Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Averting inflammation by targeting the cytokine environment

Key Points

  • Cytokines are key instigators and regulators of immune responses and thus hold great potential as targets for new therapeutic strategies.

  • Cytokines released at the early stages of inflammation are at key rate-limiting steps of disease development and have been the focus of extensive research and development. However, there are still considerable numbers of individuals for whom cytokine therapy is ineffective and targeting upstream cytokines carries the risk of general immunosuppressive side effects.

  • The most established means of blocking cytokine activity are monoclonal antibodies, soluble receptors or receptor–Fc fusion molecules and cytokine antagonists. In general, only biologicals seem to be able to block cytokine–receptor interactions efficiently, as small molecules have proved inefficient because they are too small to interfere with the large surface interactions that are present at the cytokine–receptor interface.

  • An improved understanding of cytokine networks may lead to the development of highly specific therapeutics targeting disease pathways in individuals or in certain patient cohorts. Rather than blocking early pleiotropic cytokines, future success may lie in the combined neutralization of effector cytokines with narrower ranges of defined activity.

Abstract

Cytokines are key instigators and regulators of immune responses and therefore hold great potential as targets for new therapeutic strategies. However, the selection of which cytokines to target, and in particular the identification of which cytokines regulate the rate-limiting steps of disease pathways, is crucial to the success of such strategies. Moreover, balancing the need for ablating pathological inflammatory responses and simultaneously maintaining the ability to control infectious agents is a key consideration. Recent advances in our understanding of cytokine networks, as well as technical progress in blocking cytokines in vivo, are likely to be a source for new drugs that can control chronic inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pro-inflammatory and effector cytokines involved in TH1/TH17-type autoimmune inflammatory and TH2-type allergic diseases.
Figure 2: The IL-6–IL-6R complex.
Figure 3: IL-1 production, binding and signalling.
Figure 4: Cytokine-based drugs.

Similar content being viewed by others

References

  1. Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B Biol. Sci. 147, 258–267 (1957).

    Article  CAS  PubMed  Google Scholar 

  2. Isaacs, A., Lindenmann, J. & Valentine, R. C. Virus interference. II. Some properties of interferon. Proc. R. Soc. Lond. B Biol. Sci. 147, 268–273 (1957).

    Article  CAS  PubMed  Google Scholar 

  3. Simmons, D. L. What makes a good anti-inflammatory drug target? Drug Discov. Today 11, 210–219 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Lipsky, P. E. et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study group. N. Engl. J. Med. 343, 1594–1602 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Elliott, M. J. et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor α. Arthritis Rheum. 36, 1681–1690 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Moreland, L. W. et al. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N. Engl. J. Med. 337, 141–147 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Genovese, M. C. et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor α inhibition. N. Engl. J. Med. 353, 1114–1123 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Powrie, F. et al. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1, 553–562 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Kojouharoff, G. et al. Neutralization of tumour necrosis factor (TNF) but not of IL-1 reduces inflammation in chronic dextran sulphate sodium-induced colitis in mice. Clin. Exp. Immunol. 107, 353–358 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kontoyiannis, D., Pasparakis, M., Pizarro, T. T., Cominelli, F. & Kollias, G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10, 387–398 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Kosiewicz, M. M. et al. Th1-type responses mediate spontaneous ileitis in a novel murine model of Crohn's disease. J. Clin. Invest. 107, 695–702 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Neurath, M. F. et al. Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur. J. Immunol. 27, 1743–1750 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Mori, L., Iselin, S., De Libero, G. & Lesslauer, W. Attenuation of collagen-induced arthritis in 55-kDa TNF receptor type 1 (TNFR1)-IgG1-treated and TNFR1-deficient mice. J. Immunol. 157, 3178–3182 (1996).

    CAS  PubMed  Google Scholar 

  14. Liu, J. et al. TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination. Nature Med. 4, 78–83 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Targan, S. R. et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor α for Crohn's disease. N. Engl. J. Med. 337, 1029–1035 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Leonardi, C. L. et al. Etanercept as monotherapy in patients with psoriasis. N. Engl. J. Med. 349, 2014–2022 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. Neurology 53, 457–465 (1999).

  18. ten Hove, T., van Montfrans, C., Peppelenbosch, M. P. & van Deventer, S. J. Infliximab treatment induces apoptosis of lamina propria T lymphocytes in Crohn's disease. Gut 50, 206–211 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carswell, E. A. et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl Acad. Sci. USA 72, 3666–3670 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Coley, W. B. The treatment of malignant tumors by repeated inoculations of erysipelas; with a report of ten original cases. Am. J. Med. Sci. 105, 487–511 (1893).

    Article  Google Scholar 

  21. van Horssen, R., Ten Hagen, T. L. & Eggermont, A. M. TNF-α in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist 11, 397–408 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Prevost-Blondel, A., Roth, E., Rosenthal, F. M. & Pircher, H. Crucial role of TNF-α in CD8 T cell-mediated elimination of 3LL-A9 Lewis lung carcinoma cells in vivo. J. Immunol. 164, 3645–3651 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Calzascia, T. et al. TNF-α is critical for antitumor but not antiviral T cell immunity in mice. J. Clin. Invest. 117, 3833–3845 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bongartz, T. et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 295, 2275–2285 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Bongartz, T. et al. Etanercept therapy in rheumatoid arthritis and the risk of malignancies: a systematic review and individual patient data meta-analysis of randomised controlled trials. Ann. Rheum. Dis. 68, 1177–1183 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Askling, J. et al. Cancer risk in patients with rheumatoid arthritis treated with anti-tumor necrosis factor α therapies: does the risk change with the time since start of treatment? Arthritis Rheum. 60, 3180–3189 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Smedby, K. E., Askling, J., Mariette, X. & Baecklund, E. Autoimmune and inflammatory disorders and risk of malignant lymphomas — an update. J. Intern. Med. 264, 514–527 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Askling, J. et al. Anti-tumour necrosis factor therapy in rheumatoid arthritis and risk of malignant lymphomas: relative risks and time trends in the Swedish Biologics Register. Ann. Rheum. Dis. 68, 648–653 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Aggarwal, B. B., Shishodia, S., Sandur, S. K., Pandey, M. K. & Sethi, G. Inflammation and cancer: how hot is the link? Biochem. Pharmacol. 72, 1605–1621 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Moore, R. J. et al. Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis. Nature Med. 5, 828–831 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Suganuma, M. et al. Essential role of tumor necrosis factor α (TNF- α) in tumor promotion as revealed by TNF-α-deficient mice. Cancer Res. 59, 4516–4518 (1999).

    CAS  PubMed  Google Scholar 

  32. Knight, B. et al. Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice. J. Exp. Med. 192, 1809–1818 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197–208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Wallis, R. S., Broder, M., Wong, J. & Beenhouwer, D. Granulomatous infections due to tumor necrosis factor blockade: correction. Clin. Infect. Dis. 39, 1254–1255 (2004).

    Article  PubMed  Google Scholar 

  36. Wallis, R. S., Broder, M. S., Wong, J. Y., Hanson, M. E. & Beenhouwer, D. O. Granulomatous infectious diseases associated with tumor necrosis factor antagonists. Clin. Infect. Dis. 38, 1261–1265 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Spohn, G. et al. Active immunization with IL-1 displayed on virus-like particles protects from autoimmune arthritis. Eur. J. Immunol. 38, 877–887 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Wallis, R. S., Broder, M., Wong, J., Lee, A. & Hoq, L. Reactivation of latent granulomatous infections by infliximab. Clin. Infect. Dis. 41 (Suppl. 3), 194–198 (2005).

    Article  Google Scholar 

  39. Howard, K. A. et al. Chitosan/siRNA nanoparticle-mediated TNF-α knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol. Ther. 17, 162–168 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Schiffelers, R. M., Xu, J., Storm, G., Woodle, M. C. & Scaria, P. V. Effects of treatment with small interfering RNA on joint inflammation in mice with collagen-induced arthritis. Arthritis Rheum. 52, 1314–1318 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Horiuchi, K. et al. Cutting edge: TNF-α-converting enzyme (TACE/ADAM17) inactivation in mouse myeloid cells prevents lethality from endotoxin shock. J. Immunol. 179, 2686–2689 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Moss, M. L., Sklair-Tavron, L. & Nudelman, R. Drug insight: tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis. Nature Clin. Pract Rheumatol. 4, 300–309 (2008).

    Article  CAS  Google Scholar 

  43. Thabet, M. M. & Huizinga, T. W. Drug evaluation: apratastat, a novel TACE/MMP inhibitor for rheumatoid arthritis. Curr. Opin. Investig. Drugs 7, 1014–1019 (2006).

    CAS  PubMed  Google Scholar 

  44. Peschon, J. J. et al. An essential role for ectodomain shedding in mammalian development. Science 282, 1281–1284 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Kishimoto, T. Interleukin-6: from basic science to medicine — 40 years in immunology. Annu. Rev. Immunol. 23, 1–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Kopf, M. et al. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368, 339–342 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Dalrymple, S. A. et al. Interleukin-6-deficient mice are highly susceptible to Listeria monocytogenes infection: correlation with inefficient neutrophilia. Infect. Immun. 63, 2262–2268 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ladel, C. H. et al. Lethal tuberculosis in interleukin-6-deficient mutant mice. Infect. Immun. 65, 4843–4849 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Suzuki, Y. et al. Impaired resistance to the development of toxoplasmic encephalitis in interleukin-6-deficient mice. Infect. Immun. 65, 2339–2345 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Romani, L. et al. Impaired neutrophil response and CD4+ T helper cell 1 development in interleukin 6-deficient mice infected with Candida albicans. J. Exp. Med. 183, 1345–1355 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Eugster, H. P., Frei, K., Kopf, M., Lassmann, H. & Fontana, A. IL-6-deficient mice resist myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. Eur. J. Immunol. 28, 2178–2187 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Samoilova, E. B., Horton, J. L., Hilliard, B., Liu, T. S. & Chen, Y. IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells. J. Immunol. 161, 6480–6486 (1998).

    CAS  PubMed  Google Scholar 

  53. Ohshima, S. et al. Interleukin 6 plays a key role in the development of antigen-induced arthritis. Proc. Natl Acad. Sci. USA 95, 8222–8226 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alonzi, T. et al. Interleukin 6 is required for the development of collagen-induced arthritis. J. Exp. Med. 187, 461–468 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eriksson, U. et al. Interleukin-6-deficient mice resist development of autoimmune myocarditis associated with impaired upregulation of complement C3. Circulation 107, 320–325 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Hata, H. et al. Distinct contribution of IL-6, TNF-α, IL-1 and IL-10 to T cell-mediated spontaneous autoimmune arthritis in mice. J. Clin. Invest. 114, 582–588 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yamamoto, M., Yoshizaki, K., Kishimoto, T. & Ito, H. IL-6 is required for the development of Th1 cell-mediated murine colitis. J. Immunol. 164, 4878–4882 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Atreya, R. et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nature Med. 6, 583–588 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Hirano, T. et al. Excessive production of interleukin 6/B cell stimulatory factor-2 in rheumatoid arthritis. Eur. J. Immunol. 18, 1797–1801 (1988).

    Article  CAS  PubMed  Google Scholar 

  60. Grossman, R. M. et al. Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc. Natl Acad. Sci. USA 86, 6367–6371 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gross, V., Andus, T., Caesar, I., Roth, M. & Scholmerich, J. Evidence for continuous stimulation of interleukin-6 production in Crohn's disease. Gastroenterology 102, 514–519 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Mitsuyama, K. et al. Soluble interleukin-6 receptors in inflammatory bowel disease: relation to circulating interleukin-6. Gut 36, 45–49 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Trikha, M., Corringham, R., Klein, B. & Rossi, J. F. Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin. Cancer Res. 9, 4653–4665 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. van Zaanen, H. C. et al. Endogenous interleukin 6 production in multiple myeloma patients treated with chimeric monoclonal anti-IL6 antibodies indicates the existence of a positive feed-back loop. J. Clin. Invest. 98, 1441–1448 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. van Zaanen, H. C. et al. Chimaeric anti-interleukin 6 monoclonal antibodies in the treatment of advanced multiple myeloma: a phase I dose-escalating study. Br. J. Haematol. 102, 783–790 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Nishimoto, N. et al. Improvement in Castleman's disease by humanized anti-interleukin-6 receptor antibody therapy. Blood 95, 56–61 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Smolen, J. S. et al. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet 371, 987–997 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Emery, P. et al. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial. Ann. Rheum. Dis. 67, 1516–1523 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Jones, G. et al. Comparison of tocilizumab monotherapy versus methotrexate monotherapy in patients with moderate to severe rheumatoid arthritis: the AMBITION study. Ann. Rheum. Dis. 69, 88–96 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Yokota, S. et al. Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal phase III trial. Lancet 371, 998–1006 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Jostock, T. et al. Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. Eur. J. Biochem. 268, 160–167 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Nowell, M. A. et al. Therapeutic targeting of IL-6 trans signaling counteracts STAT3 control of experimental inflammatory arthritis. J. Immunol. 182, 613–622 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Ohtaki, H. et al. Pituitary adenylate cyclase-activating polypeptide (PACAP) decreases ischemic neuronal cell death in association with IL-6. Proc. Natl Acad. Sci. USA 103, 7488–7493 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yamashita, T. et al. Blockade of interleukin-6 signaling aggravates ischemic cerebral damage in mice: possible involvement of Stat3 activation in the protection of neurons. J. Neurochem. 94, 459–468 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Cressman, D. E. et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 274, 1379–1383 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Hong, F. et al. Elevated interleukin-6 during ethanol consumption acts as a potential endogenous protective cytokine against ethanol-induced apoptosis in the liver: involvement of induction of Bcl-2 and Bcl-xL proteins. Oncogene 21, 32–43 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Klein, C. et al. The IL-6–gp130–STAT3 pathway in hepatocytes triggers liver protection in T cell-mediated liver injury. J. Clin. Invest. 115, 860–869 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kovalovich, K. et al. Increased toxin-induced liver injury and fibrosis in interleukin-6-deficient mice. Hepatology 31, 149–159 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Hansen, M. B., Svenson, M., Diamant, M. & Bendtzen, K. Anti-interleukin-6 antibodies in normal human serum. Scand. J. Immunol. 33, 777–781 (1991).

    Article  CAS  PubMed  Google Scholar 

  80. Homann, C. et al. Anti-interleukin-6 autoantibodies in plasma are associated with an increased frequency of infections and increased mortality of patients with alcoholic cirrhosis. Scand. J. Immunol. 44, 623–629 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Dinarello, C. A. Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. Int. Rev. Immunol. 16, 457–499 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Agostini, L. et al. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Neven, B. et al. Molecular basis of the spectral expression of CIAS1 mutations associated with phagocytic cell-mediated autoinflammatory disorders CINCA/NOMID, MWS and FCU. Blood 103, 2809–2815 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Hawkins, P. N., Bybee, A., Aganna, E. & McDermott, M. F. Response to anakinra in a de novo case of neonatal-onset multisystem inflammatory disease. Arthritis Rheum. 50, 2708–2709 (2004).

    Article  PubMed  Google Scholar 

  85. Hawkins, P. N., Lachmann, H. J., Aganna, E. & McDermott, M. F. Spectrum of clinical features in Muckle-Wells syndrome and response to anakinra. Arthritis Rheum. 50, 607–612 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Lovell, D. J., Bowyer, S. L. & Solinger, A. M. Interleukin-1 blockade by anakinra improves clinical symptoms in patients with neonatal-onset multisystem inflammatory disease. Arthritis Rheum. 52, 1283–1286 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Lachmann, H. J. et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N. Engl. J. Med. 360, 2416–2425 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Goldbach-Mansky, R. et al. A pilot study to evaluate the safety and efficacy of the long-acting interleukin-1 inhibitor rilonacept (interleukin-1 Trap) in patients with familial cold autoinflammatory syndrome. Arthritis Rheum. 58, 2432–2442 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hoffman, H. M. et al. Efficacy and safety of rilonacept (interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum. 58, 2443–2452 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. So, A., De Smedt, T., Revaz, S. & Tschopp, J. A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res. Ther. 9, R28 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Terkeltaub, R. et al. The IL-1 inhibitor rilonacept in treatment of chronic gouty arthritis: results of a placebo-controlled, monosequence crossover, nonrandomized, single-blind pilot study. Ann. Rheum. Dis. 26 Jul 2009 (doi:10.1136/ard.2009.108936).

    Article  CAS  PubMed  Google Scholar 

  92. Shi, Y., Evans, J. E. & Rock, K. L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Chen, C. J. et al. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J. Clin. Invest. 116, 2262–2271 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Matsuki, T., Nakae, S., Sudo, K., Horai, R. & Iwakura, Y. Abnormal T cell activation caused by the imbalance of the IL-1/IL-1R antagonist system is responsible for the development of experimental autoimmune encephalomyelitis. Int. Immunol. 18, 399–407 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Eriksson, U. et al. Activation of dendritic cells through the interleukin 1 receptor 1 is critical for the induction of autoimmune myocarditis. J. Exp. Med. 197, 323–331 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Joosten, L. A., Helsen, M. M., van de Loo, F. A. & van den Berg, W. B. Anticytokine treatment of established type II collagen-induced arthritis in DBA/1 mice. A comparative study using anti-TNF α, anti-IL-1 α/β, and IL-1Ra. Arthritis Rheum. 39, 797–809 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Palmer, G. et al. Mice transgenic for intracellular interleukin-1 receptor antagonist type 1 are protected from collagen-induced arthritis. Eur. J. Immunol. 33, 434–440 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Mertens, M. & Singh, J. A. Anakinra for rheumatoid arthritis: a systematic review. J. Rheumatol, 36, 1118–1125 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Ikonomidis, I. et al. Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation 117, 2662–2669 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Matsuki, T. et al. Involvement of tumor necrosis factor-α in the development of T cell-dependent aortitis in interleukin-1 receptor antagonist-deficient mice. Circulation 112, 1323–1331 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Sutton, C., Brereton, C., Keogh, B., Mills, K. H. & Lavelle, E. C. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med. 203, 1685–1691 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pascual, V., Allantaz, F., Arce, E., Punaro, M. & Banchereau, J. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J. Exp. Med. 201, 1479–1486 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Matsuki, T., Horai, R., Sudo, K. & Iwakura, Y. IL-1 plays an important role in lipid metabolism by regulating insulin levels under physiological conditions. J. Exp. Med. 198, 877–888 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Larsen, C. M. et al. Interleukin1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Lust, J. A. et al. Induction of a chronic disease state in patients with smoldering or indolent multiple myeloma by targeting interleukin 1βinduced interleukin 6 production and the myeloma proliferative component. Mayo Clin. Proc. 84, 114–122 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hamilton, J. A. Colony-stimulating factors in inflammation and autoimmunity. Nature Rev. Immunol. 8, 533–544 (2008).

    Article  CAS  Google Scholar 

  108. Hamilton, J. A. Rheumatoid arthritis: opposing actions of haemopoietic growth factors and slow-acting anti-rheumatic drugs. Lancet 342, 536–539 (1993).

    Article  CAS  PubMed  Google Scholar 

  109. Sonderegger, I. et al. GM-CSF mediates autoimmunity by enhancing IL-6-dependent Th17 cell development and survival. J. Exp. Med. 205, 2281–2294 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Campbell, I. K. et al. Protection from collagen-induced arthritis in granulocyte-macrophage colony-stimulating factor-deficient mice. J. Immunol. 161, 3639–3644 (1998).

    CAS  PubMed  Google Scholar 

  111. McQualter, J. L. et al. Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J. Exp. Med. 194, 873–882 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sainathan, S. K. et al. Granulocyte macrophage colony-stimulating factor ameliorates DSS-induced experimental colitis. Inflamm. Bowel Dis. 14, 88–99 (2008).

    Article  PubMed  Google Scholar 

  113. Dieckgraefe, B. K. & Korzenik, J. R. Treatment of active Crohn's disease with recombinant human granulocyte-macrophage colony-stimulating factor. Lancet 360, 1478–1480 (2002).

    Article  PubMed  Google Scholar 

  114. Korzenik, J. R., Dieckgraefe, B. K., Valentine, J. F., Hausman, D. F. & Gilbert, M. J. Sargramostim for active Crohn's disease. N. Engl. J. Med. 352, 2193–2201 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Antman, K. S. et al. Effect of recombinant human granulocyte-macrophage colony-stimulating factor on chemotherapy-induced myelosuppression. N. Engl. J. Med. 319, 593–598 (1988).

    Article  CAS  PubMed  Google Scholar 

  116. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Murphy, C. A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951–1957 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yen, D. et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116, 1310–1316 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Becher, B., Durell, B. G. & Noelle, R. J. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J. Clin. Invest. 110, 493–497 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Eriksson, U., Kurrer, M. O., Sebald, W., Brombacher, F. & Kopf, M. Dual role of the IL-12/IFN-γ axis in the development of autoimmune myocarditis: induction by IL-12 and protection by IFN-γ. J. Immunol. 167, 5464–5469 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Willenborg, D. O., Fordham, S., Bernard, C. C., Cowden, W. B. & Ramshaw, I. A. IFN-γ plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol. 157, 3223–3227 (1996).

    CAS  PubMed  Google Scholar 

  123. Bettelli, E., Oukka, M. & Kuchroo, V. K. TH-17 cells in the circle of immunity and autoimmunity. Nature Immunol. 8, 345–350 (2007).

    Article  CAS  Google Scholar 

  124. McGeachy, M. J. & Cua, D. J. Th17 cell differentiation: the long and winding road. Immunity 28, 445–453 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Ouyang, W., Kolls, J. K. & Zheng, Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28, 454–467 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Haak, S. et al. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J. Clin. Invest. 119, 61–69 (2009).

    CAS  PubMed  Google Scholar 

  127. Kreymborg, K. et al. IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J. Immunol. 179, 8098–8104 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Sonderegger, I., Kisielow, J., Meier, R., King, C. & Kopf, M. IL-21 and IL-21R are not required for development of Th17 cells and autoimmunity in vivo. Eur. J. Immunol. 38, 1833–1838 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Coquet, J. M., Chakravarti, S., Smyth, M. J. & Godfrey, D. I. Cutting edge: IL-21 is not essential for Th17 differentiation or experimental autoimmune encephalomyelitis. J. Immunol. 180, 7097–7101 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Cargill, M. et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am. J. Hum. Genet. 80, 273–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Burton, P. R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nature Genet. 39, 1329–1337 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Silverberg, M. S. et al. Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study. Nature Genet. 41, 216–220 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Leonardi, C. L. et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 371, 1665–1674 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Papp, K. A. et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 371, 1675–1684 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Gottlieb, A. et al. Ustekinumab, a human interleukin 12/23 monoclonal antibody, for psoriatic arthritis: randomised, double-blind, placebo-controlled, crossover trial. Lancet 373, 633–640 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Sandborn, W. J. et al. A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn's disease. Gastroenterology 135, 1130–1141 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Segal, B. M. et al. Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol. 7, 796–804 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Jouanguy, E. et al. IL-12 and IFN-γ in host defense against mycobacteria and salmonella in mice and men. Curr. Opin. Immunol. 11, 346–351 (1999).

    Article  CAS  PubMed  Google Scholar 

  140. Chackerian, A. A. et al. Neutralization or absence of the interleukin-23 pathway does not compromise immunity to mycobacterial infection. Infect. Immun. 74, 6092–6099 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cooper, A. M., Magram, J., Ferrante, J. & Orme, I. M. Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with mycobacterium tuberculosis. J. Exp. Med. 186, 39–45 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zelante, T. et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur. J. Immunol. 37, 2695–2706 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  CAS  PubMed  Google Scholar 

  144. Sigidin, Y. A., Loukina, G. V., Skurkovich, B. & Skurkovich, S. Randomized, double-blind trial of anti-interferon-γ antibodies in rheumatoid arthritis. Scand. J. Rheumatol. 30, 203–207 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Hommes, D. W. et al. Fontolizumab, a humanised anti-interferon γ antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn's disease. Gut 55, 1131–1137 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Guedez, Y. B. et al. Genetic ablation of interferon-γ up-regulates interleukin-1β expression and enables the elicitation of collagen-induced arthritis in a nonsusceptible mouse strain. Arthritis Rheum. 44, 2413–2424 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Camoglio, L. et al. Hapten-induced colitis associated with maintained Th1 and inflammatory responses in IFN-γ receptor-deficient mice. Eur. J. Immunol. 30, 1486–1495 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Steinman, L. A rush to judgment on Th17. J. Exp. Med. 205, 1517–1522 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Casanova, J. L. & Abel, L. Genetic dissection of immunity to mycobacteria: the human model. Annu. Rev. Immunol. 20, 581–620 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Weaver, C. T., Hatton, R. D., Mangan, P. R. & Harrington, L. E. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25, 821–852 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Chang, S. H. & Dong, C. A novel heterodimeric cytokine consisting of IL-17 and IL-17F regulates inflammatory responses. Cell Res. 17, 435–440 (2007).

    Article  PubMed  CAS  Google Scholar 

  152. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and Th17 Cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Khader, S. A., Gaffen, S. L. & Kolls, J. K. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol. 2, 403–411 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ishigame, H. et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30, 108–119 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Genovese, M. et al. LY2439821, a humanized anti-IL-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis. Arthritis Rheum. 62, 929–939 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Tak, P. et al. AIN457 shows a good safety profile and clinical benefit in patients with active rheumatoid arthritis (RA) despite methotrexate therapy: 16-weeks results from a randomized proof-of-concept trial. Arthritis Rheum. 60 (Suppl. 10), 1922 (2009).

    Google Scholar 

  157. Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Kolls, J. K., McCray, P. B. Jr & Chan, Y. R. Cytokine-mediated regulation of antimicrobial proteins. Nature Rev. Immunol. 8, 829–835 (2008).

    Article  CAS  Google Scholar 

  159. Sanos, S. L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nature Immunol. 10, 83–91 (2009).

    Article  CAS  Google Scholar 

  160. Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722–725 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Zenewicz, L. A. et al. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 29, 947–957 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sugimoto, K. et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J. Clin. Invest. 118, 534–544 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Glocker, E. O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zenewicz, L. A. et al. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 27, 647–659 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Aujla, S. J. et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nature Med. 14, 275–281 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Med. 14, 282–289 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Leonard, W. J. & Spolski, R. Interleukin-21: a modulator of lymphoid proliferation, apoptosis and differentiation. Nature Rev. Immunol. 5, 688–698 (2005).

    Article  CAS  Google Scholar 

  169. Spolski, R. & Leonard, W. J. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu. Rev. Immunol. 26, 57–79 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Parrish-Novak, J. et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408, 57–63 (2000).

    Article  CAS  PubMed  Google Scholar 

  171. Yang, L. et al. IL-21 and TGF-β are required for differentiation of human TH17 cells. Nature 454, 350–352 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Frohlich, A. et al. IL-21 receptor signaling is integral to the development of Th2 effector responses in vivo. Blood 109, 2023–2031 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Nurieva, R. I. et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29, 138–149 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Vogelzang, A. et al. A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 29, 127–137 (2008).

    Article  CAS  PubMed  Google Scholar 

  177. Linterman, M. A. et al. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J. Exp. Med. 207, 353–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Bessa, J., Kopf, M. & Bachmann, M. F. Cutting edge: IL-21 and TLR signaling regulate germinal center responses in a B cell-intrinsic manner. J. Immunol. 184, 4615–4619 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Sawalha, A. H. et al. Genetic association of interleukin-21 polymorphisms with systemic lupus erythematosus. Ann. Rheum. Dis. 67, 458–461 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Herber, D. et al. IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R.Fc reduces disease progression. J. Immunol. 178, 3822–3830 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. King, C., Tangye, S. G. & Mackay, C. R. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu. Rev. Immunol. 26, 741–766 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Fort, M. M. et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15, 985–995 (2001).

    Article  CAS  PubMed  Google Scholar 

  183. Owyang, A. M. et al. Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. J. Exp. Med. 203, 843–849 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Fallon, P. G. et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203, 1105–1116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lee, J. et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J. Biol. Chem. 276, 1660–1664 (2001).

    Article  CAS  PubMed  Google Scholar 

  186. Rickel, E. A. et al. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J. Immunol. 181, 4299–4310 (2008).

    Article  CAS  PubMed  Google Scholar 

  187. Tamachi, T. et al. IL-25 enhances allergic airway inflammation by amplifying a TH2 cell-dependent pathway in mice. J. Allergy Clin. Immunol. 118, 606–614 (2006).

    Article  CAS  PubMed  Google Scholar 

  188. Ballantyne, S. J. et al. Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. J. Allergy Clin. Immunol. 120, 1324–1331 (2007).

    Article  CAS  PubMed  Google Scholar 

  189. Kleinschek, M. A. et al. IL-25 regulates Th17 function in autoimmune inflammation. J. Exp. Med. 204, 161–170 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Liu, Y. J. et al. TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu. Rev. Immunol. 25, 193–219 (2007).

    Article  CAS  PubMed  Google Scholar 

  191. Zhou, B. et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nature Immunol. 6, 1047–1053 (2005).

    Article  CAS  Google Scholar 

  192. Ito, T. et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J. Exp. Med. 202, 1213–1223 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Yoo, J. et al. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J. Exp. Med. 202, 541–549 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Soumelis, V. et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nature Immunol. 3, 673–680 (2002).

    Article  CAS  Google Scholar 

  195. Al-Shami, A., Spolski, R., Kelly, J., Keane-Myers, A. & Leonard, W. J. A role for TSLP in the development of inflammation in an asthma model. J. Exp. Med. 202, 829–839 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Allakhverdi, Z. et al. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J. Exp. Med. 204, 253–258 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Taylor, B. C. et al. TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J. Exp. Med. 206, 655–667 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Cohn, L., Elias, J. A. & Chupp, G. L. Asthma: mechanisms of disease persistence and progression. Annu. Rev. Immunol. 22, 789–815 (2004).

    Article  CAS  PubMed  Google Scholar 

  199. Cohn, L., Homer, R. J., Marinov, A., Rankin, J. & Bottomly, K. Induction of airway mucus production by T helper 2 (Th2) cells: a critical role for interleukin 4 in cell recruitment but not mucus production. J. Exp. Med. 186, 1737–1747 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Borish, L. C. et al. Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J. Allergy Clin. Immunol. 107, 963–970 (2001).

    Article  CAS  PubMed  Google Scholar 

  201. Borish, L. C. et al. Interleukin-4 receptor in moderate atopic asthma. A phase I/II randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 160, 1816–1823 (1999).

    Article  CAS  PubMed  Google Scholar 

  202. Steinke, J. W. & Borish, L. Th2 cytokines and asthma. Interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respir. Res. 2, 66–70 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Leckie, M. J. et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356, 2144–2148 (2000).

    Article  CAS  PubMed  Google Scholar 

  204. Kips, J. C. et al. Effect of SCH55700, a humanized anti-human interleukin-5 antibody, in severe persistent asthma: a pilot study. Am. J. Respir. Crit. Care Med. 167, 1655–1659 (2003).

    Article  PubMed  Google Scholar 

  205. Plotz, S. G. et al. Use of an anti-interleukin-5 antibody in the hypereosinophilic syndrome with eosinophilic dermatitis. N. Engl. J. Med. 349, 2334–2339 (2003).

    Article  PubMed  Google Scholar 

  206. Nair, P. et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N. Engl. J. Med. 360, 985–993 (2009).

    Article  CAS  PubMed  Google Scholar 

  207. Jennings, G. T. & Bachmann, M. F. Immunodrugs: therapeutic VLP-based vaccines for chronic diseases. Annu. Rev. Pharmacol. Toxicol. 49, 303–326 (2009).

    Article  CAS  PubMed  Google Scholar 

  208. Rohn, T. A. et al. Vaccination against IL-17 suppresses autoimmune arthritis and encephalomyelitis. Eur. J. Immunol. 36, 2857–2867 (2006).

    Article  CAS  PubMed  Google Scholar 

  209. Sonderegger, I. et al. Neutralization of IL-17 by active vaccination inhibits IL-23-dependent autoimmune myocarditis. Eur. J. Immunol. 36, 2849–2856 (2006).

    Article  CAS  PubMed  Google Scholar 

  210. Spohn, G. et al. A virus-like particle-based vaccine selectively targeting soluble TNF-α protects from arthritis without inducing reactivation of latent tuberculosis. J. Immunol. 178, 7450–7457 (2007).

    Article  CAS  PubMed  Google Scholar 

  211. Yu, D. & Vinuesa, C. G. Multiple checkpoints keep follicular helper T cells under control to prevent autoimmunity. Cell. Mol. Immunol. 7, 198–203 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Omori, M. & Ziegler, S. Induction of IL-4 expression in CD4+ T cells by thymic stromal lymphopoietin. J. Immunol. 178, 1396–1404 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Some of the work described in this Review article was supported by funds of the Swiss National Science Foundation 310030-124922 and 3100A0-100233/1 and ETH Zürich intramural funds ETH-35/04-3 and ETH-0-20400-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Kopf.

Ethics declarations

Competing interests

Martin F. Bachmann is an employee of Cytos Biotechnology and may hold shares or share options in the company.

Glossary

Systemic lupus erythematosus

(SLE). SLE is a chronic autoimmune disease that can affect any tissue and is associated with the induction of various autoantibodies, such as anti-double-stranded DNA and antihistones.

Sjögren's syndrome

Sjögren's syndrome is a disease in which the glands that produce tears and saliva are destroyed by an inflammatory autoimmune response. Sjögren's syndrome can be associated with other autoimmune diseases such as rheumatoid arthritis.

Hashimoto thyroiditis

Hashimoto thyroiditis is an autoimmune disease in which the thyroid gland is destroyed. The disease is characterized by infiltrating T cells and antibodies against thyroid peroxidase and/or thyroglobulinin.

Coeliac disease

Coeliac disease is an autoimmune disorder of the small intestine that is caused by a reaction to gliadin, a prolamin (gluten protein) found in wheat. Although multiple mechanisms may be involved, genetic analysis has linked certain major histocompatibility complex II haplotypes and deficiency in immunoglobulin A with the disease.

Black box warning

The most serious safety warning required on a pharmaceutical label, indicative of a considerable risk of a serious or even life-threatening adverse drug reaction.

Chitosan

A linear polysaccharide that is the structural element in the exoskeleton of crustaceans.

Castleman's disease

A non-cancerous (benign) disorder of one or many lymph nodes characterized by non-clonal hyperproliferation of B cells as a result from hypersecretion of interleukin-6.

NALP3-containing inflammasome

The NALP3-containing inflammasome is a multiprotein complex that functions to activate caspase 1 leading to the cleavage of pro-interleukin-18 (IL-18) and pro-IL-1β into their active subunits. Most inflammatory diseases associated with IL-1 involve activation of the inflammasome complex.

Pulmonary alveolar proteinosis

This is a disease in which abnormal accumulation of surfactant occurs in the alveoli and consequently impairs gas exchange. The mechanisms underlying the disease still need to be discovered; however, autoantibodies against the cytokine granulocyte–macrophage colony-stimulating factor can cause the disease.

JAK–STAT pathway

(Janus kinase–signal transducers and activators of transcription pathway). JAK–STAT signalling is involved in the signalling from many cytokine receptors. On ligation of a receptor by its ligand, JAK phosphorylates tyrosine residues on the receptor, which allows STAT dimers to form and ultimately leads to the transcription of their target genes.

TReg cells

(Regulatory T cells). TReg cells are present in the periphery and in the thymus. They develop in the thymus and are defined by the expression of the forkhead family transcription factor FOXP3, which is required for their development and function. TReg cells in the periphery are thought to be potent suppressors of inflammation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopf, M., Bachmann, M. & Marsland, B. Averting inflammation by targeting the cytokine environment. Nat Rev Drug Discov 9, 703–718 (2010). https://doi.org/10.1038/nrd2805

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2805

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research