Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment and health outcomes in adults with congenital adrenal hyperplasia

Key Points

  • The health status in adults with congenital adrenal hyperplasia (CAH) is impaired, with an increased incidence of obesity, hypertension, osteoporosis and reduced quality of life and fertility

  • The poor health status of adults with CAH seems to be a result of their treatment; therefore, patient care needs to be improved and hormone replacement therapy optimized

  • Potent synthetic and long-acting glucocorticoids should only be used in patients with a clinical indication, and the dose should be maintained at the lowest level for the shortest time possible

  • Increasing the dose of glucocorticoids does not necessarily result in improved disease control, but will probably have adverse health consequences

  • Hypertension is common, so mineralocorticoid replacement therapy should avoid suppressing plasma levels of renin below the normal range, and blood pressure should be monitored regularly in adults with CAH

Abstract

Congenital adrenal hyperplasia (CAH) is a genetic disorder caused by defective steroidogenesis that results in glucocorticoid deficiency; the most common underlying mutation is in the gene that encodes 21-hydroxylase. Life-saving glucocorticoid treatment was introduced in the 1950s, and the number of adult patients is now growing; however, no consensus has been reached on the management of CAH beyond childhood. Adult patients are prescribed a variety of glucocorticoids, including hydrocortisone, prednisone, prednisolone, dexamethasone and combinations of these drugs taken in either a circadian or reverse circadian regimen. Despite these personalized treatments, biochemical control of CAH is only achieved in approximately one-third of patients. Some patients have a poor health status, with an increased incidence of obesity and osteoporosis, and impaired fertility and quality of life. The majority of poor health outcomes seem to relate to inadequate treatment rather than the genotype of the patient. Patients receiving high doses of glucocorticoids and the more potent synthetic long-acting glucocorticoids are at an increased risk of obesity, insulin resistance and a reduced quality of life. Further research is required to optimize the treatment of adult patients with CAH and improve health outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Treating congenital adrenal hyperplasia.
Figure 2: The adrenal steroidogenesis pathway.
Figure 3: Androstenedione and 17OHP in patients with congenital adrenal hyperplasia.
Figure 4: A comparison of treatment regimens in relation to biochemical disease control (serum levels of androstendione and 17OHP) and HOMA-IR as an indicator of insulin resistance in the congenital adrenal hyperplasia adult study executive cohort (ANOVA and post hoc analysis).
Figure 5: Association between type of glucocorticoid and QoL in the congenital adrenal hyperplasia adult study executive cohort.

Similar content being viewed by others

References

  1. Pang, S. Y. et al. Worldwide experience in newborn screening for classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Pediatrics 81, 866–874 (1988).

    CAS  PubMed  Google Scholar 

  2. White, P. C. & Speiser, P. W. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr. Rev. 21, 245–291 (2000).

    CAS  PubMed  Google Scholar 

  3. Miller, W. L. & Auchus, R. J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 32, 81–151 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Speiser, P. W. et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 95, 4133–4160 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Merke, D. P. & Bornstein, S. R. Congenital adrenal hyperplasia. Lancet 365, 2125–2136 (2005).

    Article  PubMed  Google Scholar 

  6. Clayton, P. E. et al. Consensus statement on 21-hydroxylase deficiency from the European Society for Paediatric Endocrinology and the Lawson Wilkins Pediatric Endocrine Society. Horm. Res. 58, 188–195 (2002).

    CAS  PubMed  Google Scholar 

  7. Arlt, W. et al. Health status of adults with congenital adrenal hyperplasia: a cohort study of 203 patients. J. Clin. Endocrinol. Metab. 95, 5110–5121 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reisch, N., Arlt, W. & Krone, N. Health problems in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Horm. Res. Paediatr. 76, 73–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Falhammar, H. & Thoren, M. Clinical outcomes in the management of congenital adrenal hyperplasia. Endocrine 41, 355–373 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Gidlof, S. et al. One hundred years of congenital adrenal hyperplasia in Sweden: a retrospective, population-based cohort study. Lancet Diabetes Endocrinol. 1, 35–42 (2013).

    Article  PubMed  Google Scholar 

  11. Finkielstain, G. P. et al. Comprehensive genetic analysis of 182 unrelated families with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 96, E161–E172 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Krone, N., Dhir, V., Ivison, H. E. & Arlt, W. Congenital adrenal hyperplasia and P450 oxidoreductase deficiency. Clin. Endocrinol. 66, 162–172 (2007).

    Article  CAS  Google Scholar 

  13. Koppens, P. F., Hoogenboezem, T. & Degenhart, H. J. Duplication of the CYP21A2 gene complicates mutation analysis of steroid 21-hydroxylase deficiency: characteristics of three unusual haplotypes. Hum. Genet. 111, 405–410 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Therrell, B. L. Jr. Results of screening 1.9 million Texas newborns for 21-hydroxylase-deficient congenital adrenal hyperplasia. Pediatrics 101, 583–590 (1998).

    Article  PubMed  Google Scholar 

  15. Auchus, R. J. & Arlt, W. Approach to the patient: the adult with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 98, 2645–2655 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Speiser, P. W. et al. Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Invest. 90, 584–595 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wedell, A., Thilen, A., Ritzen, E. M., Stengler, B. & Luthman, H. Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: implications for genetic diagnosis and association with disease manifestation. J. Clin. Endocrinol. Metab. 78, 1145–1152 (1994).

    CAS  PubMed  Google Scholar 

  18. Krone, N. & Arlt, W. Genetics of congenital adrenal hyperplasia. Best Pract. Res. Clin. Endocrinol. Metab. 23, 181–192 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Charmandari, E. et al. Adrenomedullary function may predict phenotype and genotype in classic 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 87, 3031–3037 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Nimkarn, S. & New, M. I. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: A paradigm for prenatal diagnosis and treatment. Ann. NY Acad. Sci. 1192, 5–11 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Fitness, J. et al. Genotyping of CYP21, linked chromosome 6p markers, and a sex-specific gene in neonatal screening for congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 84, 960–966 (1999).

    CAS  PubMed  Google Scholar 

  22. Krone, N., Braun, A., Roscher, A. A., Knorr, D. & Schwarz, H. P. Predicting phenotype in steroid 21-hydroxylase deficiency? Comprehensive genotyping in 155 unrelated, well defined patients from southern Germany. J. Clin. Endocrinol. Metab. 85, 1059–1065 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. New, M. I. et al. Genotype–phenotype correlation in 1,507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Proc. Natl Acad. Sci. USA 110, 2611–2616 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Haider, S. et al. Structure-phenotype correlations of human CYP21A2 mutations in congenital adrenal hyperplasia. Proc. Natl Acad. Sci. USA 110, 2605–2610 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nordenskjold, A. et al. Type of mutation and surgical procedure affect long-term quality of life for women with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 93, 380–386 (2008).

    Article  PubMed  CAS  Google Scholar 

  26. Frisen, L. et al. Gender role behavior, sexuality, and psychosocial adaptation in women with congenital adrenal hyperplasia due to CYP21A2 deficiency. J. Clin. Endocrinol. Metab. 94, 3432–3439 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Krone, N. et al. Genotype-phenotype correlation in 153 adult patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency: analysis of the United Kingdom Congenital Adrenal Hyperplasia Adult Study Executive (CaHASE) cohort. J. Clin. Endocrinol. Metab. 98, E346–E354 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Speiser, P. W. et al. A summary of the Endocrine Society Clinical Practice Guidelines on congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency. Int. J. Pediatr. Endocrinol. 2010, 494173 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Debono, M. et al. Modified-release hydrocortisone to provide circadian cortisol profiles. J. Clin. Endocrinol. Metab. 94, 1548–1554 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Plat, L. et al. Metabolic effects of short-term elevations of plasma cortisol are more pronounced in the evening than in the morning. J. Clin. Endocrinol. Metab. 84, 3082–3092 (1999).

    CAS  PubMed  Google Scholar 

  31. Elbelt, U., Hahner, S. & Allolio, B. Altered insulin requirement in patients with type 1 diabetes and primary adrenal insufficiency receiving standard glucocorticoid replacement therapy. Eur. J. Endocrinol. 160, 919–924 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Spiegel, K., Leproult, R. & Van Cauter, E. Impact of sleep debt on metabolic and endocrine function. Lancet 354, 1435–1439 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Merke, D. P. Approach to the adult with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 93, 653–660 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Walker, B. R. Glucocorticoids and cardiovascular disease. Eur. J. Endocrinol. 157, 545–559 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Finkielstain, G. P. et al. Clinical characteristics of a cohort of 244 patients with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 97, 4429–4438 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Han, T. S. et al. Glucocorticoid treatment regimen and health outcomes in adults with congenital adrenal hyperplasia. Clin. Endocrinol. 78, 197–203 (2013).

    Article  CAS  Google Scholar 

  37. Lin-Su, K. & New, M. I. Effects of adrenal steroids on the bone metabolism of children with congenital adrenal hyperplasia. Ann. NY Acad. Sci. 1117, 345–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. German, A. et al. Control of childhood congenital adrenal hyperplasia and sleep activity and quality with morning or evening glucocorticoid therapy. J. Clin. Endocrinol. Metab. 93, 4707–4710 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Bryan, S. M., Honour, J. W. & Hindmarsh, P. C. Management of altered hydrocortisone pharmacokinetics in a boy with congenital adrenal hyperplasia using a continuous subcutaneous hydrocortisone infusion. J. Clin. Endocrinol. Metab. 94, 3477–3480 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Merza, Z. et al. Circadian hydrocortisone infusions in patients with adrenal insufficiency and congenital adrenal hyperplasia. Clin. Endocrinol. 65, 45–50 (2006).

    Article  CAS  Google Scholar 

  41. Newell-Price, J. et al. Modified-release hydrocortisone for circadian therapy: a proof-of-principle study in dexamethasone-suppressed normal volunteers. Clin. Endocrinol. 68, 130–135 (2008).

    Article  CAS  Google Scholar 

  42. Verma, S. et al. A pharmacokinetic and pharmacodynamic study of delayed- and extended-release hydrocortisone (Chronocort) vs. conventional hydrocortisone (Cortef) in the treatment of congenital adrenal hyperplasia. Clin. Endocrinol. 72, 441–447 (2010).

    Article  CAS  Google Scholar 

  43. Whitaker, M. et al. An oral multi-particulate, modified release, hydrocortisone replacement therapy that provides physiological cortisol exposure. Clin. Endocrinol. http://dx.doi.org/10.1111/cen.12316.

  44. Auchus, R. J. et al. Marked androgen reduction in adult women with classic 21-hydroxylase deficiency (21OHD) treated with abiraterone acetate (AA) added to physiologic hydrocortisone (HC) and fludrocortisone (FC) [abstract LB-OR-1]. Presented at Endo2013.

  45. Roche, E. F., Charmandari, E., Dattani, M. T. & Hindmarsh, P. C. Blood pressure in children and adolescents with congenital adrenal hyperplasia (21-hydroxylase deficiency): a preliminary report. Clin. Endocrinol. 58, 589–596 (2003).

    Article  Google Scholar 

  46. Volkl, T. M., Simm, D., Dotsch, J., Rascher, W. & Dorr, H. G. Altered 24-hour blood pressure profiles in children and adolescents with classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 91, 4888–4895 (2006).

    Article  PubMed  CAS  Google Scholar 

  47. Speiser, P. W. & White, P. C. Congenital adrenal hyperplasia. N. Engl. J. Med. 349, 776–788 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Sippell, W. G., Dorr, H. G., Bidlingmaier, F. & Knorr, D. Plasma levels of aldosterone, corticosterone, 11-deoxycorticosterone, progesterone, 17-hydroxyprogesterone, cortisol, and cortisone during infancy and childhood. Pediatr. Res. 14, 39–46 (1980).

    Article  CAS  PubMed  Google Scholar 

  49. Bauer, J. H. Age-related changes in the renin-aldosterone system. Physiological effects and clinical implications. Drugs Aging 3, 238–245 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Ogilvie, C. M., Rumsby, G., Kurzawinski, T. & Conway, G. S. Outcome of bilateral adrenalectomy in congenital adrenal hyperplasia: one unit's experience. Eur. J. Endocrinol. 154, 405–408 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Oelkers, W., Diederich, S. & Bahr, V. Diagnosis and therapy surveillance in Addison's disease: rapid adrenocorticotropin (ACTH) test and measurement of plasma ACTH, renin activity, and aldosterone. J. Clin. Endocrinol. Metab. 75, 259–264 (1992).

    CAS  PubMed  Google Scholar 

  52. Young, M. C., Robinson, J. A., Read, G. F., Riad-Fahmy, D. & Hughes, I. A. 170H-progesterone rhythms in congenital adrenal hyperplasia. Arch. Dis. Child. 63, 617–623 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sarafoglou, K. et al. Comparison of multiple steroid concentrations in serum and dried blood spots throughout the day of patients with congenital adrenal hyperplasia. Horm. Res. Pediatr. 75, 19–25 (2011).

    Article  CAS  Google Scholar 

  54. Gastaud, F. et al. Impaired sexual and reproductive outcomes in women with classical forms of congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 92, 1391–1396 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Bidet, M. et al. Fertility in women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 95, 1182–1190 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Casteras, A., De Silva, P., Rumsby, G. & Conway, G. S. Reassessing fecundity in women with classical congenital adrenal hyperplasia (CAH): normal pregnancy rate but reduced fertility rate. Clin. Endocrinol. 70, 833–837 (2009).

    Article  Google Scholar 

  57. Mulaikal, R. M., Migeon, C. J. & Rock, J. A. Fertility rates in female patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. N. Engl. J. Med. 316, 178–182 (1987).

    Article  CAS  PubMed  Google Scholar 

  58. Hague, W. M. et al. The prevalence of polycystic ovaries in patients with congenital adrenal hyperplasia and their close relatives. Clin. Endocrinol. 33, 501–510 (1990).

    Article  CAS  Google Scholar 

  59. Krege, S., Walz, K. H., Hauffa, B. P., Korner, I. & Rubben, H. Long-term follow-up of female patients with congenital adrenal hyperplasia from 21-hydroxylase deficiency, with special emphasis on the results of vaginoplasty. BJU Int. 86, 253–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Stikkelbroeck, N. M. et al. High prevalence of testicular adrenal rest tumors, impaired spermatogenesis, and Leydig cell failure in adolescent and adult males with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 86, 5721–5728 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Cabrera, M. S., Vogiatzi, M. G. & New, M. I. Long term outcome in adult males with classic congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 86, 3070–3078 (2001).

    CAS  PubMed  Google Scholar 

  62. Claahsen-van der Grinten, H. L., Otten, B. J., Hermus, A. R., Sweep, F. C. & Hulsbergen-van de Kaa, C. A. Testicular adrenal rest tumors in patients with congenital adrenal hyperplasia can cause severe testicular damage. Fertil. Steril. 89, 597–601 (2008).

    Article  PubMed  Google Scholar 

  63. Avila, N. A., Premkumar, A. & Merke, D. P. Testicular adrenal rest tissue in congenital adrenal hyperplasia: comparison of MR imaging and sonographic findings. AJR Am. J. Roentgenol. 172, 1003–1006 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Russo, G., Paesano, P., Taccagni, G., Del Maschio, A. & Chiumello, G. Ovarian adrenal-like tissue in congenital adrenal hyperplasia. N. Engl. J. Med. 339, 853–854 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Martinez-Aguayo, A. et al. Testicular adrenal rest tumors and Leydig and Sertoli cell function in boys with classical congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 92, 4583–4589 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Reisch, N. et al. Testicular adrenal rest tumors develop independently of long-term disease control: A longitudinal analysis of 50 adult men with congenital adrenal hyperplasia due to classic 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 98, E1820–E1826 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Falhammar, H. et al. Fertility, sexuality and testicular adrenal rest tumors in adult males with congenital adrenal hyperplasia. Eur. J. Endocrinol. 166, 441–449 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Claahsen-van der Grinten, H. L., Otten, B. J., Sweep, F. C. & Hermus, A. R. Repeated successful induction of fertility after replacing hydrocortisone with dexamethasone in a patient with congenital adrenal hyperplasia and testicular adrenal rest tumors. Fertil. Steril. 88, 705.e5–8 (2007).

    Article  Google Scholar 

  69. Bachelot, A., Chakthoura, Z., Rouxel, A., Dulon, J. & Touraine, P. Classical forms of congenital adrenal hyperplasia due to 21-hydroxylase deficiency in adults. Horm. Res. 69, 203–211 (2008).

    CAS  PubMed  Google Scholar 

  70. Sugino, Y. et al. Genotyping of congenital adrenal hyperplasia due to 21-hydroxylase deficiency presenting as male infertility: case report and literature review. J. Assist. Reprod. Genet. 23, 377–380 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Scaroni, C. et al. Unilateral adrenal tumor, erectile dysfunction and infertility in a patient with 21-hydroxylase deficiency: effects of glucocorticoid treatment and surgery. Exp. Clin. Endocrinol. Diabetes 111, 41–43 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Tiosano, D. et al. Ovarian adrenal rest tumor in a congenital adrenal hyperplasia patient with adrenocorticotropin hypersecretion following adrenalectomy. Horm. Res. Paediatr. 74, 223–228 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Crocker, M. K. et al. Use of PET/CT with cosyntropin stimulation to identify and localize adrenal rest tissue following adrenalectomy in a woman with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 97, E2084–E2089 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. McGeoch, S. C., Olson, S., Krukowski, Z. H. & Bevan, J. S. Giant bilateral myelolipomas in a man with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 97, 343–344 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Miller, W. L. Congenital adrenal hyperplasia in the adult patient. Adv. Intern. Med. 44, 155–173 (1999).

    CAS  PubMed  Google Scholar 

  76. Lebbe, M. & Arlt, W. What is the best diagnostic and therapeutic management strategy for an Addison patient during pregnancy? Clin. Endocrinol. 78, 497–502 (2013).

    Article  CAS  Google Scholar 

  77. Hirvikoski, T. et al. Cognitive functions in children at risk for congenital adrenal hyperplasia treated prenatally with dexamethasone. J. Clin. Endocrinol. Metab. 92, 542–548 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Altarescu, G. et al. Preimplantation genetic diagnosis (PGD)—prevention of the birth of children affected with endocrine diseases. J. Pediatr. Endocrinol. Metab. 24, 543–548 (2011).

    Article  PubMed  Google Scholar 

  79. Jaaskelainen, J. & Voutilainen, R. Long-term outcome of classical 21-hydroxylase deficiency: diagnosis, complications and quality of life. Acta Paediatr. 89, 183–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Reisch, N. et al. Quality of life is less impaired in adults with congenital adrenal hyperplasia because of 21-hydroxylase deficiency than in patients with primary adrenal insufficiency. Clin. Endocrinol. 74, 166–173 (2011).

    Article  Google Scholar 

  81. Kuhnle, U. & Bullinger, M. Outcome of congenital adrenal hyperplasia. Pediatr. Surg. Int. 12, 511–515 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Johannsen, T. H. et al. Impaired cognitive function in women with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 91, 1376–1381 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Nermoen, I., Husebye, E. S., Svartberg, J. & Lovas, K. Subjective health status in men and women with congenital adrenal hyperplasia: a population-based survey in Norway. Eur. J. Endocrinol. 163, 453–459 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Han, T. S. et al. Quality of life in adults with congenital adrenal hyperplasia relates to glucocorticoid treatment, adiposity and insulin resistance: United Kingdom Congenital adrenal Hyperplasia Adult Study Executive (CaHASE). Eur. J. Endocrinol. 168, 887–893 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Meyer-Bahlburg, H. F., Dolezal, C., Baker, S. W., Ehrhardt, A. A. & New, M. I. Gender development in women with congenital adrenal hyperplasia as a function of disorder severity. Arch. Sex Behav. 35, 667–684 (2006).

    Article  PubMed  Google Scholar 

  86. Falhammar, H. et al. Metabolic profile and body composition in adult women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 92, 110–116 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Falhammar, H., Filipsson Nystrom, H., Wedell, A. & Thoren, M. Cardiovascular risk, metabolic profile, and body composition in adult males with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Eur. J. Endocrinol. 164, 285–293 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Mooij, C. F., Kroese, J. M., Claahsen-van der Grinten, H. L., Tack, C. J., Hermus, A. R. Unfavourable trends in cardiovascular and metabolic risk in paediatric and adult patients with congenital adrenal hyperplasia? Clin. Endocrinol. 73, 137–146 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all of the co-investigators in the UK congenital adrenal hyperplasia adult study executive, which is supported by the Clinical Endocrinology Trust and the Society for Endocrinology. W. Arlt would like to acknowledge the support of the Medical Research Council UK (Program Grant G0900567) and the European Community (FP7 Collaborative Research Project DSD-Life). B. R. Walker would like to acknowledge the support of the British Heart Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Richard J. Ross.

Ethics declarations

Competing interests

R. J. Ross is a founding director and equity holder in Diurnal Ltd and W. Arlt is a consultant to Diurnal Ltd. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, T., Walker, B., Arlt, W. et al. Treatment and health outcomes in adults with congenital adrenal hyperplasia. Nat Rev Endocrinol 10, 115–124 (2014). https://doi.org/10.1038/nrendo.2013.239

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.239

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing