103. Papanas, N. et al. Neuropad: A simple new non-invasive sweat indicator test for the diagnosis of diabetic neuropathy. Diabetic Med. 30, 525–534 (2013).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching the data for the article, discussion of content, writing the article and reviewing and/or editing the manuscript.

Corresponding author

Correspondence to Frank L. Bowling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowling, F., Rashid, S. & Boulton, A. Preventing and treating foot complications associated with diabetes mellitus. Nat Rev Endocrinol 11, 606–616 (2015). https://doi.org/10.1038/nrendo.2015.130

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing