Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Personalized medicine in oncology: the future is now

Abstract

Cancer chemotherapy is in evolution from non-specific cytotoxic drugs that damage both tumour and normal cells to more specific agents and immunotherapy approaches. Targeted agents are directed at unique molecular features of cancer cells, and immunotherapeutics modulate the tumour immune response; both approaches aim to produce greater effectiveness with less toxicity. The development and use of such agents in biomarker-defined populations enables a more personalized approach to cancer treatment than previously possible and has the potential to reduce the cost of cancer care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Peppercorn, J., Perou, C. M. & Carey, L. A. Molecular subtypes in breast cancer evaluation and management: divide and conquer. Cancer Invest. 26, 1–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. van de Vijver, M. J. et al. A gene expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Rosenwald, A. et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large B cell lymphoma. N. Engl. J. Med. 346, 1937–1947 (2002).

    Article  PubMed  Google Scholar 

  4. Potti, A. et al. A genomic strategy to refine prognosis in early stage non small cell lung cancer. N. Engl. J. Med. 355, 570–580 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Amado, R. G. et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 1626–1634 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in gliobalstoma. N. Engl. J. Med. 352, 997–1003 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. O'Brien, S. G. et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med. 348, 994–1004 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Demetri, G. D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 347, 472–480 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Paik, S. et al. A multi-gene assay to predict recurrence of tamoxifen-treated, node negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Hayes, D. F. et al. Her2 and response to paclitaxel in node positive breast cancer. N. Engl. J. Med. 357, 1496–1506 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Olaussen, K. A. et al. DNA repair by ERCC1 in non small cell lung cancer and cisplatin-based adjuvant chemotherapy. N. Engl. J. Med. 355, 983–991 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Schuster, S. J. et al. Idiotype vaccine therapy (Biovax ID) in follicular lymphoma in first complete remission: phase III clinical trial results. J. Clin. Oncol. 27 (Jun 20 Suppl.), 2 (2009).

    Article  Google Scholar 

  15. Innocenti, F. et al. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J. Clin. Oncol. 27, 2604–2614 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dezentjé, V. O., Guchelaar, H. -J., Nortier, J. W., van de Velde, C. J. & Gelderblom, H. Clinical implications of CYP2D6 genotyping in tamoxifen treatment for breast cancer. Clin. Cancer Res. 15, 15–21 (2009).

    Article  PubMed  Google Scholar 

  17. Schroth, W. et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J. Clin. Oncol. 25, 5187–5193 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Kris, M. et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor tyrosine kinase, in symptomatic patients with non small cell lung cancer. JAMA 290, 2149–2158 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Giaccone, G. et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a Phase III trial — INTACT 1. J. Clin. Oncol. 22, 777–784 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Herbst, R. S. et al. Gefitinibin combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a Phase III trial — INTACT 2. J. Clin. Oncol. 22, 785–794 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi, S. et al. EGFR mutation and resistance of non small cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Engelman, J. A. & Janne, P. A. Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non small cell lung cancer. Clin. Cancer Res. 14, 2895–2899 (2008).

    Article  PubMed  Google Scholar 

  24. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. O'Reilly, K. E. et al. mTor inhibition induces upstream receptor tyrosine kinase signaling and activates AKT. Cancer Res. 66, 1500–1508 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mandrekar, S. J. & Sargent, D. J. Clinical trial designs for predictive biomarker validation: theoretical considerations and practical challenges. J. Clin. Oncol. 27, 4027–4034 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shepherd, F. A. et al. Erlotinib in previously treated non small cell lung cancer. N. Engl. J. Med. 353, 123–132 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Bradbury, P. A. et al. Economic analysis: randomized placebo-controlled clinical trial of erlotinib in advanced non-small cell lung cancer. J. Natl Cancer Inst. 102, 1–9 (2010).

    Article  Google Scholar 

  29. Karapetis, C. S. et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 359, 1757–1765 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Di Fiore, F. et al. Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by cetuximab plus chemotherapy. Br. J. Cancer 96, 1166–1169 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lievre, A. et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J. Clin. Oncol. 26, 374–379 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Van Cutsem, E. et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med. 360, 1408–1417 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Allegra, C. J. et al. American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J. Clin. Oncol. 27, 2091–2096 (2009).

    Article  PubMed  Google Scholar 

  34. Shankaran, V., Bentrem, D. J., Mulcahy, M. F., Bennett, C. L. & Benson, A. B. III. Economic implications of kras testing in metastatic colorectal cancer (mCRC). American Association of Clincal Oncology website [online], (2009).

    Google Scholar 

  35. Mittmann, N. et al. Prospective cost-effectiveness analysis of cetuximab in metastatic colorectal cancer: evaluation of National Cancer Institute of Canada Clinical Trials Group CO.17 trial. J. Natl Cancer Inst. 101, 1182–1192 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Sartore-Bianchi, A. et al. Multi-determinants analysis of molecular alterations for predicting clinical benefit to EGFR-targeted monoclonal antibodies in colorectal cancer. PLOS One 4, e7287 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

OMIM

Breast cancer

chronic myeloid leukaemia

colorectal cancer

gastointestinal stromal tumours

non-small cell lung cancer

FURTHER INFORMATION

Accelerating Development and Approval of Targeted Cancer Therapies

The Brookings Institute

The Cancer Genome Atlas

The Cancer Genome Project

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schilsky, R. Personalized medicine in oncology: the future is now. Nat Rev Drug Discov 9, 363–366 (2010). https://doi.org/10.1038/nrd3181

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3181

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer