Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases

Abstract

Current pharmacotherapeutic options for treating obesity and related metabolic disorders remain limited and ineffective. Emerging evidence shows that modulators of angiogenesis affect the expansion and metabolism of fat mass by regulating the growth and remodelling of the adipose tissue vasculature. Pharmacological manipulation of adipose tissue neovascularization by angiogenic stimulators and inhibitors might therefore offer a novel therapeutic option for the treatment of obesity and related metabolic disorders. This Perspective discusses recent progress in understanding the molecular mechanisms that control adipose tissue angiogenesis and in defining potential new vascular targets and approaches for the treatment of this group of diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functions of adipose tissue vasculature.
Figure 2: Mechanisms and molecular mediators of adipose tissue angiogenesis.
Figure 3: Reciprocal switching between various cell types in adipose tissue.
Figure 4: Paradoxical relationship between angiogenesis and metabolism in white and brown adipose tissues.
Figure 5: Angiogenesis in obesity-associated clinical complications.

Similar content being viewed by others

References

  1. World Health Organization. Obesity and overweight fact sheet. The World Health Organization website [online], (2009).

  2. Cao, Y. Angiogenesis modulates adipogenesis and obesity. J. Clin. Invest. 117, 2362–2368 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cooke, D. & Bloom, S. The obesity pipeline: current strategies in the development of anti-obesity drugs. Nature Rev. Drug Discov. 5, 919–931 (2006).

    CAS  Google Scholar 

  4. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1, 27–31 (1995).

    CAS  PubMed  Google Scholar 

  5. Lijnen, H. R. Angiogenesis and obesity. Cardiovasc. Res. 78, 286–293 (2008).

    CAS  PubMed  Google Scholar 

  6. Cao, Y. Endogenous angiogenesis inhibitors and their therapeutic implications. Int. J. Biochem. Cell Biol. 33, 357–369 (2001).

    CAS  PubMed  Google Scholar 

  7. Folkman, J. Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N. Engl. J. Med. 333, 1757–1763 (1995).

    CAS  PubMed  Google Scholar 

  8. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    CAS  PubMed  Google Scholar 

  9. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    CAS  PubMed  Google Scholar 

  10. Nyberg, P., Xie, L. & Kalluri, R. Endogenous inhibitors of angiogenesis. Cancer Res. 65, 3967–3979 (2005).

    CAS  PubMed  Google Scholar 

  11. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    CAS  PubMed  Google Scholar 

  12. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    CAS  PubMed  Google Scholar 

  13. Kerbel, R. S. Tumor angiogenesis. N. Engl. J. Med. 358, 2039–2049 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Motzer, R. J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007).

    CAS  PubMed  Google Scholar 

  15. Gragoudas, E. S., Adamis, A. P., Cunningham, E. T. Jr, Feinsod, M. & Guyer, D. R. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 351, 2805–2816 (2004).

    CAS  PubMed  Google Scholar 

  16. Steinbrook, R. The price of sight — ranibizumab, bevacizumab, and the treatment of macular degeneration. N. Engl. J. Med. 355, 1409–1412 (2006).

    CAS  PubMed  Google Scholar 

  17. Duh, E. & Aiello, L. P. Vascular endothelial growth factor and diabetes: the agonist versus antagonist paradox. Diabetes 48, 1899–1906 (1999).

    CAS  PubMed  Google Scholar 

  18. Gariano, R. F. & Gardner, T. W. Retinal angiogenesis in development and disease. Nature 438, 960–966 (2005).

    CAS  PubMed  Google Scholar 

  19. Feldmann, H. M., Golozoubova, V., Cannon, B. & Nedergaard, J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 9, 203–209 (2009).

    CAS  PubMed  Google Scholar 

  20. Lodhi, I. J. & Semenkovich, C. F. Why we should put clothes on mice. Cell Metab. 9, 111–112 (2009).

    CAS  PubMed  Google Scholar 

  21. Xue, Y. et al. Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab. 9, 99–109 (2009).

    CAS  PubMed  Google Scholar 

  22. Crossno, J. T. Jr, Majka, S. M., Grazia, T., Gill, R. G. & Klemm, D. J. Rosiglitazone promotes development of a novel adipocyte population from bone marrow-derived circulating progenitor cells. J. Clin. Invest. 116, 3220–3228 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tang, W. et al. White fat progenitor cells reside in the adipose vasculature. Science 322, 583–586 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    CAS  PubMed  Google Scholar 

  25. Powell, K. Obesity: the two faces of fat. Nature 447, 525–527 (2007).

    CAS  PubMed  Google Scholar 

  26. Cao, R., Brakenhielm, E., Wahlestedt, C., Thyberg, J. & Cao, Y. Leptin induces vascular permeability and synergistically stimulates angiogenesis with FGF-2 and VEGF. Proc. Natl Acad. Sci. USA 98, 6390–6395 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kamba, T. et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am. J. Physiol. Heart Circ. Physiol. 290, H560–H576 (2006).

    CAS  PubMed  Google Scholar 

  28. Friedman, J. M. & Halaas, J. L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).

    CAS  PubMed  Google Scholar 

  29. Yamauchi, T. et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003).

    CAS  PubMed  Google Scholar 

  30. Jansson, P. A. Endothelial dysfunction in insulin resistance and type 2 diabetes. J. Intern. Med. 262, 173–183 (2007).

    CAS  PubMed  Google Scholar 

  31. Bakker, W., Eringa, E. C., Sipkema, P. & van Hinsbergh, V. W. Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res. 335, 165–189 (2009).

    CAS  PubMed  Google Scholar 

  32. Goldberg, R. B. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J. Clin. Endocrinol. Metab. 94, 3171–3182 (2009).

    CAS  PubMed  Google Scholar 

  33. Rutkowski, J. M., Davis, K. E. & Scherer, P. E. Mechanisms of obesity and related pathologies: the macro- and microcirculation of adipose tissue. FEBS J. 276, 5738–5746 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sierra-Honigmann, M. R. et al. Biological action of leptin as an angiogenic factor. Science 281, 1683–1686 (1998).

    CAS  PubMed  Google Scholar 

  35. Aleffi, S. et al. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology 42, 1339–1348 (2005).

    CAS  PubMed  Google Scholar 

  36. Dobson, D. E. et al. 1-Butyryl-glycerol: a novel angiogenesis factor secreted by differentiating adipocytes. Cell 61, 223–230 (1990).

    CAS  PubMed  Google Scholar 

  37. Brakenhielm, E. et al. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc. Natl Acad. Sci. USA 101, 2476–2481 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mahadev, K. et al. Adiponectin inhibits vascular endothelial growth factor-induced migration of human coronary artery endothelial cells. Cardiovasc. Res. 78, 376–384 (2008).

    CAS  PubMed  Google Scholar 

  39. Scroyen, I., Jacobs, F., Cosemans, L., De Geest, B. & Lijnen, H. R. Effect of plasminogen activator inhibitor-1 on adipogenesis in vivo. Thromb. Haemost. 101, 388–393 (2009).

    CAS  PubMed  Google Scholar 

  40. Wang, Y. et al. Adiponectin modulates the glycogen synthase kinase-3β/β-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res. 66, 11462–11470 (2006).

    CAS  PubMed  Google Scholar 

  41. Voros, G. et al. Modulation of angiogenesis during adipose tissue development in murine models of obesity. Endocrinology 146, 4545–4554 (2005).

    CAS  PubMed  Google Scholar 

  42. Landskroner-Eiger, S. et al. Proangiogenic contribution of adiponectin toward mammary tumor growth in vivo. Clin. Cancer Res. 15, 3265–3276 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ouchi, N. et al. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J. Biol. Chem. 279, 1304–1309 (2004).

    CAS  PubMed  Google Scholar 

  44. de Fraipont, F., Nicholson, A. C., Feige, J. J. & Van Meir, E. G., Thrombospondins and tumor angiogenesis. Trends Mol. Med. 7, 401–407 (2001).

    CAS  PubMed  Google Scholar 

  45. Hosogai, N. et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56, 901–911 (2007).

    CAS  PubMed  Google Scholar 

  46. Trayhurn, P., Wang, B. & Wood, I. S. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br. J. Nutr. 100, 227–235 (2008).

    CAS  PubMed  Google Scholar 

  47. Bertolini, F., Shaked, Y., Mancuso, P. & Kerbel, R. S. The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nature Rev. Cancer 6, 835–845 (2006).

    CAS  Google Scholar 

  48. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med. 7, 1194–1201 (2001).

    CAS  PubMed  Google Scholar 

  49. Shaked, Y. et al. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313, 1785–1787 (2006).

    CAS  PubMed  Google Scholar 

  50. Takahashi, T. et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Med. 5, 434–438 (1999).

    CAS  PubMed  Google Scholar 

  51. Pittenger, M. F. & Martin, B. J. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res. 95, 9–20 (2004).

    CAS  PubMed  Google Scholar 

  52. Prockop, D. J. et al. Potential use of stem cells from bone marrow to repair the extracellular matrix and the central nervous system. Biochem. Soc. Trans. 28, 341–345 (2000).

    CAS  PubMed  Google Scholar 

  53. Wu, Y., Chen, L., Scott, P. G. & Tredget, E. E. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25, 2648–2659 (2007).

    CAS  PubMed  Google Scholar 

  54. Meliga, E., Strem, B. M., Duckers, H. J. & Serruys, P. W. Adipose-derived cells. Cell Transplant 16, 963–970 (2007).

    PubMed  Google Scholar 

  55. Valina, C. et al. Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur. Heart J. 28, 2667–2677 (2007).

    PubMed  Google Scholar 

  56. Grenier, G. et al. Resident endothelial precursors in muscle, adipose, and dermis contribute to postnatal vasculogenesis. Stem Cells 25, 3101–3110 (2007).

    CAS  PubMed  Google Scholar 

  57. Kahn, C. R. Medicine. Can we nip obesity in its vascular bud? Science 322, 542–543 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Timmons, J. A. et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc. Natl Acad. Sci. USA 104, 4401–4406 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Tong, Q. et al. Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 290, 134–138 (2000).

    CAS  PubMed  Google Scholar 

  60. Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Brakenhielm, E. et al. Angiogenesis inhibitor, TNP-470, prevents diet-induced and genetic obesity in mice. Circ. Res. 94, 1579–1588 (2004).

    CAS  PubMed  Google Scholar 

  62. Rupnick, M. A. et al. Adipose tissue mass can be regulated through the vasculature. Proc. Natl Acad. Sci. USA 99, 10730–10735 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. O'Reilly, M. S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328 (1994).

    CAS  PubMed  Google Scholar 

  64. O'Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).

    CAS  PubMed  Google Scholar 

  65. Tam, J. et al. Blockade of VEGFR2 and not VEGFR1 can limit diet-induced fat tissue expansion: role of local versus bone marrow-derived endothelial cells. PLoS ONE 4, e4974 (2009).

    PubMed  PubMed Central  Google Scholar 

  66. Fukumura, D. et al. Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ. Res. 93, e88–97 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim, Y. M. et al. Assessment of the anti-obesity effects of the TNP-470 analog, CKD-732. J. Mol. Endocrinol. 38, 455–465 (2007).

    CAS  PubMed  Google Scholar 

  68. Satchi-Fainaro, R. et al. Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nature Med. 10, 255–261 (2004).

    CAS  PubMed  Google Scholar 

  69. Cao, Y. Molecular mechanisms and therapeutic development of angiogenesis inhibitors. Adv. Cancer Res. 100, 113–131 (2008).

    CAS  PubMed  Google Scholar 

  70. Cao, Y., Zhong, W. & Sun, Y. Improvement of antiangiogenic cancer therapy by understanding the mechanisms of angiogenic factor interplay and drug resistance. Semin. Cancer Biol. 19, 338–343 (2009).

    CAS  PubMed  Google Scholar 

  71. Kolonin, M. G., Saha, P. K., Chan, L., Pasqualini, R. & Arap, W. Reversal of obesity by targeted ablation of adipose tissue. Nature Med. 10, 625–632 (2004).

    CAS  PubMed  Google Scholar 

  72. Piqueras, L. et al. Activation of PPARβ/δ induces endothelial cell proliferation and angiogenesis. Arterioscler. Thromb. Vasc. Biol. 27, 63–69 (2007).

    CAS  PubMed  Google Scholar 

  73. Gealekman, O. et al. Enhanced angiogenesis in obesity and in response to PPARg activators through adipocyte VEGF and ANGPTL4 production. Am. J. Physiol. Endocrinol. Metab. 295, E1056–E1064 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Demeulemeester, D., Collen, D. & Lijnen, H. R. Effect of matrix metalloproteinase inhibition on adipose tissue development. Biochem. Biophys. Res. Commun. 329, 105–110 (2005).

    CAS  PubMed  Google Scholar 

  75. Chavey, C. et al. Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J. Biol. Chem. 278, 11888–11896 (2003).

    CAS  PubMed  Google Scholar 

  76. Lijnen, H. R. et al. Matrix metalloproteinase inhibition impairs adipose tissue development in mice. Arterioscler Thromb. Vasc. Biol. 22, 374–379 (2002).

    CAS  PubMed  Google Scholar 

  77. Christiaens, V., Voros, G., Scroyen, I. & Lijnen, H. R. On the role of placental growth factor in murine adipogenesis. Thromb. Res. 120, 399–405 (2007).

    CAS  PubMed  Google Scholar 

  78. Lijnen, H. R. et al. Impaired adipose tissue development in mice with inactivation of placental growth factor function. Diabetes 55, 2698–2704 (2006).

    CAS  PubMed  Google Scholar 

  79. Ejaz, A., Wu, D., Kwan, P. & Meydani, M. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J. Nutr. 139, 919–25 (2009).

    CAS  PubMed  Google Scholar 

  80. Shin, J. H., Shin, D. W. & Noh, M. Interleukin-17A inhibits adipocyte differentiation in human mesenchymal stem cells and regulates pro-inflammatory responses in adipocytes. Biochem. Pharmacol. 77, 1835–44 (2009).

    CAS  PubMed  Google Scholar 

  81. Hill, A. M. et al. Can EGCG reduce abdominal fat in obese subjects? J. Am. Coll. Nutr. 26, 396S–402S (2007).

    CAS  PubMed  Google Scholar 

  82. Kao, Y. H., Chang, H. H., Lee, M. J. & Chen, C. L. Tea, obesity, and diabetes. Mol. Nutr. Food Res. 50, 188–210 (2006).

    CAS  PubMed  Google Scholar 

  83. Lin, J., Della-Fera, M. A. & Baile, C. A. Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Obes. Res. 13, 982–990 (2005).

    CAS  PubMed  Google Scholar 

  84. Klaus, S., Pultz, S., Thone-Reineke, C. & Wolfram, S. Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int. J. Obes. (Lond.) 29, 615–623 (2005).

    CAS  Google Scholar 

  85. Cao, Y. & Cao, R. Angiogenesis inhibited by drinking tea. Nature 398, 381 (1999).

    CAS  PubMed  Google Scholar 

  86. Yamauchi, T. et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nature Med. 13, 332–339 (2007).

    CAS  PubMed  Google Scholar 

  87. Seeley, R. J., D'Alessio, D. A. & Woods, S. C. Fat hormones pull their weight in the CNS. Nature Med. 10, 454–455 (2004).

    CAS  PubMed  Google Scholar 

  88. Saltiel, A. R. You are what you secrete. Nature Med. 7, 887–888 (2001).

    CAS  PubMed  Google Scholar 

  89. O'Rahilly, S. Life without leptin. Nature 392, 330–331 (1998).

    CAS  PubMed  Google Scholar 

  90. Friedman, J. M. Obesity in the new millennium. Nature 404, 632–634 (2000).

    CAS  PubMed  Google Scholar 

  91. Frederich, R. C. et al. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nature Med. 1, 1311–1314 (1995).

    CAS  PubMed  Google Scholar 

  92. Licinio, J. et al. Human leptin levels are pulsatile and inversely related to pituitary-adrenal function. Nature Med. 3, 575–579 (1997).

    CAS  PubMed  Google Scholar 

  93. Miller, K. et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 357, 2666–2676 (2007).

    CAS  PubMed  Google Scholar 

  94. Caputo, G. M., Cavanagh, P. R., Ulbrecht, J. S., Gibbons, G. W. & Karchmer, A. W. Assessment and management of foot disease in patients with diabetes. N. Engl. J. Med. 331, 854–860 (1994).

    CAS  PubMed  Google Scholar 

  95. Cao, Y. Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci. Signal. 2, re1 (2009).

    PubMed  Google Scholar 

  96. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005).

    CAS  PubMed  Google Scholar 

  97. Ferrara, N. & Kerbel, R. S. Angiogenesis as a therapeutic target. Nature 438, 967–974 (2005).

    CAS  PubMed  Google Scholar 

  98. Carmeliet, P. & Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature 436, 193–200 (2005).

    CAS  PubMed  Google Scholar 

  99. Carmeliet, P. VEGF gene therapy: stimulating angiogenesis or angioma-genesis? Nature Med. 6, 1102–1103 (2000).

    CAS  PubMed  Google Scholar 

  100. Celletti, F. L. et al. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nature Med. 7, 425–429 (2001).

    CAS  PubMed  Google Scholar 

  101. Jinnin, M. et al. Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nature Med. 14, 1236–1246 (2008).

    CAS  PubMed  Google Scholar 

  102. Ware, J. A. Too many vessels? Not enough? The wrong kind? The VEGF debate continues. Nature Med. 7, 403–404 (2001).

    CAS  PubMed  Google Scholar 

  103. Kopelman, P. G. Obesity as a medical problem. Nature 404, 635–643 (2000).

    CAS  PubMed  Google Scholar 

  104. Couzin, J. Medicine. Bypassing medicine to treat diabetes. Science 320, 438–440 (2008).

    CAS  PubMed  Google Scholar 

  105. Cappuzzo, F., Bartolini, S. & Crino, L. Emerging drugs for non-small cell lung cancer. Expert Opin. Emerg. Drugs 8, 179–192 (2003).

    CAS  PubMed  Google Scholar 

  106. Mistry, T., Digby, J. E., Desai, K. M. & Randeva, H. S. Obesity and prostate cancer: a role for adipokines. Eur. Urol. 52, 46–53 (2007).

    CAS  PubMed  Google Scholar 

  107. Rakic, J. M., Blaise, P. & Foidart, J. M. Pegaptanib and age-related macular degeneration. N. Engl. J. Med. 352, 1720–1721 (2005); author reply 352, 1720–1721 (2005).

    CAS  PubMed  Google Scholar 

  108. Brown, D. M. et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N. Engl. J. Med. 355, 1432–1444 (2006).

    CAS  PubMed  Google Scholar 

  109. Rosenfeld, P. J. et al. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 355, 1419–1431 (2006).

    CAS  PubMed  Google Scholar 

  110. Margolis, D. J., Crombleholme, T. & Herlyn, M. Clinical protocol: Phase I trial to evaluate the safety of H5.020CMV.PDGF-B for the treatment of a diabetic insensate foot ulcer. Wound Repair Regen. 8, 480–493 (2000).

    CAS  PubMed  Google Scholar 

  111. Josifova, T., Schneider, U., Henrich, P. B. & Schrader, W. Eye disorders in diabetes: potential drug targets. Infect. Disord. Drug Targets. 8, 70–75 (2008).

    CAS  PubMed  Google Scholar 

  112. Rodriguez-Fontal, M., Alfaro, V., Kerrison, J. B. & Jablon, E. P. Ranibizumab for diabetic retinopathy. Curr. Diabetes Rev. 5, 47–51 (2009).

    CAS  PubMed  Google Scholar 

  113. Simo, R. & Hernandez, C. Intravitreous anti-VEGF for diabetic retinopathy: hopes and fears for a new therapeutic strategy. Diabetologia 51, 1574–1580 (2008).

    CAS  PubMed  Google Scholar 

  114. Balfour, J. A. B. & Noble, S. Becaplermin. BioDrugs 11, 359–364 (1999).

    CAS  PubMed  Google Scholar 

  115. Ladin, D. Becaplermin gel (PDGF-BB) as topical wound therapy. Plastic Surgery Educational Foundation DATA Committee. Plast. Reconstr. Surg. 105, 1230–1231 (2000).

    CAS  PubMed  Google Scholar 

  116. Steed, D. L. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity ulcers. Plast. Reconstr. Surg. 117, 143S–149S; discussion 150S–151S (2006).

    CAS  PubMed  Google Scholar 

  117. Lazar, M. A. How obesity causes diabetes: not a tall tale. Science 307, 373–375 (2005).

    CAS  PubMed  Google Scholar 

  118. Lehrke, M. & Lazar, M. A. The many faces of PPARg. Cell 123, 993–999 (2005).

    CAS  PubMed  Google Scholar 

  119. Menghini, R. et al. Tissue inhibitor of metalloproteinase 3 deficiency causes hepatic steatosis and adipose tissue inflammation in mice. Gastroenterology 136, 663–672 e4 (2009).

    CAS  PubMed  Google Scholar 

  120. Fantuzzi, G. & Faggioni, R. Leptin in the regulation of immunity, inflammation, and hematopoiesis. J. Leukoc. Biol. 68, 437–446 (2000).

    CAS  PubMed  Google Scholar 

  121. Cho, C. H. et al. Angiogenic role of LYVE-1-positive macrophages in adipose tissue. Circ. Res. 100, e47–57 (2007).

    CAS  PubMed  Google Scholar 

  122. Kaipainen, A. et al. PPARa deficiency in inflammatory cells suppresses tumor growth. PLoS ONE 2, e260 (2007).

    PubMed  PubMed Central  Google Scholar 

  123. Arany, Z. et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α. Nature 451, 1008–1012 (2008).

    CAS  PubMed  Google Scholar 

  124. Rophael, J. A. et al. Angiogenic growth factor synergism in a murine tissue engineering model of angiogenesis and adipogenesis. Am. J. Pathol. 171, 2048–2057 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Moon, M. H. et al. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol. Biochem. 17, 279–290 (2006).

    CAS  PubMed  Google Scholar 

  126. Nakagami, H. et al. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J. Atheroscler Thromb. 13, 77–81 (2006).

    PubMed  Google Scholar 

  127. Fraser, J. K., Wulur, I., Alfonso, Z. & Hedrick, M. H. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 24, 150–154 (2006).

    CAS  PubMed  Google Scholar 

  128. Kubis, N. et al. Vascular fate of adipose tissue-derived adult stromal cells in the ischemic murine brain: a combined imaging-histological study. Neuroimage 34, 1–11 (2007).

    PubMed  Google Scholar 

  129. Lin, J., Lindsey, M. L., Zhu, B., Agrawal, C. M. & Bailey, S. R. Effects of surface-modified scaffolds on the growth and differentiation of mouse adipose-derived stromal cells. J. Tissue Eng. Regen. Med. 1, 211–217 (2007).

    CAS  PubMed  Google Scholar 

  130. Lovren, F. et al. Visfatin (nicotinomide phosphoribosyltransferase/pre-B cell colony-enhancing factor) activates eNOS via Akt and MAP kinases and improves endothelial function. Am. J. Physiol. Endocrinol. Metab. 7 Apr 2009 (doi:10.1152/ajpendo.90780.2008).

    CAS  PubMed  Google Scholar 

  131. Marcus, A. J., Coyne, T. M., Black, I. B. & Woodbury, D. Fate of amnion-derived stem cells transplanted to the fetal rat brain: migration, survival and differentiation. J. Cell. Mol. Med. 12, 1256–1264 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Suga, H. et al. Functional implications of CD34 expression in human adipose-derived stem/progenitor cells. Stem Cells Dev. 18, 1201–1210 (2009).

    CAS  PubMed  Google Scholar 

  133. Traktuev, D. O. et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ. Res. 102, 77–85 (2008).

    CAS  PubMed  Google Scholar 

  134. Enerback, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997).

    CAS  PubMed  Google Scholar 

  135. Wallberg-Henriksson, H. & Zierath, J. R. A new twist on brown fat metabolism. Cell 137, 22–24 (2009).

    CAS  PubMed  Google Scholar 

  136. Kuo, L. E. et al. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nature Med. 13, 803–811 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Y. Xue for discussion and S. Lim for her artistic work. The laboratory of Y.C. is supported through research grants from the Swedish Research Council, the Swedish Cancer Foundation, the Karolinska Institute Foundation, the Torsten and Ragnar Söderberg's Foundation, and by the European Union Integrated Projects of Metoxia (project number 222741), and a European Research Council advanced grant. Y.C. is a Chang Jiang Scholar at the Shandong University, China.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Yihai Cao is a stockholder for Clanotech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y. Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov 9, 107–115 (2010). https://doi.org/10.1038/nrd3055

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3055

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing