Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Hyperinsulinaemic androgen excess in adolescent girls

A Correction to this article was published on 29 July 2014

This article has been updated

Abstract

Hyperinsulinaemic androgen excess is the most common cause of hirsutism, acne and menstrual irregularity in adolescent girls. Here, we propose that the disorder frequently originates from an absolute or relative excess of lipids in adipose tissue, and from associated changes in insulin sensitivity, gonadotropin secretion and ovarian androgen release. Girls from populations with genotypes attuned to nutritionally harsh conditions seem to be particularly vulnerable to the development of hyperinsulinaemic androgen excess in today's obesogenic environment. We propose that hirsutism, hyperandrogenaemia and menstrual irregularity (≥2 years after menarche) is used as a diagnostic triad for the disorder. No pharmacological therapy has been approved for girls with androgen excess; however, lifestyle intervention is essential to reduce adiposity. In girls without obesity who are not sexually active, insulin sensitization has more broadly normalizing effects than estradiol–progestogen combinations. The early recognition of girls at risk of developing hyperinsulinaemic androgen excess might enable prevention in childhood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distributions of BMI and the risk of anovulatory subfertility.

Similar content being viewed by others

Change history

  • 29 July 2014

    In the version of this article originally published online and in print, there was an error in Figure 1. The dotted blue line in the bottom panel should have extended down to the axis. This has now been corrected in the HTML and PDF versions of the article.

References

  1. Burghen, G. A., Givens, J. R. & Kitabchi, A. E. Correlation of hyperandrogenism with hyperinsulinism in polycystic ovarian disease. J. Clin. Endocrinol. Metab. 50, 113–116 (1980).

    Article  CAS  PubMed  Google Scholar 

  2. Chang, R. J., Nakamura, R. M., Judd, H. L. & Kaplan, S. A. Insulin resistance in nonobese patients with polycystic ovarian disease. J. Clin. Endocrinol. Metab. 57, 356–359 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Barbieri, R. L., Smith, S. & Ryan, K. J. The role of hyperinsulinemia in the pathogenesis of ovarian hyperandrogenism. Fertil. Steril. 50, 197–212 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Dunaif, A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr. Rev. 18, 774–800 (1997).

    CAS  PubMed  Google Scholar 

  5. de Zegher, F., López-Bermejo, A. & Ibáñez, L. Adipose tissue expandability and the early origins of PCOS. Trends Endocrinol. Metab. 20, 418–423 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. National Institutes of Health. Evidence-based methodology workshop on polycystic ovary syndrome, December 3–5, 2012, Final report [online].

  7. Zawadzki, J. K. & Dunaif, A. in Polycystic Ovary Syndrome (eds Dunaif, A. et al.) 377–384 (Blackwell Scientific publications, 1992).

    Google Scholar 

  8. Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 19, 41–47 (2004).

  9. Azziz, R. et al. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil. Steril. 91, 456–488 (2009).

    Article  PubMed  Google Scholar 

  10. Vilmann, L. S., Thisted, E., Baker, J. L. & Holm, J. C. Development of obesity and polycystic ovary syndrome in adolescents. Horm. Res. Paediatr. 78, 269–278 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Rosenfield, R. L. Clinical review: Adolescent anovulation: maturational mechanisms and implications. J. Clin. Endocrinol. Metab. 98, 3572–3583 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Christensen, S. B. et al. Prevalence of polycystic ovary syndrome in adolescents. Fertil. Steril. 100, 470–477 (2013).

    Article  PubMed  Google Scholar 

  13. Legro, R. et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 98, 4565–4592 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Li, L. et al. Clinical and metabolic features of polycystic ovary syndrome among Chinese adolescents. J. Pediatr. Adolesc. Gynecol. 25, 390–395 (2012).

    Article  PubMed  Google Scholar 

  15. Nidhi, R., Padmalatha, V., Nagarathna, R. & Amritanshu, R. Prevalence of polycystic ovarian syndrome in Indian adolescents. J. Pediatr. Adolesc. Gynecol. 24, 223–227 (2011).

    Article  PubMed  Google Scholar 

  16. Corbett, S. J., McMichael, A. J. & Prentice, A. M. Type 2 diabetes, cardiovascular disease, and the evolutionary paradox of the polycystic ovary syndrome: a fertility first hypothesis. Am. J. Hum. Biol. 21, 587–598 (2009).

    Article  PubMed  Google Scholar 

  17. Corbett, S. & Morin-Papunen, L. The polycystic ovary syndrome and recent human evolution. Mol. Cell. Endocrinol. 373, 39–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Rich-Edwards, J. W. et al. Physical activity, body mass index, and ovulatory disorder infertility. Epidemiology 13, 184–190 (2002).

    Article  PubMed  Google Scholar 

  19. Fogel, R. W. The escape from hunger and premature death: Europe, America and the third world: 1700–2100 (Cambridge University Press, 2004).

  20. Schmidhuber, J. & Shetty, P. Nutrition transition, obesity and noncommunicable diseases: drivers, outlook and concerns. SCN News 29, 13–19 (2004).

    Google Scholar 

  21. Bonhommeau, S. et al. Eating up the world's food web and the human trophic level. Proc. Natl Acad. Sci. USA 110, 20617–20620 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ley, S. H. et al. Associations between red meat intake and biomarkers of inflammation and glucose metabolism in women. Am. J. Clin. Nutr. 99, 352–360 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Sniderman, A. D., Bhopal, R., Prabhakaran, D., Sarrafzadegan, N. & Tchernof, A. Why might South Asians be so susceptible to central obesity and its atherogenic consequences? The adipose tissue overflow hypothesis. Int. J. Epidemiol. 36, 220–225 (2007).

    Article  PubMed  Google Scholar 

  24. Zhao, Y. & Qiao, J. Ethnic differences in the phenotypic expression of polycystic ovary syndrome. Steroids 78, 755–760 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Ibáñez, L., Potau, N., Francois, I. & de Zegher, F. Precocious pubarche, hyperinsulinism and ovarian hyperandrogenism in girls: relation to reduced fetal growth. J. Clin. Endocrinol. Metab. 83, 3558–3662 (1998).

    Article  PubMed  Google Scholar 

  26. Wells, J. C. Ethnic variability in adiposity, thrifty phenotypes and cardiometabolic risk: addressing the full range of ethnicity, including those of mixed ethnicity. Obes. Rev. 13 (Suppl. 2), 14–29 (2012).

    Article  PubMed  Google Scholar 

  27. de Zegher, F. et al. Abundance of circulating preadipocyte factor 1 in early life. Diabetes Care 35, 848–849 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sebastiani, G. et al. Circulating follistatin in the human foetus at term birth. Pediatr. Obes. 7, 39–43 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. UNICEF & WHO. Low birthweight: country, regional and global estimates [online], (2004).

  30. Dunger, D. B., Ahmed, M. L. & Ong, K. K. Effects of obesity on growth and puberty. Best Pract. Res. Clin. Endocrinol. Metab. 19, 375–390 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Williams, R. M., Ong, K. K. & Dunger, D. B. Polycystic ovarian syndrome during puberty and adolescence. Mol. Cell. Endocrinol. 373, 61–67 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Ong, K. K. et al. Opposing influences of prenatal and postnatal weight gain on adrenarche in normal boys and girls. J. Clin. Endocrinol. Metab. 89, 2647–2651 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Ibáñez, L., Ong, K., Dunger, D. B. & de Zegher, F. Early development of adiposity and insulin resistance after catch-up weight gain in small-for-gestational-age children. J. Clin. Endocrinol. Metab. 91, 2153–2158 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Ong, K. K. et al. Infancy weight gain predicts childhood body fat and age at menarche in girls. J. Clin. Endocrinol. Metab. 94, 1527–1532 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Rosenfield, R. L. Clinical review: Identifying children at risk for polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 92, 787–796 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Ibáñez, L., López-Bermejo, A., Díaz, M., Suárez, L. & de Zegher, F. Low-birth weight children develop lower sex hormone binding globulin and higher dehydroepiandrosterone sulfate levels and aggravate their visceral adiposity and hypoadiponectinemia between six and eight years of age. J. Clin. Endocrinol. Metab. 94, 3696–3699 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Steckler, T., Wang, J., Bartol, F. F., Roy, S. K. & Padmanabhan, V. Fetal programming: prenatal testosterone treatment causes intrauterine growth retardation, reduces ovarian reserve and increases ovarian follicular recruitment. Endocrinology 146, 3185–3193 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Steckler, T. L., Herkimer, C., Dumesic, D. A. & Padmanabhan, V. Developmental programming: excess weight gain amplifies the effects of prenatal testosterone excess on reproductive cyclicity—implication for polycystic ovary syndrome. Endocrinology 150, 1456–1465 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Chazenbalk, G. et al. Androgens inhibit adipogenesis during human adipose stem cell commitment to preadipocyte formation. Steroids 78, 920–926 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Abbott, D. H. & Bacha, F. Ontogeny of polycystic ovary syndrome and insulin resistance in utero and early childhood. Fertil. Steril. 100, 2–11 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hickey, M. et al. The relationship between maternal and umbilical cord androgen levels and ovarian function in adolescence: a prospective cohort study. J. Clin. Endocrinol. Metab. 94, 3714–3720 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. de Zegher, F. & Ibáñez, L. Early origins of polycystic ovary syndrome: hypotheses may change without notice. J. Clin. Endocrinol. Metab. 94, 3682–3685 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Ferrante, A. W. Jr. Macrophages, fat, and the emergence of immunometabolism. J. Clin. Invest. 123, 4992–4993 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20–44 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Nightingale, C. M. et al. Influence of adiposity on insulin resistance and glycemia markers among U.K. children of South Asian, black African-Caribbean, and white European origin: child heart and health study in England. Diabetes Care 36, 1712–1719 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Apter, D., Bützow, T., Laughlin, G. A. & Yen, S. S. Metabolic features of polycystic ovary syndrome are found in adolescent girls with hyperandrogenism. J. Clin. Endocrinol. Metab. 80, 2966–2973 (1995).

    CAS  PubMed  Google Scholar 

  47. Lewy, V. D., Danadian, K., Witchel, S. F. & Arslanian, S. Early metabolic abnormalities in adolescent girls with polycystic ovarian syndrome. J. Pediatr. 138, 38–44 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Flannery, C. A. et al. Polycystic ovary syndrome in adolescence: impaired glucose tolerance occurs across the spectrum of BMI. Pediatr. Diabetes 14, 42–49 (2013).

    Article  PubMed  Google Scholar 

  49. Wu, S., Divall, S., Wondisford, F. & Wolfe, A. Reproductive tissues maintain insulin sensitivity in diet-induced obesity. Diabetes 61, 114–123 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. McCartney, C. R. et al. Maturation of luteinizing hormone (gonadotropin-releasing hormone) secretion across puberty: evidence for altered regulation in obese peripubertal girls. J. Clin. Endocrinol. Metab. 94, 56–66 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. McCartney, C. R. et al. Obesity and sex steroid changes across puberty: evidence for marked hyperandrogenemia in pre- and early pubertal obese girls. J. Clin. Endocrinol. Metab. 92, 430–436 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Hernandez, E. R., Resnick, C. E., Holtzclaw, W. D., Payne, D. W. & Adashi, E. Y. Insulin as a regulator of androgen biosynthesis by cultured rat ovarian cells: cellular mechanism(s) underlying physiological and pharmacological hormonal actions. Endocrinology 122, 2034–2043 (1988).

    Article  CAS  PubMed  Google Scholar 

  53. Nestler, J. E. et al. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J. Clin. Endocrinol. Metab. 83, 2001–2005 (1998).

    CAS  PubMed  Google Scholar 

  54. Brothers, K. J. et al. Rescue of obesity-induced infertility in female mice due to a pituitary-specific knockout of the insulin receptor. Cell Metab. 12, 295–305 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wu, S. et al. Obesity induced infertility and hyperandrogenism are corrected by deletion of the insulin receptor in the ovarian theca cell. Diabetes 63, 1270–1282 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Yildiz, B. O., Yarali, H., Oguz, H. & Bayraktar, M. Glucose intolerance, insulin resistance, and hyperandrogenemia in first degree relatives of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 88, 2031–2036 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Sam, S., Legro, R. S., Essah, P. A., Apridonidze, T. & Dunaif, A. Evidence for metabolic and reproductive phenotypes in mothers of women with polycystic ovary syndrome. Proc. Natl Acad. Sci. USA 103, 7030–7035 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ibáñez, L., Castell, C., Tresserras, R. & Potau, N. Increased prevalence of type 2 diabetes mellitus and impaired glucose tolerance in first-degree relatives of girls with a history of precocious pubarche. Clin. Endocrinol. (Oxf.) 51, 395–401 (1999).

    Article  Google Scholar 

  59. Barber, T. M & Franks, S. Genetics of polycystic ovary syndrome. Front. Horm. Res. 40, 28–39 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Shi, Y. et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat. Genet. 44, 1020–1025 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Chen, Z. J. et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat. Genet. 43, 55–59 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Goodarzi, M. O. et al. Replication of association of DENND1A and THADA variants with polycystic ovary syndrome in European cohorts. J. Med. Genet. 49, 90–95 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Aittomäki, K. et al. Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell 82, 959–968 (1995).

    Article  PubMed  Google Scholar 

  64. De Leener, A. et al. Presence and absence of follicle-stimulating hormone receptor mutations provide some insights into spontaneous ovarian hyperstimulation syndrome physiopathology. J. Clin. Endocrinol. Metab. 91, 555–562 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Almahbobi, G. et al. Functional integrity of granulosa cells from polycystic ovaries. Clin. Endocrinol. (Oxf.) 44, 571–580 (1996).

    Article  CAS  Google Scholar 

  66. von Schnurbein, J. et al. Leptin substitution results in the induction of menstrual cycles in an adolescent with leptin deficiency and hypogonadotropic hypogonadism. Horm. Res. Paediatr. 77, 127–133 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Sen, A. et al. Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Proc. Natl Acad. Sci. USA 111, 3008–3013 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Semple, R. K., Savage, D. B., Cochran, E. K., Gorden, P. & O'Rahilly, S. Genetic syndromes of severe insulin resistance. Endocr. Rev. 32, 498–514 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Ibáñez, L. et al. Androgen receptor gene CAG repeat polymorphism in the development of ovarian hyperandrogenism. J. Clin. Endocrinol. Metab. 88, 3333–3338 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, T. et al. Association of the CAG repeat polymorphisms in androgen receptor gene with polycystic ovary syndrome: a systematic review and meta-analysis. Gene 524, 161–167 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Diamanti-Kandarakis, E. et al. A survey of the polycystic ovary syndrome in the Greek island of Lesbos: hormonal and metabolic profile. J. Clin. Endocrinol. Metab. 84, 4006–4011 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Azziz, R. & Kashar-Miller, M. D. Family history as a risk factor for the polycystic ovary syndrome. J. Pediatr. Endocrinol. Metab. 13 (Suppl. 5), 1303–1306 (2000).

    PubMed  Google Scholar 

  73. Gambineri, A. et al. Glucose intolerance in a large cohort of Mediterranean women with polycystic ovary syndrome: phenotype and associated factors. Diabetes 53, 2353–2358 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. American Academy of Pediatrics Committee on Adolescence; American College of Obstetricians and Gynecologists Committee on Adolescent Health Care, Diaz, A., Laufer, M. R. & Breech, L. L. Menstruation in girls and adolescents: using the menstrual cycle as a vital sign. Pediatrics 118, 2245–2250 (2006).

    Article  PubMed  Google Scholar 

  75. Metcalf, M. G., Skidmore, D. S., Lowry, G. F. & Mackenzie, J. A. Incidence of ovulation in the years after the menarche. J. Endocrinol. 97, 213–219 (1983).

    Article  CAS  PubMed  Google Scholar 

  76. van Hooff, M. H. et al. Predictive value of menstrual cycle pattern, body mass index, hormone levels and polycystic ovaries at age 15 years for oligo-amenorrhoea at age 18 years. Hum. Reprod. 19, 383–392 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Hickey, M. et al. Clinical, ultrasound and biochemical features of polycystic ovary syndrome in adolescents: implications for diagnosis. Hum. Reprod. 26, 1469–1477 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Gambineri, A. et al. Prevalence of hyperandrogenic states in late adolescent and young women: epidemiological survey on Italian high-school students. J. Clin. Endocrinol. Metab. 98, 1641–1650 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Lim, S. S., Norman, R. J., Davies, M. J. & Moran, L. J. The effect of obesity on polycystic ovary syndrome: a systematic review and meta-analysis. Obes. Rev. 14, 95–109 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Merino, P. M., Codner, E. & Cassorla, F. A rational approach to the diagnosis of polycystic ovarian syndrome during adolescence. Arq. Bras. Endocrinol. Metabol. 55, 590–598 (2011).

    Article  PubMed  Google Scholar 

  81. Ferriman, D. & Gallwey, J. D. Clinical assessment of body hair growth in women. J. Clin. Endocrinol. Metab. 21, 1440–1447 (1961).

    Article  CAS  PubMed  Google Scholar 

  82. DeUgarte, C. M., Woods, K. S., Bartolucci, A. A. & Azziz, R. Degree of facial and body terminal hair growth in unselected black and white women: toward a populational definition of hirsutism. J. Clin. Endocrinol. Metab. 91, 1345–1350 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Zhao, X. et al. Defining hirsutism in Chinese women: a cross-sectional study. Fertil. Steril. 96, 792–796 (2011).

    Article  PubMed  Google Scholar 

  84. Hawryluk, E. B. & English, J. C. 3rd. Female adolescent hair disorders. J. Pediatr. Adolesc. Gynecol. 22, 271–281 (2009).

    Article  PubMed  Google Scholar 

  85. Roe, A. H, Prochaska, E., Smith, M., Sammel, M. & Dokras, A. Using the androgen excess–PCOS society criteria to diagnose polycystic ovary syndrome and the risk of metabolic syndrome in adolescents. J. Pediatr. 162, 937–941 (2013).

    Article  PubMed  Google Scholar 

  86. Welt, C. K. & Carmina, E. Lifecycle of polycystic ovary syndrome (PCOS): from in utero to menopause. J. Clin. Endocrinol. Metab. 98, 4629–4638 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Carmina, E., Oberfield, S. E. & Lobo, R. A. The diagnosis of polycystic ovary syndrome in adolescents. Am. J. Obstet. Gynecol. 203, 201.e1–201.e5 (2010).

    Article  Google Scholar 

  88. Diamanti-Kandarakis, E. PCOS in adolescents. Best Pract. Res. Clin. Obstet. Gynaecol. 24, 173–183 (2010).

    Article  PubMed  Google Scholar 

  89. Nicandri, K. F. & Hoeger, K. Diagnosis and treatment of polycystic ovary syndrome in adolescents. Curr. Opin. Endocrinol. Diabetes Obes. 19, 497–504 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Fanelli, F. et al. Androgen profiling by liquid chromatography–tandem mass spectrometry (LC-MS/MS) in healthy normal-weight ovulatory and anovulatory late adolescent and young women. J. Clin. Endocrinol. Metab. 98, 3058–3067 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Ibáñez, L., Potau, N., Marcos, M. V. & de Zegher, F. Adrenal hyperandrogenism in adolescent girls with a history of low birthweight and precocious pubarche. Clin. Endocrinol. (Oxf.) 53, 523–527 (2000).

    Article  Google Scholar 

  92. Armengaud, J. B. et al. Precocious pubarche: distinguishing late-onset congenital adrenal hyperplasia from premature adrenarche. J. Clin. Endocrinol. Metab. 94, 2835–2840 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Park, A. S. et al. Serum anti-Mullerian hormone concentrations are elevated in oligomenorrheic girls without evidence of hyperandrogenism. J. Clin. Endocrinol. Metab. 95, 1786–1792 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985).

    Article  CAS  PubMed  Google Scholar 

  95. Levy-Marchal, C. et al. Insulin resistance in children: consensus, perspective, and future directions. J. Clin. Endocrinol. Metab. 95, 5189–5198 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Venturoli, S. et al. Longitudinal change of sonographic ovarian aspects and endocrine parameters in irregular cycles of adolescence. Pediatr. Res. 38, 974–980 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Mortensen, M., Rosenfield, R. L. & Littlejohn, E. Functional significance of polycystic-size ovaries in healthy adolescents. J. Clin. Endocrinol. Metab. 91, 3786–3790 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Balen, A. H., Laven, J. S., Tan, S. L. & Dewailly, D. Ultrasound assessment of the polycystic ovary: international consensus definitions. Hum. Reprod. Update 9, 505–514 (2003).

    Article  PubMed  Google Scholar 

  99. Ibáñez, L. et al. Polycystic ovaries in nonobese adolescents and young women with ovarian androgen excess: relation to prenatal growth. J. Clin. Endocrinol. Metab. 93, 196–199 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Dewailly, D. et al. Definition and significance of polycystic ovarian morphology: a task force report from the Androgen Excess and Polycystic Ovary Syndrome Society. Hum. Reprod. Update http://dx.doi.org/10.1093/humupd/dmt061.

  101. Sir-Petermann, T. et al. Metabolic and reproductive features before and during puberty in daughters of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 94, 1923–1930 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Ibáñez, L. et al. Insulin sensitisation for girls with precocious pubarche and with risk for polycystic ovary syndrome: effects of prepubertal initiation and postpubertal discontinuation of metformin treatment. J. Clin. Endocrinol. Metab. 89, 4331–4337 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Ibáñez, L. et al. Metformin treatment to prevent early puberty in girls with precocious pubarche. J. Clin. Endocrinol. Metab. 91, 2888–2891 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Ibáñez, L., López-Bermejo, A., Diaz, M., Marcos, M. V. & de Zegher, F. Metformin treatment for four years to reduce total and visceral fat in low birth weight girls with precocious pubarche. J. Clin. Endocrinol. Metab. 93, 1841–1845 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Ibáñez, L., López-Bermejo, A., Diaz, M., Marcos, M. V. & de Zegher, F. Pubertal metformin therapy to reduce total, visceral and hepatic adiposity. J. Pediatr. 156, 98.e1–102.e1 (2010).

    Google Scholar 

  106. Ibáñez, L., López-Bermejo, A., Diaz, M., Marcos, M. V. & de Zegher, F. Early metformin therapy to delay menarche and augment height in girls with precocious pubarche. Fertil. Steril. 95, 727–730 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Ibáñez, L., López-Bermejo, A., Díaz, M., Marcos, M. V. & de Zegher, F. Early metformin therapy (age 8–12 years) in girls with precocious pubarche to reduce hirsutism, androgen excess, and oligomenorrhea in adolescence. J. Clin. Endocrinol. Metab. 96, E1262–E1267 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. de Zegher, F., López-Bermejo, A. & Ibáñez, L. Early development and prevention of PCOS [abstract WG4–99, online]. Presented at the 9th Joint Meeting of Paediatric Endocrinology.

  109. Centers for Disease Control and Prevention. Sexual experience and contraceptive use among female teens—United States, 1995, 2002, and 2006–2010 Centers for Disease Control and Prevention (CDC). MMWR Morb. Mortal. Wkly Rep. 61, 297–301 (2012).

  110. Catteau-Jonard, S., Cortet-Rudelli, C., Richard-Proust, C. & Dewailly, D. Hyperandrogenism in adolescent girls. Endocr. Dev. 22, 181–193 (2012).

    Article  PubMed  Google Scholar 

  111. Moran, L. J., Hutchison, S. K., Norman, R. J. & Teede, H. J. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database of Systematic Reviews, Issue 7. Art. No.: CD007506. http://dx.doi.org/10.1002/14651858.CD007506.pub3.

  112. Lass, N., Kleber, M., Winkel, K., Wunsch, R. & Reinehr, T. Effect of lifestyle intervention on features of polycystic ovarian syndrome, metabolic syndrome, and intima-media thickness in obese adolescent girls. J. Clin. Endocrinol. Metab. 96, 3533–3540 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Hoeger, K. et al. The impact of metformin, oral contraceptives, and lifestyle modification on polycystic ovary syndrome in obese adolescent women in two randomized, placebo-controlled clinical trials. J. Clin. Endocrinol. Metab. 93, 4299–4306 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Bhattacharya, S. M. & Jha, A. Comparative study of the therapeutic effects of oral contraceptive pills containing desogestrel, cyproterone acetate, and drospirenone in patients with polycystic ovary syndrome. Fertil. Steril. 98, 1053–1059 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. De Leo, V. et al. Effect of oral contraceptives on markers of hyperandrogenism and SHBG in women with polycystic ovary syndrome. Contraception 82, 276–280 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Mastorakos, G., Koliopoulos, C., Deligeoroglou, E., Diamanti-Kandarakis, E. & Creatsas, G. Effects of two forms of combined oral contraceptives on carbohydrate metabolism in adolescents with polycystic ovary syndrome. Fertil. Steril. 85, 420–427 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Cinar, N., Harmanci, A., Bayraktar, M. & Yildiz, O. Ethynil-estradiol-drospirenone vs ethynil-estradiol-drospirenone plus metformin in the treatment of lean women with polycystic ovary syndrome. Clin. Endocrinol. (Oxf.) 78, 379–384 (2013).

    Article  CAS  Google Scholar 

  118. Mastorakos, G., Koliopoulos, C. & Creatsas, G. Androgen and lipid profiles in adolescents with polycystic ovary syndrome who were treated with two forms of combined oral contraceptives. Fertil. Steril. 77, 919–927 (2002).

    Article  PubMed  Google Scholar 

  119. Jones, D. R., Schmidt, R. J., Pickard, R. T., Foxworthy, P. S. & Eacho, P. I. Estrogen receptor-mediated repression of human hepatic lipase gene transcription. J. Lipid Res. 43, 383–391 (2002).

    CAS  PubMed  Google Scholar 

  120. Ibáñez, L. et al. Oral contraception vs insulin sensitisation for 18 months in nonobese adolescents with androgen excess: post-treatment differences in C-reactive protein, intima-media thickness, visceral adiposity, insulin sensitivity, and menstrual regularity. J. Clin. Endocrinol. Metab. 98, E902–E907 (2013).

    Article  PubMed  Google Scholar 

  121. Tfayli, H., Ulnach, J. W., Lee, S., Sutton-Tyrrell, K. & Arslanian, S. Drospirenone/ethinyl estradiol versus rosiglitazone treatment in overweight adolescents with polycystic ovary syndrome: comparison of metabolic, hormonal, and cardiovascular risk factors. J. Clin. Endocrinol. Metab. 96, 1311–1319 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Jourdan, C. et al. Normative values for intima-media thickness and distensibility of large arteries in healthy adolescents. J. Hypertens. 23, 1707–1715 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Gode, F. et al. Alteration of cardiovascular risk parameters in women with polycystic ovary syndrome who were prescribed to ethynil estradiol-cyproterone acetate. Arch. Gynecol. Obstet. 284, 923–929 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Ibáñez, L. et al. Treatment of androgen excess in adolescent girls: ethinylestradiol-cyproteroneacetate versus low-dose pioglitazone-flutamide-metformin. J. Clin. Endocrinol. Metab. 96, 3361–3366 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Bonny, A. E., Secic, M. & Cromer, B. A. A longitudinal comparison of body composition changes in adolescent girls receiving hormonal contraception. J. Adolesc. Health 45, 423–425 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Berenson, A. B. & Rahman, M. Changes in weight, total fat, percent body fat, and central-to-peripheral fat ratio associated with injectable and oral contraceptive use. Am. J. Obstet. Gynecol. 200, 329.e1–329.e8 (2009).

    Article  CAS  Google Scholar 

  127. Ibáñez, L. & de Zegher, F. Ethinylestradiol-drospirenone, flutamide-metformin, or both for adolescents and women with hyperinsulinemic hyperandrogenism: opposite effects on adipocytokines and body adiposity. J. Clin. Endocrinol. Metab. 89, 1592–1597 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Aydin, K., Cinar, N., Aksoy, D. Y., Bozdag, G. & Yildiz, B. O. Body composition in lean women with polycystic ovary syndrome: effect of ethinyl estradiol and drospirenone combination. Contraception 87, 358–362 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Ibáñez, L., Díaz, M., López-Bermejo, A. & de Zegher, F. Divergent effects of ethinylestradiol-drospirenone and flutamide-metformin on follistatin in adolescents and women with hyperinsulinemic androgen excess. Gynecol. Endocrinol. 27, 197–198 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Trenor, C. C. 3rd et al. Hormonal contraception and thrombotic risk: a multidisciplinary approach. Pediatrics 127, 347–357 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Lidegaard, Ø., Nielsen, L. H., Skovlund, C. W., Skjeldestad, F. E. & Løkkegaard, E. Risk of venous thromboembolism from use of oral contraceptives containing different progestogens and oestrogen doses: Danish cohort study, 2001–9. BMJ 343, d6423 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Raps, M. et al. Sex hormone-binding globulin as a marker for the thrombotic risk of hormonal contraceptives. J. Thromb. Haemost. 10, 992–997 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Okoroh, E. M., Hooper, W. C., Atrash, H. K., Yusuf, H. R. & Boulet, S. L. Is polycystic ovary syndrome another risk factor for venous thromboembolism? United States, 2003–2008. Am. J. Obstet. Gynecol. 207, 377.e1–377.e8 (2012).

    Article  Google Scholar 

  134. Bird, S. T., Hartzema, A. G., Brophy, J. M., Etminan, M. & Delaney, J. A. Risk of venous thromboembolism in women with polycystic ovary syndrome: a population-based matched cohort analysis. CMAJ 185, E115–E120 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Sidney, S. et al. Recent combined hormonal contraceptives (CHCs) and the risk of thromboembolism and other cardiovascular events in new users. Contraception 87, 93–100 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Nestler, J. E. Metformin for the treatment of the polycystic ovary syndrome. N. Engl. J. Med. 358, 47–54 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Palomba, S., Falbo, A., Zullo, F. & Orio, F. Jr. Evidence-based and potential benefits of metformin in the polycystic ovary syndrome: a comprehensive review. Endocr. Rev. 30, 1–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Ibáñez, L., Valls, C., Potau, N., Marcos, M. V. & de Zegher, F. Sensitization to insulin in adolescent girls to normalize hirsutism, hyperandrogenism, oligomenorrhea, dyslipidemia and hyperinsulinism after precocious pubarche. J. Clin. Endocrinol. Metab. 85, 3526–3530 (2000).

    PubMed  Google Scholar 

  139. Ibáñez, L. et al. Sensitization to insulin induces ovulation in nonobese adolescents with anovulatory hyperandrogenism. J. Clin. Endocrinol. Metab. 86, 3595–3598 (2001).

    Article  PubMed  Google Scholar 

  140. Ibáñez, L. et al. Additive effects of insulin-sensitizing and anti-androgen treatment in young, non-obese women with hyperinsulinism, hyperandrogenism, dyslipidemia, and anovulation. J. Clin. Endocrinol. Metab. 87, 2870–2874 (2002).

    Article  PubMed  Google Scholar 

  141. Ibáñez, L., Jaramillo, A. M., Ferrer, A. & de Zegher, F. High neutrophil count in girls and women with hyperinsulinaemic hyperandrogenism: normalization with metformin and flutamide overcomes the aggravation by oral contraception. Hum. Reprod. 20, 2457–2462 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Díaz, M. et al. Responsiveness to metformin in girls with androgen excess: collective influence of genetic polymorphisms. Fertil. Steril. 96, 208.e2–213.e2 (2011).

    Article  CAS  Google Scholar 

  143. Swiglo, B. A. et al. Clinical review: Antiandrogens for the treatment of hirsutism: a systematic review and metaanalyses of randomized controlled trials. J. Clin. Endocrinol. Metab. 93, 1153–1160 (2008).

    Article  PubMed  Google Scholar 

  144. Simard, J., Luthy, I., Guay, J., Bélanger, A. & Labrie, F. Characteristics of interaction of the antiandrogen flutamide with the androgen receptor in various target tissues. Mol. Cell. Endocrinol. 44, 261–270 (1986).

    Article  CAS  PubMed  Google Scholar 

  145. Ibáñez, L., Potau, N., Marcos, M. V. & de Zegher, F. Treatment of hirsutism, hyperandrogenism, oligomenorrhea, dyslipidemia and hyperinsulinism in nonobese, adolescent girls: effect of flutamide. J. Clin. Endocrinol. Metab. 85, 3251–3255 (2000).

    PubMed  Google Scholar 

  146. Azziz, R., Carmina, E. & Sawaya, M. E. Idiopathic hirsutism. Endocr. Rev. 21, 347–362 (2000).

    CAS  PubMed  Google Scholar 

  147. de Zegher, F. & Ibáñez, L. Therapy: Low-dose flutamide for hirsutism: into the limelight, at last. Nat. Rev. Endocrinol. 6, 421–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Ganie, M. A. et al. Comparison of efficacy of spironolactone with metformin in the management of polycystic ovary syndrome: an open-labeled study. J. Clin. Endocrinol. Metab. 89, 2756–2762 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Ganie, M. A. et al. Improved efficacy of low dose spironolactone and metformin combination than either drug alone in the management of women with polycystic ovary syndrome (PCOS): a six month, open label, randomized study. J. Clin. Endocrinol. Metab. 98, 3599–3607 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Ibáñez, L. & de Zegher, F. Low-dose flutamide-metformin therapy for hyperinsulinemic hyperandrogenism in non-obese adolescents and women. Hum. Reprod. Update 12, 243–252 (2006).

    Article  PubMed  Google Scholar 

  151. McInnes, K. J., Brown, K. A. & Hunger, N. I., Simpson, E. R. Regulation of LKB1 expression by sex hormones in adipocytes. Int. J. Obes. 36, 982–985 (2012).

    Article  CAS  Google Scholar 

  152. Ibáñez, L. et al. Low-dose flutamide-metformin therapy reverses insulin resistance and reduces fat mass in nonobese adolescents with ovarian hyperandrogenism. J. Clin. Endocrinol. Metab. 88, 2600–2606 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Mitkov, M., Pehlivanov, B. & Terzieva, D. Combined use of metformin and ethinyl estradiol-cyproterone acetate in polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 118, 209–213 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Bredella, M. A., McManus, S. & Misra, M. Impact of metformin monotherapy versus metformin with oestrogen-progesterone on lipids in adolescent girls with polycystic ovarian syndrome. Clin. Endocrinol. (Oxf.) 79, 199–203 (2013).

    Article  CAS  Google Scholar 

  155. Harmanci, A., Cinar, N., Bayraktar, M. & Yildiz, B. O. Oral contraceptive plus antiandrogen therapy and cardiometabolic risk in polycystic ovary syndrome. Clin. Endocrinol. (Oxf.) 78, 120–125 (2013).

    Article  CAS  Google Scholar 

  156. Ibáñez, L. et al. Combined low-dose pioglitazone, flutamide, and metformin for women with androgen excess. J. Clin. Endocrinol. Metab. 92, 1710–1714 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Ibáñez, L. et al. Pioglitazone (7.5 mg/day) added to flutamide-metformin in women with androgen excess: additional increments of visfatin and high molecular weight adiponectin. Clin. Endocrinol. (Oxf.) 68, 317–320 (2008).

    Article  CAS  Google Scholar 

  158. Ibáñez, L. et al. Low-dose pioglitazone and low-dose flutamide added to metformin and oestro-progestagens for hyperinsulinaemic women with androgen excess: add-on benefits disclosed by a randomized double-placebo study over 24 months. Clin. Endocrinol. (Oxf.) 71, 351–357 (2009).

    Article  CAS  Google Scholar 

  159. Choi, J. H. et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5. Nature 466, 451–456 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Choi, J. H. et al. Antidiabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated phosphorylation. Nature 477, 477–481 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Azoulay, L. et al. The use of pioglitazone and the risk of bladder cancer in people with type 2 diabetes: nested case–control study. BMJ 344, e3645 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  162. He, S. et al. Pioglitazone prescription increases risk of bladder cancer in patients with type 2 diabetes: an updated meta-analysis. Tumor Biol. 35, 2095–2102 (2014)

    Article  CAS  Google Scholar 

  163. Joham, A. E., Ranasinha, S., Zoungas, S., Moran, L. & Teede, H. J. Gestational diabetes and type 2 diabetes in reproductive-aged women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. http://dx.doi.org/10.1210/jc.2013-2007.

  164. Centers for Disease Control and Prevention. United States Medical Eligibility Criteria (US MEC) for Contraceptive Use, 2010. Reproductive Health [online]. (2014).

  165. Faculty of Sexual and Reproductive Healthcare. UK medical eligibility criteria for contraceptive use [online], (2009).

  166. Winner, B. et al. Effectiveness of long-acting reversible contraception. N. Engl. J. Med. 366, 1998–2007 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Gordon, C. M. & Pitts, S. A. Approach to the adolescent requesting contraception. J. Clin. Endocrinol. Metab. 97, 9–15 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.I. is a Clinical Investigator of CIBERDEM (Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain). F.d.Z is a Clinical Investigator supported by the Clinical Research Council of the Leuven University Hospitals. A.L.B is a Clinical Investigator of the I3 Fund for Scientific Research (Ministry of Science and Innovation, Spain). The authors wish to thank E. Codner and three unnamed experts for their comments as peer reviewers, which helped improve the article.

Author information

Authors and Affiliations

Authors

Contributions

L.I. and F.d.Z. researched data for the article and reviewed and edited the manuscript before submission. All authors wrote the manuscript and contributed substantially to discussions of the content.

Corresponding author

Correspondence to Lourdes Ibáñez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibáñez, L., Ong, K., López-Bermejo, A. et al. Hyperinsulinaemic androgen excess in adolescent girls. Nat Rev Endocrinol 10, 499–508 (2014). https://doi.org/10.1038/nrendo.2014.58

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.58

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing