Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translational research in medication development for nicotine dependence

Key Points

  • Nicotine dependence is a major public health problem. Food and Drug Administration (FDA)-approved medications include nicotine-replacement therapies, bupropion and varenicline. Yet, only about 1 in 4 smokers are able to quit and remain abstinent for 1 year or more.

  • Significant progress in elucidating the molecular neurobiology of nicotine dependence has identified several mechanistic targets for translational research in medication development. These include, but are not limited to, dopaminergic, GABA (g-aminobutyric acid)-mediated, glutamatergic and opioid processes; intracellular signalling molecules (CREB (cyclic AMP response element binding), ΔFosB); and nicotinic cholinergic receptors.

  • The lack of validated animal and human laboratory paradigms that have demonstrated predictive clinical validity is a major obstacle to the development of improved medications for nicotine dependence. Scientists in academic institutions and industry can and should contribute to medication development for drug dependence by addressing this critical gap.

  • In animals and humans, the reinforcing value of drugs of abuse, including nicotine, can be assessed using self-administration models. Reward, a concept related to but different from reinforcement, can be measured in animals using conditioned place preference and intracranial self-stimulation paradigms. In humans, drug reward is measured using self-report assessments.

  • The negative-reinforcing effects of drugs of abuse focus on the alleviation of physiological, affective and neurocognitive signs of drug withdrawal in dependent subjects. Although many models exist to assess these variables, few have been tested for predictive clinical validity for medication screening.

  • Relapse is a central concept in drug dependence. In animals this is typically assessed using reinstatement models. Novel paradigms are also being developed for assessing medication effects on relapse in the human laboratory setting.

  • Animal and human laboratory models require further validation if they are to be used to optimize medication development. Ideally, these models should provide an early indication of the likely efficacy of a medication before proceeding to more costly clinical trials. One opportunity to address model validation would be to examine medications with proven efficacy for smoking cessation across each of the animal and human laboratory models.

Abstract

A major obstacle to the development of medications for nicotine dependence is the lack of animal and human laboratory models with sufficient predictive clinical validity to support the translation of knowledge from laboratory studies to clinical research. This Review describes the animal and human laboratory paradigms commonly used to investigate the pathophysiology of nicotine dependence, and proposes how their predictive validity might be determined and improved, thereby enhancing the development of new medications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An illustration of the substantial lack of comparison of treatment-relevant compounds across animal behavioural pharmacological and human laboratory paradigms.

Similar content being viewed by others

References

  1. van den Brink, W. & Haasen, C. Evidenced-based treatment of opioid-dependent patients. Can. J. Psychiatry 51, 635–646 (2006).

    PubMed  Google Scholar 

  2. Kreek, M. J., LaForge, K. S. & Butelman, E. Pharmacotherapy of addictions. Nature Rev. Drug Discovery 1, 710–726 (2002). An overview of pharmacotherapy and medication development for addictions, focusing on alcohol and illicit drug dependence.

    CAS  Google Scholar 

  3. Pouletty, P. Drug addictions: towards socially accepted and medically treatable diseases. Nature Rev. Drug Discovery 1, 731–736 (2002).

    CAS  Google Scholar 

  4. Schnoll, R. & Lerman, C. Current and emerging pharmacotherapies for treating tobacco dependence. Expert Opin. Emerg. Drugs 11, 429–444 (2006).

    CAS  PubMed  Google Scholar 

  5. Perkins, K. A., Stitzer, M. & Lerman, C. Medication screen-ing for smoking cessation: a proposal for new method-ologies. Psychopharmacology 184, 628–636 (2006). A commentary that highlights the limitations in human screening of cessation medications and suggests novel methodologies.

    CAS  PubMed  Google Scholar 

  6. Buisson, B. & Bertrand, D. Nicotine addiction: the possible role of functional upregulation. Trends Pharmacol. Sci. 23, 130–136 (2002).

    CAS  PubMed  Google Scholar 

  7. Baker, T. B., Piper, M. E., McCarthy, D. E., Majeskie, M. R. & Fiore, M. C. Addiction motivation reformulated: an affective processing model of negative reinforcement. Psychol. Rev. 111, 33–51 (2004).

    PubMed  Google Scholar 

  8. Bossert, J. M., Ghitza, U. E., Lu, L., Epstein, D. H. & Shaham, Y. Neurobiology of relapse to heroin and cocaine seeking: an update and clinical implications. Eur. J. Pharmacol. 526, 36–50 (2005).

    CAS  PubMed  Google Scholar 

  9. Koob, G. F. The neurobiology of addiction: a neuroadaptational view relevant for diagnosis. Addiction 101 (Suppl. 1), 23–30 (2006). A contemporary overview of CNS systems and behavioural processes that have been proposed to play a role in drug dependence.

    PubMed  Google Scholar 

  10. Conklin, C. A. et al. The return to smoking: 1-year relapse trajectories among female smokers. Nicotine Tob. Res. 7, 533–540 (2005).

    PubMed  Google Scholar 

  11. Perkins, K. A. Chronic tolerance to nicotine in humans and its relationship to tobacco dependence. Nicotine Tob. Res. 4, 405–422 (2002).

    CAS  PubMed  Google Scholar 

  12. Perkins, K. A. et al. Quitting cigarette smoking produces minimal loss of chronic tolerance to nicotine. Psychopharmacology 158, 7–17 (2001).

    CAS  PubMed  Google Scholar 

  13. Robinson, T. E. & Berridge, K. C. Incentive-sensitization and addiction. Addiction 96, 103–114 (2001).

    CAS  PubMed  Google Scholar 

  14. Wise, R. A. Brain reward circuitry: insights from unsensed incentives. Neuron 36, 229–240 (2002).

    CAS  PubMed  Google Scholar 

  15. Wise, R. A. Dopamine, learning and motivation. Nature Rev. Neurosci. 5, 483–494 (2004).

    CAS  Google Scholar 

  16. Hyman, S. E., Malenka, R. C. & Nestler, E. J. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev.Neurosci. 29, 565–598 (2006).

    CAS  PubMed  Google Scholar 

  17. Hyman, S. E. Addiction: a disease of learning and memory. Am. J. Psychiatry 162, 1414–1422 (2005).

    PubMed  Google Scholar 

  18. Kauer, J. A. Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu. Rev. Physiol. 66, 447–475 (2004).

    CAS  PubMed  Google Scholar 

  19. Redish, A. D. Addiction as a computational process gone awry. Science 306, 1944–1947 (2004).

    CAS  PubMed  Google Scholar 

  20. Tobler, P. N., Fiorillo, C. D. & Schultz, W. Adaptive coding of reward value by dopamine neurons. Science 307, 1642–1645 (2005).

    CAS  PubMed  Google Scholar 

  21. Vezina, P. Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neurosci. Biobehav. Rev. 27, 827–839 (2004).

    CAS  PubMed  Google Scholar 

  22. Corrigall, W. A., Coen, K. M. & Adamson, K. L. Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res. 653, 278–284 (1994). This study was the first to use a model of nicotine self-administration by laboratory rats to investigate the CNS mechanisms of nicotine dependence.

    CAS  PubMed  Google Scholar 

  23. Kalivas, P. W. & Volkow, N. D. The neural basis of addiction: a pathology of motivation and choice. Am. J. Psychiatry 162, 1403–1413 (2005).

    PubMed  Google Scholar 

  24. Corrigall, W. A., Franklin, K. B., Coen, K. M. & Clarke, P. B. The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology 107, 285–289 (1992).

    CAS  PubMed  Google Scholar 

  25. Picciotto, M. R. & Corrigall, W. A. Neuronal systems underlying behaviors related to nicotine addiction: neural circuits and molecular genetics. J. Neurosci. 22, 3338–3341 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nestler, E. J. Is there a common molecular pathway for addiction? Nature Neurosci. 8, 1445–1449 (2005).

    CAS  PubMed  Google Scholar 

  27. Laviolette, S. R. & van der Kooy, D. The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nature Rev. Neurosci. 5, 55–65 (2004). This paper illustrates how complex interactions within a single brain region, such as the ventral tegmental area, may mediate both positive and aversive effects of nicotine.

    CAS  Google Scholar 

  28. Jose Lanca, A., Sanelli, T. R. & Corrigall, W. A. Nicotine-induced fos expression in the pedunculopontine mesencephalic tegmentum in the rat. Neuropharmacology 39, 2808–2817 (2000).

    CAS  PubMed  Google Scholar 

  29. Klink, R., de Kerchove d'Exaerde, A., Zoli, M. & Changeux, J. P. Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J. Neurosci. 21, 1452–1463 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chao, J. & Nestler, E. J. Molecular neurobiology of drug addiction. Annu. Rev. Med. 55, 113–132 (2004).

    CAS  PubMed  Google Scholar 

  31. Holmes, A., Heilig, M., Rupniak, N. M., Steckler, T. & Griebel, G. Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol. Sci. 24, 580–588 (2003).

    CAS  PubMed  Google Scholar 

  32. Volkow, N. D. & Li, T. K. Drug addiction: the neurobiology of behaviour gone awry. Nature Rev. Neurosci. 5, 963–970 (2004).

    CAS  Google Scholar 

  33. Harris, G. C., Wimmer, M. & Aston-Jones, G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437, 556–559 (2005).

    CAS  PubMed  Google Scholar 

  34. Harris, G. C. & Aston-Jones, G. Arousal and reward: a dichotomy in orexin function. Trends Neurosci. 29, 571–577 (2006).

    CAS  PubMed  Google Scholar 

  35. Funk, C. K., O'Dell, L. E., Crawford, E. F. & Koob, G. F. Corticotropin-releasing factor within the central nucleus of the amygdala mediates enhanced ethanol self-administration in withdrawn, ethanol-dependent rats. J. Neurosci. 26, 11324–11332 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dani, J. A. & Bertrand, D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 47, 699–729 (2007).

    CAS  PubMed  Google Scholar 

  37. Gotti, C., Zoli, M. & Clementi, F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol. Sci. 27, 482–491 (2006). A thorough recent summary of knowledge regarding the composition, distribution and function of nicotinic cholinergic receptors.

    CAS  PubMed  Google Scholar 

  38. Roth, B. L., Sheffler, D. J. & Kroeze, W. K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nature Rev. Drug Discov. 3, 353–359 (2004).

    CAS  Google Scholar 

  39. Sanchis-Segura, C. & Spanagel, R. Behavioural assessment of drug reinforcement and addictive features in rodents: an overview. Addict. Biol. 11, 2–38 (2006).

    PubMed  Google Scholar 

  40. Everitt, B. J. & Robbins, T. W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neurosci. 8, 1481–1489 (2005).

    CAS  PubMed  Google Scholar 

  41. Goldberg, S. R., Spealman, R. D. & Goldberg, D. M. Persistent behavior at high rates maintained by intravenous self-administration of nicotine. Science 214, 573–575 (1981).

    CAS  PubMed  Google Scholar 

  42. Caggiula, A. R. et al. Cue dependency of nicotine self-administration and smoking. Pharmacol. Biochem. Behav. 70, 515–530 (2001).

    CAS  PubMed  Google Scholar 

  43. Corrigall, W. A., Coen, K. M., Zhang, J. & Adamson, L. Pharmacological manipulations of the pedunculopontine tegmental nucleus in the rat reduce self-administration of both nicotine and cocaine. Psychopharmacology 160, 198–205 (2002).

    CAS  PubMed  Google Scholar 

  44. Lanca, A. J., Adamson, K. L., Coen, K. M., Chow, B. L. & Corrigall, W. A. The pedunculopontine tegmental nucleus and the role of cholinergic neurons in nicotine self-administration in the rat: a correlative neuroanatomical and behavioral study. Neuroscience 96, 735–742 (2000).

    CAS  PubMed  Google Scholar 

  45. Belluzzi, J. D., Wang, R. & Leslie, F. M. Acetaldehyde enhances acquisition of nicotine self-administration in adolescent rats. Neuropsychopharmacology 30, 705–712 (2005).

    CAS  PubMed  Google Scholar 

  46. Villegier, A. S. et al. Monoamine oxidase inhibitors allow locomotor and rewarding responses to nicotine. Neuropsychopharmacology 31, 1704–1713 (2006).

    CAS  PubMed  Google Scholar 

  47. Sharpe, A. L. & Samson, H. H. Effect of naloxone on appetitive and consummatory phases of ethanol self-administration. Alcohol. Clin. Exp. Res. 25, 1006–1011 (2001).

    CAS  PubMed  Google Scholar 

  48. Chen, S. A. et al. Unlimited access to heroin self-administration: independent motivational markers of opiate dependence. Neuropsychopharmacology 31, 2692–2707 (2006).

    CAS  PubMed  Google Scholar 

  49. Stromberg, M. F., Meister, S., Volpicelli, J. R. & Ulm, R. R. Morphine enhances selection of both sucrose and ethanol in a two-bottle test. Alcohol 14, 55–62 (1997).

    CAS  PubMed  Google Scholar 

  50. Ferraro, T. N. et al. Confirmation of a major QTL influencing oral morphine intake in C57 and DBA mice using reciprocal congenic strains. Neuropsychopharmacology 30, 742–746 (2005).

    CAS  PubMed  Google Scholar 

  51. Ray, R. et al. Association of OPRM1 A118G variant with the relative reinforcing value of nicotine. Psychopharmacology 188, 355–363 (2006).

    CAS  PubMed  Google Scholar 

  52. Perkins, K. A., Fonte, C., Meeker, J., White, W. & Wilson, A. The discriminative stimulus and reinforcing effects of nicotine in humans following nicotine pretreatment. Behav. Pharmacol. 12, 35–44 (2001).

    CAS  PubMed  Google Scholar 

  53. Perkins, K. A. et al. Acute nicotine reinforcement, but not chronic tolerance, predicts withdrawal and relapse after quitting smoking. Health Psychol. 21, 332–339 (2002).

    PubMed  Google Scholar 

  54. Rukstalis, M. et al. Naltrexone reduces the relative reinforcing value of nicotine in a cigarette smoking choice paradigm. Psychopharmacology 180, 41–48 (2005).

    CAS  PubMed  Google Scholar 

  55. Bickel, W. K., DeGrandpre, R. J. & Higgins, S. T. The behavioral economics of concurrent drug reinforcers: a review and reanalysis of drug self-administration research. Psychopharmacology 118, 250–259 (1995).

    CAS  PubMed  Google Scholar 

  56. Kenny, P. J. & Markou, A. Nicotine self-administration acutely activates brain reward systems and induces a long-lasting increase in reward sensitivity. Neuropsychopharmacology 31, 1203–1211 (2006).

    CAS  PubMed  Google Scholar 

  57. Kornetsky, C., Esposito, R. U., McLean, S. & Jacobson, J. O. Intracranial self-stimulation thresholds: a model for the hedonic effects of drugs of abuse. Arch. Gen. Psychiatry 36, 289–292 (1979).

    CAS  PubMed  Google Scholar 

  58. Kenny, P. J., Chen, S. A., Kitamura, O., Markou, A. & Koob, G. F. Conditioned withdrawal drives heroin consumption and decreases reward sensitivity. J. Neurosci. 26, 5894–5900 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Shiffman, S., Ferguson, S. G. & Gwaltney, C. J. Immediate hedonic response to smoking lapses: relationship to smoking relapse, and effects of nicotine replacement therapy. Psychopharmacology 184, 608–618 (2006).

    CAS  PubMed  Google Scholar 

  60. Rose, J. E. Nicotine and nonnicotine factors in cigarette addiction. Psychopharmacology 184, 274–285 (2006). This review considers the crucial contributions of conditioned reinforcement in nicotine dependence and highlights key non-nicotine factors that contribute to dependence.

    CAS  PubMed  Google Scholar 

  61. Conklin, C. A. Environments as cues to smoke: implications for human extinction-based research and treatment. Exp. Clin. Psychopharm. 14, 12–19 (2006).

    Google Scholar 

  62. Carter, B. L. & Tiffany, S. T. Meta-analysis of cue-reactivity in addiction research. Addiction 94, 327–340 (1999).

    CAS  PubMed  Google Scholar 

  63. Goldstein, R. Z. et al. Role of the anterior cingulate and medial orbitofrontal cortex in processing drug cues in cocaine addiction. Neuroscience 144, 1153–1159 (2007).

    CAS  PubMed  Google Scholar 

  64. Brody, A. L. et al. Brain metabolic changes during cigarette craving. Arch. Gen. Psychiatry 59, 1162–1172 (2002).

    PubMed  Google Scholar 

  65. McBride, D., Barrett, S. P., Kelly, J. T., Aw, A. & Dagher, A. Effects of expectancy and abstinence on the neural response to smoking cues in cigarette smokers: an fMRI study. Neuropsychopharmacology 31, 2728–2738 (2006).

    CAS  PubMed  Google Scholar 

  66. Due, D. L., Huettel, S. A., Hall, W. G. & Rubin, D. C. Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: evidence from functional magnetic resonance imaging. Am. J. Psychiatry 159, 954–960 (2002).

    PubMed  Google Scholar 

  67. Marissen, M. A. et al. Attentional bias predicts heroin relapse following treatment. Addiction 101, 1306–1312 (2006).

    PubMed  Google Scholar 

  68. Waters, A. J. et al. Attentional bias predicts outcome in smoking cessation. Health Psychol. 22, 378–387 (2003).

    PubMed  PubMed Central  Google Scholar 

  69. Le Foll, B. & Goldberg, S. R. Nicotine induces conditioned place preferences over a large range of doses in rats. Psychopharmacology 178, 481–492 (2005).

    CAS  PubMed  Google Scholar 

  70. Bardo, M. T. & Bevins, R. A. Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology 153, 31–43 (2000).

    CAS  PubMed  Google Scholar 

  71. Walters, C. L. & Blendy, J. A. Different requirements for cAMP response element binding protein in positive and negative reinforcing properties of drugs of abuse. J. Neurosci. 21, 9438–9444 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Walters, C. L., Cleck, J. N., Kuo, Y. C. & Blendy, J. A. Mu-opioid receptor and CREB activation are required for nicotine reward. Neuron 46, 933–943 (2005).

    CAS  PubMed  Google Scholar 

  73. Donny, E. C. et al. Nicotine self-administration in rats on a progressive ratio schedule of reinforcement. Psychopharmacology 147, 135–142 (1999).

    CAS  PubMed  Google Scholar 

  74. LeSage, M. G., Burroughs, D., Dufek, M., Keyler, D. E. & Pentel, P. R. Reinstatement of nicotine self-administration in rats by presentation of nicotine-paired stimuli, but not nicotine priming. Pharmacol. Biochem. Behav. 79, 507–513 (2004).

    CAS  PubMed  Google Scholar 

  75. Liu, X. et al. Reinstatement of nicotine-seeking behavior by drug-associated stimuli after extinction in rats. Psychopharmacology 184, 417–425 (2006).

    CAS  PubMed  Google Scholar 

  76. Phillips, A. G. & Fibiger, H. C. Role of reward and enhancement of conditioned reward in persistence of responding for cocaine. Behav. Pharmacol. 1, 269–282 (1990).

    PubMed  Google Scholar 

  77. Donny, E. C. et al. Operant responding for a visual reinforcer in rats is enhanced by noncontingent nicotine: implications for nicotine self-administration and reinforcement. Psychopharmacology 169, 68–76 (2003).

    CAS  PubMed  Google Scholar 

  78. Palmatier, M. I., Liu, X., Caggiula, A. R., Donny, E. C. & Sved, A. F. The role of nicotinic acetylcholine receptors in the primary reinforcing and reinforcement-enhancing effects of nicotine. Neuropsychopharmacology 32, 1098–1108 (2007).

    CAS  PubMed  Google Scholar 

  79. Malin, D. H. et al. Analog of neuropeptide FF attenuates morphine abstinence syndrome. Peptides 12, 1011–1014 (1991).

    CAS  PubMed  Google Scholar 

  80. Pinel, J. P. Alcohol withdrawal seizures: implications of kindling. Pharmacol. Biochem. Behav. 13 (Suppl. 1), 225–231 (1980).

    PubMed  Google Scholar 

  81. Malin, D. H. et al. The nicotinic antagonist mecamylamine precipitates nicotine abstinence syndrome in the rat. Psychopharmacology 115, 180–184 (1994).

    CAS  PubMed  Google Scholar 

  82. Grabus, S. D., Martin, B. R. & Imad Damaj, M. Nicotine physical dependence in the mouse: involvement of the α7 nicotinic receptor subtype. Eur. J. Pharmacol. 515, 90–93 (2005).

    CAS  PubMed  Google Scholar 

  83. Maxwell, C. R. et al. Ketamine produces lasting disruptions in encoding of sensory stimuli. J. Pharmacol. Exp. Ther. 316, 315–324 (2006).

    CAS  PubMed  Google Scholar 

  84. Siegel, S. J. et al. Effects of strain, novelty, and NMDA blockade on auditory-evoked potentials in mice. Neuropsychopharmacology 28, 675–682 (2003).

    CAS  PubMed  Google Scholar 

  85. Siegel, S. J. et al. Monoamine reuptake inhibition and nicotine receptor antagonism reduce amplitude and gating of auditory evoked potentials. Neuroscience 133, 729–738 (2005).

    CAS  PubMed  Google Scholar 

  86. Phillips, J., Ehrlichman, R. & Siegel, S. Mecamylamine blocks nicotine-induced enhancement of the P20 auditory event related potential and evoked gamma. Neuroscience 144, 1314–1323 (2007).

    CAS  PubMed  Google Scholar 

  87. Shoaib, M. & Bizarro, L. Deficits in a sustained attention task following nicotine withdrawal in rats. Psychopharmacology 178, 211–222 (2005).

    CAS  PubMed  Google Scholar 

  88. Levine, A. J. et al. The effect of recent stimulant use on sustained attention in HIV-infected adults. J. Clin. Exp. Neuropsychology 28, 29–42 (2006).

    Google Scholar 

  89. Levin, E. D. et al. Transdermal nicotine effects on attention. Psychopharmacology 140, 135–141 (1998).

    CAS  PubMed  Google Scholar 

  90. Davis, J. A. & Gould, T. J. Atomoxetine reverses nicotine withdrawal-associated deficits in contextual fear conditioning. Neuropsychopharmacology 17 Jan 2007 (doi:10.1038/sj.npp.1301315).

    CAS  PubMed  Google Scholar 

  91. Davis, J. A., James, J. R., Siegel, S. J. & Gould, T. J. Withdrawal from chronic nicotine administration impairs contextual fear conditioning in C57BL/6 mice. J. Neurosci. 25, 8708–8713 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Woods, S. C., Fay, J., Sage, J. R. & Anagnostaras, S. G. Cocaine and Pavlovian fear conditioning: dose–effect analysis. Behav. Brain Res. 176, 244–250 (2007).

    Google Scholar 

  93. Piasecki, T. M., Fiore, M. C. & Baker, T. B. Profiles in discouragement: two studies of variability in the time course of smoking withdrawal symptoms. J. Abnorm. Psychol. 107, 238–251 (1998).

    CAS  PubMed  Google Scholar 

  94. Hurt, R. D. et al. A comparison of sustained-release bupropion and placebo for smoking cessation. N. Engl. J. Med. 337, 1195–1202 (1997).

    CAS  PubMed  Google Scholar 

  95. Hughes, J., Stead, L. & Lancaster, T. Antidepressants for smoking cessation. Cochrane Database Syst Rev. 1, CD000031 (2007).

    Google Scholar 

  96. Lin, D., Koob, G. F. & Markou, A. Differential effects of withdrawal from chronic amphetamine or fluoxetine administration on brain stimulation reward in the rat — interactions between the two drugs. Psychopharmacology 145, 283–294 (1999).

    CAS  PubMed  Google Scholar 

  97. Markou, A. & Koob, G. F. Postcocaine anhedonia. An animal model of cocaine withdrawal. Neuropsychopharmacology 4, 17–26 (1991).

    CAS  PubMed  Google Scholar 

  98. Kenny, P. J. & Markou, A. Conditioned nicotine withdrawal profoundly decreases the activity of brain reward systems. J. Neurosci. 25, 6208–6212 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Davis, M. Neurochemical modulation of sensory–motor reactivity: acoustic and tactile startle reflexes. Neurosci. Biobehav. Rev. 4, 241–263 (1980).

    CAS  PubMed  Google Scholar 

  100. Bradley, M. M., Cuthbert, B. N. & Lang, P. J. Startle and emotion: lateral acoustic probes and the bilateral blink. Psychophysiology 28, 285–295 (1991).

    CAS  PubMed  Google Scholar 

  101. Braff, D. L., Geyer, M. A. & Swerdlow, N. R. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 156, 234–258 (2001).

    CAS  PubMed  Google Scholar 

  102. Sinha, R., Fuse, T., Aubin, L. R. & O'Malley, S. S. Psychological stress, drug-related cues and cocaine craving. Psychopharmacology 152, 140–148 (2000).

    CAS  PubMed  Google Scholar 

  103. Junghanns, K. et al. Impaired serum cortisol stress response is a predictor of early relapse. Alcohol Alcohol. 38, 189–193 (2003).

    CAS  PubMed  Google Scholar 

  104. Capriles, N., Rodaros, D., Sorge, R. E. & Stewart, J. A role for the prefrontal cortex in stress- and cocaine-induced reinstatement of cocaine seeking in rats. Psychopharmacology 168, 66–74 (2003).

    CAS  PubMed  Google Scholar 

  105. Erb, S., Shaham, Y. & Stewart, J. Stress reinstates cocaine-seeking behavior after prolonged extinction and a drug-free period. Psychopharmacology 128, 408–412 (1996).

    CAS  PubMed  Google Scholar 

  106. Kreibich, A. S. & Blendy, J. A. cAMP response element-binding protein is required for stress but not cocaine-induced reinstatement. J. Neurosci. 24, 6686–6692 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Katz, J. L. & Higgins, S. T. The validity of the reinstatement model of craving and relapse to drug use. Psychopharmacology 168, 21–30 (2003).

    CAS  PubMed  Google Scholar 

  108. Shaham, Y., Shalev, U., Lu, L., De Wit, H. & Stewart, J. The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology 168, 3–20 (2003).

    CAS  PubMed  Google Scholar 

  109. Kippin, T. E., Fuchs, R. A. & See, R. E. Contributions of prolonged contingent and noncontingent cocaine exposure to enhanced reinstatement of cocaine seeking in rats. Psychopharmacology 187, 60–67 (2006).

    CAS  PubMed  Google Scholar 

  110. Brandon, T. H., Tiffany, S. T., Obremski, K. M. & Baker, T. B. Postcessation cigarette use: the process of relapse. Addict. Behav. 15, 105–114 (1990).

    CAS  PubMed  Google Scholar 

  111. Shiffman, S. et al. Progression from a smoking lapse to relapse: prediction from abstinence violation effects, nicotine dependence, and lapse characteristics. J. Consult. Clin. Psychol. 64, 993–1002 (1996).

    CAS  PubMed  Google Scholar 

  112. Chornock, W. M., Stitzer, M. L., Gross, J. & Leischow, S. Experimental model of smoking re-exposure: effects on relapse. Psychopharmacology 108, 495–500 (1992).

    CAS  PubMed  Google Scholar 

  113. Juliano, L. M., Donny, E. C., Houtsmuller, E. J. & Stitzer, M. L. Experimental evidence for a causal relationship between smoking lapse and relapse. J. Abnorm. Psychol. 115, 166–173 (2006).

    PubMed  Google Scholar 

  114. McKee, S. A., Krishnan-Sarin, S., Shi, J., Mase, T. & O'Malley, S. S. Modeling the effect of alcohol on smoking lapse behavior. Psychopharmacology 189, 201–210 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Smith, J. W. et al. Ligands selective for α4β2 but not α3β4 or α7 nicotinic receptors generalise to the nicotine discriminative stimulus in the rat. Psychopharmacology 190, 157–170 (2007).

    CAS  PubMed  Google Scholar 

  116. Stolerman, I. P., Garcha, H. S., Pratt, J. A. & Kumar, R. Role of training dose in discrimination of nicotine and related compounds by rats. Psychopharmacology 84, 413–419 (1984).

    CAS  PubMed  Google Scholar 

  117. Perkins, K. A., DiMarco, A., Grobe, J. E., Scierka, A. & Stiller, R. L. Nicotine discrimination in male and female smokers. Psychopharmacology 116, 407–413 (1994).

    CAS  PubMed  Google Scholar 

  118. Perkins, K. A. Nicotine discrimination in men and women. Pharmacol. Biochem. Behav. 64, 295–299 (1999).

    CAS  PubMed  Google Scholar 

  119. Rollema, H. et al. Pharmacological profile of the α(4)β(2) nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid. Neuropharmacology 52, 985–994 (2007).

    CAS  PubMed  Google Scholar 

  120. Kamien, J. B., Bickel, W. K., Hughes, J. R., Higgins, S. T. & Smith, B. J. Drug discrimination by humans compared to nonhumans: current status and future directions. Psychopharmacology 111, 259–270 (1993).

    CAS  PubMed  Google Scholar 

  121. Egli, M. Can experimental paradigms and animal models be used to discover clinically effective medications for alcoholism? Addict. Biol. 10, 309–319 (2005).

    CAS  PubMed  Google Scholar 

  122. O'Malley, S. S. & Froehlich, J. C. Advances in the use of naltrexone: an integration of preclinical and clinical findings. Recent Dev. Alcohol. 16, 217–245 (2003).

    PubMed  Google Scholar 

  123. Fagerstrom, K. & Balfour, D. J. Neuropharmacology and potential efficacy of new treatments for tobacco dependence. Exp. Opin. Inv. Drug 15, 107–116 (2006).

    Google Scholar 

  124. Sofuoglu, M. & Kosten, T. R. Emerging pharmacological strategies in the fight against cocaine addiction. Exp. Opin. Emer. Drug 11, 91–98 (2006).

    CAS  Google Scholar 

  125. Sellers, E. M., Tyndale, R. F. & Fernandes, L. C. Decreasing smoking behaviour and risk through CYP2A6 inhibition. Drug Discov. Today 8, 487–493 (2003).

    CAS  PubMed  Google Scholar 

  126. LeSage, M. G. et al. Effects of a nicotine conjugate vaccine on the acquisition and maintenance of nicotine self-administration in rats. Psychopharmacology 184, 409–416 (2006).

    CAS  PubMed  Google Scholar 

  127. Maurer, P. & Bachmann, M. F. Therapeutic vaccines for nicotine dependence. Curr. Opin. Mol. Ther. 8, 11–16 (2006).

    CAS  PubMed  Google Scholar 

  128. Silagy, C., Lancaster, T., Stead, L., Mant, D. & Fowler, G. Nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev. 3, CD000146 (2004).

    Google Scholar 

  129. Benowitz, N. L., Zevin, S. & Jacob, P. 3rd. Suppression of nicotine intake during ad libitum cigarette smoking by high-dose transdermal nicotine. J. Pharmacol. Exp. Ther. 287, 958–962 (1998).

    CAS  PubMed  Google Scholar 

  130. LeSage, M. G., Keyler, D. E., Collins, G. & Pentel, P. R. Effects of continuous nicotine infusion on nicotine self-administration in rats: relationship between continuously infused and self-administered nicotine doses and serum concentrations. Psychopharmacology 170, 278–286 (2003).

    CAS  PubMed  Google Scholar 

  131. O'Connor, K. A. & Roth, B. L. Finding new tricks for old drugs: an efficient route for public-sector drug discovery. Nature Rev. Drug Discov. 4, 1005–1014 (2005).

    CAS  Google Scholar 

  132. Uhl, G. R. Needed: mouse/human cross validation of reinstatement/relapse models (and drug reward models) to model human substance abuse vulnerability allelic variants. Psychopharmacology 168, 42–43 (2003).

    CAS  PubMed  Google Scholar 

  133. Blendy, J. A. et al. Reduced nicotine reward in obesity: cross-comparison in human and mouse. Psychopharmacology 180, 306–315 (2005).

    CAS  PubMed  Google Scholar 

  134. Fowler, J. S. et al. Inhibition of monoamine oxidase B in the brains of smokers. Nature 379, 733–736 (1996).

    CAS  PubMed  Google Scholar 

  135. Guillem, K. et al. Monoamine oxidase A rather than monoamine oxidase B inhibition increases nicotine reinforcement in rats. Eur. J. Neurosci. 24, 3532–3540 (2006).

    PubMed  Google Scholar 

  136. Guillem, K. et al. Monoamine oxidase inhibition dramatically increases the motivation to self-administer nicotine in rats. J. Neurosci. 25, 8593–8600 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Lasser, K. et al. Smoking and mental illness: a population-based prevalence study. JAMA 284, 2606–2610 (2000). A large-scale epidemiological study providing useful data on the prevalence of tobacco use in persons with psychiatric illness.

    CAS  PubMed  Google Scholar 

  138. Corrigall, W. A. & Coen, K. M. Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology 99, 473–478 (1989). Now well-established as a research model, reliable nicotine self-administration was first reported in this publication. Together with reference 22, the paper shows the utility of models such as these in discovering CNS mechanisms in dependence.

    CAS  PubMed  Google Scholar 

  139. Picciotto, M. R. et al. Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature 391, 173–177 (1998).

    CAS  PubMed  Google Scholar 

  140. Le Novere, N. & Changeux, J. P. Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J. Mol. Evol. 40, 155–172 (1995).

    CAS  PubMed  Google Scholar 

  141. Horenstein, N. A., McCormack, T. J., Stokes, C., Ren, K. & Papke, R. L. Reversal of agonist selectivity by mutations of conserved amino acids in the binding site of nicotinic acetylcholine receptors. J. Biol. Chem. 282, 5899–5909 (2007).

    CAS  PubMed  Google Scholar 

  142. Fonck, C. et al. Novel seizure phenotype and sleep disruptions in knock-in mice with hypersensitive α4* nicotinic receptors. J. Neurosci. 25, 11396–11411 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Cousins, M. S., Stamat, H. M. & de Wit, H. Acute doses of D-amphetamine and bupropion increase cigarette smoking. Psychopharmacology 157, 243–253 (2001).

    CAS  PubMed  Google Scholar 

  144. Shoaib, M., Sidhpura, N. & Shafait, S. Investigating the actions of bupropion on dependence-related effects of nicotine in rats. Psychopharmacology 165, 405–412 (2003).

    CAS  PubMed  Google Scholar 

  145. Teneggi, V. et al. Effect of sustained-release (SR) bupropion on craving and withdrawal in smokers deprived of cigarettes for 72 h. Psychopharmacology 183, 1–12 (2005).

    CAS  PubMed  Google Scholar 

  146. O'Dell, L. E. et al. Extended access to nicotine self-administration leads to dependence: circadian measures, withdrawal measures, and extinction behavior in rats. J. Pharmacol. Exp. Ther. 320, 180–193 (2007).

    CAS  PubMed  Google Scholar 

  147. Nader, M. A. & Woolverton, W. L. Effects of increasing the magnitude of an alternative reinforcer on drug choice in a discrete-trials choice procedure. Psychopharmacology 105, 169–174 (1991).

    CAS  PubMed  Google Scholar 

  148. Borsook, D., Becerra, L. & Hargreaves, R. A role for fMRI in optimizing CNS drug development. Nature Rev. Drug Discov. 5, 411–424 (2006). A review of functional magnetic resonance imaging research and its application to the development of medications for CNS disorders.

    CAS  Google Scholar 

  149. Shoaib, M., Lowe, A. S. & Williams, S. C. Imaging localised dynamic changes in the nucleus accumbens following nicotine withdraw in rats. Neuroimage 22, 847–854 (2004).

    PubMed  Google Scholar 

  150. Lowe, A. S., Williams, S. C., Symms, M. R., Stolerman, I. P. & Shoaib, M. Functional magnetic resonance neuroimaging of drug dependence: naloxone-precipitated morphine withdrawal. Neuroimage 17, 902–910 (2002).

    PubMed  Google Scholar 

  151. Breiter, H. C. et al. Acute effects of cocaine on human brain activity and emotion. Neuron 19, 591–611 (1997).

    CAS  PubMed  Google Scholar 

  152. Van Eldik, L. J., Koppal, T. & Watterson, D. M. Barriers to Alzheimer disease drug discovery and development in academia. Alzheimer Dis. Assoc. Disord. 16 (Suppl. 1), 18–28 (2002).

    Google Scholar 

  153. Eisenberg, R. S. & Nelson, R. R. Public vs. proprietary science: a fruitful tension? Acad. Med. 77, 1392–1399 (2002).

    PubMed  Google Scholar 

  154. Prendergast, M. M. et al. Look beyond financial conflicts of interest in evaluating industry–academia collaborations in burden-of-illness and outcomes research studies in dermatology. J. Invest. Dermatol. 123, 452–454 (2004).

    CAS  PubMed  Google Scholar 

  155. Chin-Dusting, J., Mizrahi, J., Jennings, G. & Fitzgerald, D. Outlook: finding improved medicines: the role of academic–industrial collaboration. Nature Rev. Drug Discov. 4, 891–897 (2005).

    CAS  Google Scholar 

  156. Kreek, M. J., Bart, G., Lilly, C., LaForge, K. S. & Nielsen, D. A. Pharmacogenetics and human molecular genetics of opiate and cocaine addictions and their treatments. Pharmacol. Rev. 57, 1–26 (2005).

    CAS  PubMed  Google Scholar 

  157. Munafo, M. R., Shields, A. E., Berrettini, W. H., Patterson, F. & Lerman, C. Pharmacogenetics and nicotine addiction treatment. Pharmacogenomics 6, 211–223 (2005). An overview of emerging data on pharmacogenetic approaches to the treatment of nicotine dependence.

    CAS  PubMed  Google Scholar 

  158. Liu, Q. R. et al. Pooled association genome scanning: validation and use to identify addiction vulnerability loci in two samples. Proc. Natl Acad. Sci. USA 102, 11864–11869 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Bierut, L. J. et al. Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum. Mol. Genet. 16, 24–35 (2007). This paper illustrates the novel targets that are being uncovered by means of human genetics approaches.

    CAS  PubMed  Google Scholar 

  160. Rutter, J. L. Symbiotic relationship of pharmacogenetics and drugs of abuse. AAPS J. 8, e174–e184 (2006). A review and commentary regarding the potential value of pharmacogenetics research to the treatment of drug abuse.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Cardon, L. R., Idury, R. M., Harris, T. J., Witte, J. S. & Elston, R. C. Testing drug response in the presence of genetic information: sampling issues for clinical trials. Pharmacogenetics 10, 503–510 (2000).

    CAS  PubMed  Google Scholar 

  162. Kalivas, P. W. & McFarland, K. Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology 168, 44–56 (2003).

    CAS  PubMed  Google Scholar 

  163. Wonnacott, S., Sidhpura, N. & Balfour, D. J. Nicotine: from molecular mechanisms to behaviour. Curr. Opin. Pharmacol. 5, 53–59 (2005). A summary of CNS circuits believed to be involved in nicotine dependence, derived largely from animal research.

    CAS  PubMed  Google Scholar 

  164. Brody, A. L. Functional brain imaging of tobacco use and dependence. J. Psychiatr. Res. 40, 404–418 (2006). This paper summarizes brain regions that have been implicated in tobacco dependence with brain imaging studies in humans; it complements and expands on the circuits identified in reference 163.

    PubMed  Google Scholar 

  165. Rose, J. E., Behm, F. M., Westman, E. C. & Kukovich, P. Precessation treatment with nicotine skin patch facilitates smoking cessation. Nicotine Tob. Res. 8, 89–101 (2006).

    CAS  PubMed  Google Scholar 

  166. Brauer, L. H., Behm, F. M., Westman, E. C., Patel, P. & Rose, J. E. Naltrexone blockade of nicotine effects in cigarette smokers. Psychopharmacology 143, 339–346 (1999).

    CAS  PubMed  Google Scholar 

  167. Perkins, K. A., Grobe, J. E., Stiller, R. L., Fonte, C. & Goettler, J. E. Nasal spray nicotine replacement suppresses cigarette smoking desire and behavior. Clin. Pharmacol. Ther. 52, 627–634 (1992).

    CAS  PubMed  Google Scholar 

  168. Nemeth-Coslett, R., Henningfield, J. E., O'Keeffe, M. K. & Griffiths, R. R. Nicotine gum: dose-related effects on cigarette smoking and subjective ratings. Psychopharmacology 92, 424–430 (1987).

    CAS  PubMed  Google Scholar 

  169. Perkins, K. A., Lerman, C., Keenan, J., Fonte, C. & Coddington, S. Rate of nicotine onset from nicotine replacement therapy and acute responses in smokers. Nicotine Tob. Res. 6, 501–507 (2004).

    CAS  PubMed  Google Scholar 

  170. Shahan, T. A., Odum, A. L. & Bickel, W. K. Nicotine gum as a substitute for cigarettes: a behavioral economic analysis. Behav. Pharmacol. 11, 71–99 (2000).

    CAS  PubMed  Google Scholar 

  171. Johnson, M. W. & Bickel, W. K. The behavioral economics of cigarette smoking: The concurrent presence of a substitute and an independent reinforcer. Behav. Pharmacol. 14, 137–144 (2003).

    CAS  PubMed  Google Scholar 

  172. Tiffany, S. T., Cox, L. S. & Elash, C. A. Effects of transdermal nicotine patches on abstinence-induced and cue-elicited craving in cigarette smokers. J. Consult. Clin. Psychol. 68, 233–240 (2000).

    CAS  PubMed  Google Scholar 

  173. Hurt, R. D. et al. Temporal effects of nicotine nasal spray and gum on nicotine withdrawal symptoms. Psychopharmacology 140, 98–104 (1998).

    CAS  PubMed  Google Scholar 

  174. Rose, J. E., Behm, F. M. & Westman, E. C. Acute effects of nicotine and mecamylamine on tobacco withdrawal symptoms, cigarette reward and ad lib smoking. Pharmacol. Biochem. Behav. 68, 187–197 (2001).

    CAS  PubMed  Google Scholar 

  175. Rose, J. E., Herskovic, J. E., Trilling, Y. & Jarvik, M. E. Transdermal nicotine reduces cigarette craving and nicotine preference. Clin. Pharmacol. Ther. 38, 450–456 (1985).

    CAS  PubMed  Google Scholar 

  176. Brody, A. L. et al. Attenuation of cue-induced cigarette craving and anterior cingulate cortex activation in bupropion-treated smokers: a preliminary study. Psychiatry Res. 130, 269–281 (2004).

    PubMed  PubMed Central  Google Scholar 

  177. Shiffman, S. et al. The effect of bupropion on nicotine craving and withdrawal. Psychopharmacology 148, 33–40 (2000).

    CAS  PubMed  Google Scholar 

  178. Sutherland, G., Stapleton, J. A., Russell, M. A. & Feyerabend, C. Naltrexone, smoking behaviour and cigarette withdrawal. Psychopharmacology 120, 418–425 (1995).

    CAS  PubMed  Google Scholar 

  179. Nemeth-Coslett, R. & Griffiths, R. R. Naloxone does not affect cigarette smoking. Psychopharmacology 89, 261–264 (1986).

    CAS  PubMed  Google Scholar 

  180. Gorelick, D. A., Rose, J. & Jarvik, M. E. Effect of naloxone on cigarette smoking. J. Subst. Abuse 1, 153–159 (1988).

    PubMed  Google Scholar 

  181. Epstein, A. M. & King, A. C. Naltrexone attenuates acute cigarette smoking behavior. Pharmacol. Biochem. Behav. 77, 29–37 (2004).

    CAS  PubMed  Google Scholar 

  182. King, A. C. & Meyer, P. J. Naltrexone alteration of acute smoking response in nicotine-dependent subjects. Pharmacol. Biochem. Behav. 66, 563–572 (2000).

    CAS  PubMed  Google Scholar 

  183. Wewers, M. E., Dhatt, R. & Tejwani, G. A. Naltrexone administration affects ad libitum smoking behavior. Psychopharmacology 140, 185–190 (1998).

    CAS  PubMed  Google Scholar 

  184. Caskey, N. H., Jarvik, M. E. & Wirshing, W. C. The effects of dopaminergic D2 stimulation and blockade on smoking behavior. Exp. Clin. Psychopharm. 7, 72–78 (1999).

    CAS  Google Scholar 

  185. Caskey, N. H. et al. Modulating tobacco smoking rates by dopaminergic stimulation and blockade. Nicotine Tob. Res. 4, 259–266 (2002).

    CAS  PubMed  Google Scholar 

  186. Dawe, S., Gerada, C., Russell, M. A. & Gray, J. A. Nicotine intake in smokers increases following a single dose of haloperidol. Psychopharmacology 117, 110–115 (1995).

    CAS  PubMed  Google Scholar 

  187. McEvoy, J. P., Freudenreich, O., Levin, E. D. & Rose, J. E. Haloperidol increases smoking in patients with schizophrenia. Psychopharmacology 119, 124–126 (1995).

    CAS  PubMed  Google Scholar 

  188. Brauer, L. H., Cramblett, M. J., Paxton, D. A. & Rose, J. E. Haloperidol reduces smoking of both nicotine-containing and denicotinized cigarettes. Psychopharmacology 159, 31–37 (2001).

    CAS  PubMed  Google Scholar 

  189. Mahler, S. V. & de Wit, H. Effects of haloperidol on reactions to smoking cues in humans. Behav. Pharmacol. 16, 123–126 (2005).

    CAS  PubMed  Google Scholar 

  190. Lee, C., Frangou, S., Russell, M. A. & Gray, J. A. Effect of haloperidol on nicotine-induced enhancement of vigilance in human subjects. J. Psychopharmacology 11, 253–257 (1997).

    Google Scholar 

  191. Pomerleau, C. S., Pomerleau, O. F. & Majchrzak, M. J. Mecamylamine pretreatment increases subsequent nicotine self-administration as indicated by changes in plasma nicotine level. Psychopharmacology 91, 391–393 (1987).

    CAS  PubMed  Google Scholar 

  192. Stolerman, I. P., Goldfarb, T., Fink, R. & Jarvik, M. E. Influencing cigarette smoking with nicotine antagonists. Psychopharmacologia 28, 247–259 (1973).

    CAS  PubMed  Google Scholar 

  193. Nemeth-Coslett, R., Henningfield, J. E., O'Keeffe, M. K. & Griffiths, R. R. Effects of mecamylamine on human cigarette smoking and subjective ratings. Psychopharmacology 88, 420–425 (1986).

    CAS  PubMed  Google Scholar 

  194. Rose, J. E., Behm, F. M., Westman, E. C. & Bates, J. E. Mecamylamine acutely increases human intravenous nicotine self-administration. Pharmacol. Biochem. Behav. 76, 307–13 (2003).

    CAS  PubMed  Google Scholar 

  195. Rose, J. E., Sampson, A., Levin, E. D. & Henningfield, J. E. Mecamylamine increases nicotine preference and attenuates nicotine discrimination. Pharmacol. Biochem. Behav. 32, 933–938 (1989).

    CAS  PubMed  Google Scholar 

  196. Perkins, K. A. et al. Effects of central and peripheral nicotinic blockade on human nicotine discrimination. Psychopharmacology 142, 158–164 (1999).

    CAS  PubMed  Google Scholar 

  197. Sacco, K. A. et al. Effects of cigarette smoking on spatial working memory and attentional deficits in schizophrenia: involvement of nicotinic receptor mechanisms. Arch. Gen. Psychiatry 62, 649–659 (2005).

    PubMed  Google Scholar 

  198. Eissenberg, T., Griffiths, R. R. & Stitzer, M. L. Mecamylamine does not precipitate withdrawal in cigarette smokers. Psychopharmacology 127, 328–336 (1996).

    CAS  PubMed  Google Scholar 

  199. Pickworth, W. B., Fant, R. V., Butschky, M. F. & Henningfield, J. E. Effects of mecamylamine on spontaneous EEG and performance in smokers and non-smokers. Pharmacol. Biochem. Behav. 56, 181–187 (1997).

    CAS  PubMed  Google Scholar 

  200. Cousins, M. S., Stamat, H. M. & de Wit, H. Effects of a single dose of baclofen on self-reported subjective effects and tobacco smoking. Nicotine Tob. Res. 3, 123–129 (2001).

    CAS  PubMed  Google Scholar 

  201. Houtsmuller, E. J., Thornton, J. A. & Stitzer, M. L. Effects of selegiline (L-deprenyl) during smoking and short-term abstinence. Psychopharmacology 163, 213–220 (2002).

    CAS  PubMed  Google Scholar 

  202. LeSage, M. G. et al. Continuous nicotine infusion reduces nicotine self-administration in rats with 23-h/day access to nicotine. Pharmacol. Biochem. Behav. 72, 279–289 (2002).

    CAS  PubMed  Google Scholar 

  203. Malin, D. H. et al. Nicotine alleviation of nicotine abstinence syndrome is naloxone-reversible. Pharmacol. Biochem. Behav. 53, 81–85 (1996).

    CAS  PubMed  Google Scholar 

  204. Dwoskin, L. P., Crooks, P. A., Teng, L., Green, T. A. & Bardo, M. T. Acute and chronic effects of nornicotine on locomotor activity in rats: altered response to nicotine. Psychopharmacology 145, 442–451 (1999).

    CAS  PubMed  Google Scholar 

  205. Gaddnas, H., Pietila, K. & Ahtee, L. Effects of chronic oral nicotine treatment and its withdrawal on locomotor activity and brain monoamines in mice. Behav. Brain Res. 113, 65–72 (2000).

    CAS  PubMed  Google Scholar 

  206. Miller, D. K., Wilkins, L. H., Bardo, M. T., Crooks, P. A. & Dwoskin, L. P. Once weekly administration of nicotine produces long-lasting locomotor sensitization in rats via a nicotinic receptor-mediated mechanism. Psychopharmacology 156, 469–476 (2001).

    CAS  PubMed  Google Scholar 

  207. Faraday, M. M., O'Donoghue, V. A. & Grunberg, N. E. Effects of nicotine and stress on locomotion in Sprague-Dawley and Long-Evans male and female rats. Pharmacol. Biochem. Behav. 74, 325–333 (2003).

    CAS  PubMed  Google Scholar 

  208. James, J. R., Villanueva, H. F., Johnson, J. H., Arezo, S. & Rosecrans, J. A. Evidence that nicotine can acutely desensitize central nicotinic acetylcholinergic receptors. Psychopharmacology 114, 456–462 (1994).

    CAS  PubMed  Google Scholar 

  209. Metzger, K. L. et al. Pharmacokinetic and behavioral characterization of a long-term antipsychotic delivery system in rodents and rabbits. Psychopharmacology 190, 201–211 (2007).

    CAS  PubMed  Google Scholar 

  210. Bruijnzeel, A. W. & Markou, A. Characterization of the effects of bupropion on the reinforcing properties of nicotine and food in rats. Synapse 50, 20–28 (2003).

    CAS  PubMed  Google Scholar 

  211. Rauhut, A. S., Neugebauer, N., Dwoskin, L. P. & Bardo, M. T. Effect of bupropion on nicotine self-administration in rats. Psychopharmacology 169, 1–9 (2003).

    CAS  PubMed  Google Scholar 

  212. Glick, S. D., Maisonneuve, I. M. & Kitchen, B. A. Modulation of nicotine self-administration in rats by combination therapy with agents blocking α3 β4 nicotinic receptors. Eur. J. Pharmacol. 448, 185–191 (2002).

    CAS  PubMed  Google Scholar 

  213. Rauhut, A. S., Dwoskin, L. P. & Bardo, M. T. Tolerance does not develop to the decrease in nicotine self-administration produced by repeated bupropion administration. Nicotine Tob. Res. 7, 901–907 (2005).

    CAS  PubMed  Google Scholar 

  214. Malin, D. H. et al. Bupropion attenuates nicotine abstinence syndrome in the rat. Psychopharmacology 184, 494–503 (2006).

    CAS  PubMed  Google Scholar 

  215. Cryan, J. F., Bruijnzeel, A. W., Skjei, K. L. & Markou, A. Bupropion enhances brain reward function and reverses the affective and somatic aspects of nicotine withdrawal in the rat. Psychopharmacology 168, 347–358 (2003).

    CAS  PubMed  Google Scholar 

  216. Slemmer, J. E., Martin, B. R. & Damaj, M. I. Bupropion is a nicotinic antagonist. J. Pharmacol. Exp. Ther. 295, 321–327 (2000).

    CAS  PubMed  Google Scholar 

  217. Wilkinson, J. L., Palmatier, M. I. & Bevins, R. A. Preexposure to nicotine alters the subsequent locomotor stimulant effects of bupropion in rats. Nicotine Tob. Res. 8, 141–146 (2006).

    CAS  PubMed  Google Scholar 

  218. Wiley, J. L., Lavecchia, K. L., Martin, B. R. & Damaj, M. I. Nicotine-like discriminative stimulus effects of bupropion in rats. Exp. Clin. Psychopharmacol. 10, 129–135 (2002).

    CAS  PubMed  Google Scholar 

  219. Desai, R. I., Barber, D. J. & Terry, P. Dopaminergic and cholinergic involvement in the discriminative stimulus effects of nicotine and cocaine in rats. Psychopharmacology 167, 335–343 (2003).

    CAS  PubMed  Google Scholar 

  220. Bondarev, M. L., Bondareva, T. S., Young, R. & Glennon, R. A. Behavioral and biochemical investigations of bupropion metabolites. Eur. J. Pharmacol. 474, 85–93 (2003).

    CAS  PubMed  Google Scholar 

  221. Young, R. & Glennon, R. A. Nicotine and bupropion share a similar discriminative stimulus effect. Eur. J. Pharmacol. 443, 113–118 (2002).

    CAS  PubMed  Google Scholar 

  222. Corrigall, W. A. & Coen, K. M. Opiate antagonists reduce cocaine but not nicotine self-administration. Psychopharmacology 104, 167–170 (1991).

    CAS  PubMed  Google Scholar 

  223. DeNoble, V. J. & Mele, P. C. Intravenous nicotine self-administration in rats: effects of mecamylamine, hexamethonium and naloxone. Psychopharmacology 184, 266–272 (2006).

    CAS  PubMed  Google Scholar 

  224. Corrigall, W. A. & Coen, K. M. Selective dopamine antagonists reduce nicotine self-administration. Psychopharmacology 104, 171–176 (1991).

    CAS  PubMed  Google Scholar 

  225. Emerich, D. F., Norman, A. B. & Sanberg, P. R. Nicotine potentiates the behavioral effects of haloperidol. Psychopharmacol. Bull. 27, 385–390 (1991).

    CAS  PubMed  Google Scholar 

  226. Emerich, D. F., Zanol, M. D., Norman, A. B., McConville, B. J. & Sanberg, P. R. Nicotine potentiates haloperidol-induced catalepsy and locomotor hypoactivity. Pharmacol. Biochem. Behav. 38, 875–880 (1991).

    CAS  PubMed  Google Scholar 

  227. Brioni, J. D., Kim, D. J., O'Neill, A. B., Williams, J. E. & Decker, M. W. Clozapine attenuates the discriminative stimulus properties of (-)-nicotine. Brain Res. 643, 1–9 (1994).

    CAS  PubMed  Google Scholar 

  228. Arnold, B. et al. 5HT3 receptor antagonists do not block nicotine induced hyperactivity in rats. Psychopharmacology 119, 213–221 (1995).

    CAS  PubMed  Google Scholar 

  229. Kuo, D. Y. et al. Nicotine-induced hyperlocomotion is not modified by the estrous cycle, ovariectomy and estradiol replacement at physiological level. Chin. J. Physiol. 42, 83–88 (1999).

    CAS  PubMed  Google Scholar 

  230. Stolerman, I. P., Kumar, R. & Reavill, C. Discriminative stimulus effects of cholinergic agonists and the actions of their antagonists. Psychopharmacol. Ser. 4, 32–43 (1988).

    CAS  PubMed  Google Scholar 

  231. Watkins, S. S., Epping-Jordan, M. P., Koob, G. F. & Markou, A. Blockade of nicotine self-administration with nicotinic antagonists in rats. Pharmacol. Biochem. Behav. 62, 743–751 (1999).

    CAS  PubMed  Google Scholar 

  232. Glick, S. D., Visker, K. E. & Maisonneuve, I. M. An oral self-administration model of nicotine preference in rats: effects of mecamylamine. Psychopharmacology 128, 426–431 (1996).

    CAS  PubMed  Google Scholar 

  233. Mansbach, R. S., Chambers, L. K. & Rovetti, C. C. Effects of the competitive nicotinic antagonist erysodine on behavior occasioned or maintained by nicotine: comparison with mecamylamine. Psychopharmacology 148, 234–242 (2000).

    CAS  PubMed  Google Scholar 

  234. Rauhut, A. S., Mullins, S. N., Dwoskin, L. P. & Bardo, M. T. Reboxetine: attenuation of intravenous nicotine self-administration in rats. J. Pharmacol. Exp. Ther. 303, 664–672 (2002).

    CAS  PubMed  Google Scholar 

  235. Liu, X. et al. Mecamylamine attenuates cue-induced reinstatement of nicotine-seeking behavior in rats. Neuropsychopharmacology 32, 710–718 (2007).

    CAS  PubMed  Google Scholar 

  236. Olausson, P., Jentsch, J. D. & Taylor, J. R. Nicotine enhances responding with conditioned reinforcement. Psychopharmacology 171, 173–178 (2004).

    CAS  PubMed  Google Scholar 

  237. Grabus, S. D., Martin, B. R., Brown, S. E. & Damaj, M. I. Nicotine place preference in the mouse: influences of prior handling, dose and strain and attenuation by nicotinic receptor antagonists. Psychopharmacology 184, 456–463 (2006).

    CAS  PubMed  Google Scholar 

  238. Iwamoto, E. T. Nicotine conditions place preferences after intracerebral administration in rats. Psychopharmacology 100, 251–257 (1990).

    CAS  PubMed  Google Scholar 

  239. Fudala, P. J., Teoh, K. W. & Iwamoto, E. T. Pharmacologic characterization of nicotine-induced conditioned place preference. Pharmacol. Biochem. Behav. 22, 237–241 (1985).

    CAS  PubMed  Google Scholar 

  240. Sahraei, H. et al. The effects of nitric oxide on the acquisition and expression of nicotine-induced conditioned place preference in mice. Eur. J. Pharmacol. 503, 81–87 (2004).

    CAS  PubMed  Google Scholar 

  241. Gould, T. J., Rukstalis, M. & Lewis, M. C. Atomoxetine and nicotine enhance prepulse inhibition of acoustic startle in C57BL/6 mice. Neurosci. Lett. 377, 85–90 (2005).

    CAS  PubMed  Google Scholar 

  242. Fattore, L., Cossu, G., Martellotta, M. C. & Fratta, W. Baclofen antagonizes intravenous self-administration of nicotine in mice and rats. Alcohol Alcohol. 37, 495–498 (2002).

    CAS  PubMed  Google Scholar 

  243. Paterson, N. E., Froestl, W. & Markou, A. The GABAB receptor agonists baclofen and CGP44532 decreased nicotine self-administration in the rat. Psychopharmacology 172, 179–186 (2004).

    CAS  PubMed  Google Scholar 

  244. Palmatier, M. I. & Bevins, R. A. Examination of GABAergic and dopaminergic compounds in the acquisition of nicotine-conditioned hyperactivity in rats. Neuropsychobiology 45, 87–94 (2002).

    CAS  PubMed  Google Scholar 

  245. Rollema, H. et al. Pharmacological profile of the α(4)β(2) nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid. Neuropharmacology 52, 985–994 (2007).

    CAS  PubMed  Google Scholar 

  246. Cohen, C., Perrault, G., Voltz, C., Steinberg, R. & Soubrie, P. SR141716, a central cannabinoid (CB(1)) receptor antagonist, blocks the motivational and dopamine-releasing effects of nicotine in rats. Behav. Pharmacol. 13, 451–463 (2002).

    CAS  PubMed  Google Scholar 

  247. Cohen, C., Perrault, G., Griebel, G. & Soubrie, P. Nicotine-associated cues maintain nicotine-seeking behavior in rats several weeks after nicotine withdrawal: reversal by the cannabinoid (CB1) receptor antagonist, rimonabant (SR141716). Neuropsychopharmacology 30, 145–155 (2005).

    CAS  PubMed  Google Scholar 

  248. De Vries, T. J., de Vries, W., Janssen, M. C. & Schoffelmeer, A. N. Suppression of conditioned nicotine and sucrose seeking by the cannabinoid-1 receptor antagonist SR141716A. Behav. Brain Res. 161, 164–168 (2005).

    CAS  PubMed  Google Scholar 

  249. Forget, B., Hamon, M. & Thiebot, M. H. Cannabinoid CB1 receptors are involved in motivational effects of nicotine in rats. Psychopharmacology 181, 722–734 (2005).

    CAS  PubMed  Google Scholar 

  250. Zaniewska, M., McCreary, A. C., Przegaliski, E. & Filip, M. Evaluation of the role of nicotinic acetylcholine receptor subtypes and cannabinoid system in the discriminative stimulus effects of nicotine in rats. Eur. J. Pharmacol. 540, 96–106 (2006).

    CAS  PubMed  Google Scholar 

  251. Paterson, N. E. & Markou, A. Increased GABA neurotransmission via administration of γ-vinyl GABA decreased nicotine self-administration in the rat. Synapse 44, 252–253 (2002).

    CAS  PubMed  Google Scholar 

  252. Dewey, S. L. et al. A pharmacologic strategy for the treatment of nicotine addiction. Synapse 31, 76–86 (1999).

    CAS  PubMed  Google Scholar 

  253. Bevins, R. A., Besheer, J. & Pickett, K. S. Nicotine-conditioned locomotor activity in rats: dopaminergic and GABAergic influences on conditioned expression. Pharmacol. Biochem. Behav. 68, 135–145 (2001).

    CAS  PubMed  Google Scholar 

  254. Glick, S. D., Maisonneuve, I. M., Dickinson, H. A. & Kitchen, B. A. Comparative effects of dextromethorphan and dextrorphan on morphine, methamphetamine, and nicotine self-administration in rats. Eur. J. Pharmacol. 422, 87–90 (2001).

    CAS  PubMed  Google Scholar 

  255. Wright, M. J., Vann, R. E., Gamage, T. F., Damaj, M. I. & Wiley, J. L. Comparative effects of dextromethorphan and dextrorphan on nicotine discrimination in rats. Pharmacol. Biochem. Behav. 85, 507–513 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Zakharova, E. S., Danysz, W. & Bespalov, A. Y. Drug discrimination analysis of NMDA receptor channel blockers as nicotinic receptor antagonists in rats. Psychopharmacology 179, 128–135 (2005).

    CAS  PubMed  Google Scholar 

  257. Sannerud, C. A., Prada, J., Goldberg, D. M. & Goldberg, S. R. The effects of sertraline on nicotine self-administration and food-maintained responding in squirrel monkeys. Eur. J. Pharmacol. 271, 461–469 (1994).

    CAS  PubMed  Google Scholar 

  258. Semenova, S. & Markou, A. Clozapine treatment attenuated somatic and affective signs of nicotine and amphetamine withdrawal in subsets of rats exhibiting hyposensitivity to the initial effects of clozapine. Biol. Psychiatry 54, 1249–1264 (2003).

    CAS  PubMed  Google Scholar 

  259. Levin, E. D., Petro, A. & Caldwell, D. P. Nicotine and clozapine actions on pre-pulse inhibition deficits caused by N-methyl-D-aspartate (NMDA) glutamatergic receptor blockade. Prog. Neuropsychopharmaco. Biol. Psychiatry 29, 581–586 (2005).

    CAS  Google Scholar 

  260. Harrison, A. A., Liem, Y. T. & Markou, A. Fluoxetine combined with a serotonin-1A receptor antagonist reversed reward deficits observed during nicotine and amphetamine withdrawal in rats. Neuropsychopharmacology 25, 55–71 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A. Chausmer of the Division of Basic Neuroscience and Behavioural Research at the National Institute on Drug Abuse for helping to organize us as a group, and for reading and commenting on the manuscript. We also thank P. Olausson, R. Ray, M. Sofuoglu and A. Strasser for their helpful input, and M. Foster for her assistance with the manuscript preparation. This work was supported in part by Transdisciplinary Tobacco Use Research Center grants from the National Cancer Institute, the National Institute on Drug Abuse, and National Institute on Alcohol Abuse and Addiction (P50CA84718 to C.L.; P50AA15632 to S.O.M.; P50DA013333 to D. Hatsukami, which partially supports M.G.L.), and by other grants (KO5AA014715 to S.O.M.; R01DA020136 to M.G.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caryn Lerman or William A. Corrigall.

Ethics declarations

Competing interests

C.L. has served as a consultant/advisor to Astra Zeneca, GlaxoSmithKline, Pfizer and Cephalon regarding medications for nicotine dependence.

M.L. has conducted research that has been funded by GlaxoSmithKline.

K.P. has previously consulted with GlaxoSmithKline, Elan and Pfizer.

S.O'M. has received research support, principally clinical supplies or contracts as a study site, from Alkermes, Bristol–Myers Squibb, Lipha–Merck, GlaxoSmithKline, Pfizer, Ortho–McNeil and Sanofi–Aventis, and has served as a consultant for Eli Lilly, Ortho–McNeil, GlaxoSmithKline, She is an inventor on patents held by Yale University for naltrexone for smoking cessation.

S.S. has served as a consultant to NuPathe developing drug delivery technologies and has conducted research related to nicotine receptor pharmacology that has been funded by AstraZeneca.

N.B. has served as a consultant to several pharmaceutical companies that market smoking cessation medications, specifically Pfizer and GlaxoSmithKline.

W.C. is the sole proprietor of a science consulting business in which a current contract with the National Institute on Drug Abuse includes activities related to the Transdisciplinary Tobacco Use Research Centers and the National Cooperative Drug Discovery Groups (in the case of the latter, he has reseach discussions with the pharmaceutical industry partners involved in the initiative, but not for additional remuneration). In addition, he has served as a consultant/advisor to, and/or conducted research funded by Cantab, GlaxoSmithKline, Pfizer and Pharmacia.

Related links

Related links

FURTHER INFORMATION

National Cooperative Drug Discovery Groups for the Treatment of Mental Disorders, Drug or Alcohol Addiction

NIH Roadmap for Medical Research

Solicitation of Assays for High Throughput Screening (HTS) in the Molecular Libraries Screening Centers Network

Glossary

Partial agonist

A full agonist produces the system maximal response, whereas a partial agonist produces a maximal response that is below that of the system maximum (and that of a full agonist). As well as producing a submaximal response, partial agonists antagonize full agonists.

Face-valid model

A model that looks or appears to be a valid representation of what it purports to measure.

Translational research

The term is generally used to describe research efforts intended to apply advances in basic science to the clinical research setting. For drug discovery and development, the term refers to research intended to progress basic science discoveries into medications.

Sensitization

The phenomenon in which the biological or behavioural response to a drug increases with successive exposures to it. Sensitization may be elicited by repeated drug treatment itself or by coupling the drug with a particular environment.

CREB

This is an acronym for cyclic AMP response element binding and refers to proteins that increase or decrease the transcription of certain genes. CREB has been associated with many functions, including the formation of long-term memories, neuronal survival and cancers.

ΔFosB

Like CREB, this is also a transcription factor. It has been found to accumulate in neurons in the synaptic field of dopamine neurons following exposure to different dependence-producing drugs, and persists for protracted periods of time, suggesting that it may be important in sustaining changes in gene expression.

Intracranial self-stimulation

Also called brain-stimulation reward, this refers to the phenomenon in which animals will perform an operant task to receive an electrical current delivered through electrodes implanted in certain parts of their brains, such as the lateral hypothalamus.

Stroop colour-word test

This task measures how well an individual resists interference between incongruent stimuli. In the standard test, words can be congruent (for example, the colour green presented in green text) or incongruent (for example, the colour green presented in blue text). This task has been adapted to measure interference from words relating to drugs (for example, ashtray) or mood-related words (for example, sad).

Event-related potentials

Event-related potentials are positive and negative electroencephalogram voltage deflections in response to specific stimuli, for example, visual, auditory or somatosensory.

Five-choice serial reaction time task

A task used in animal behavioural pharmacological studies that approximates continuous performance tests in humans. Subjects are required to track a light stimulus at the rear of one of five holes in a response board. Nose poke behaviour in the correct hole produces food reward in a separate food hopper. Errors of commission, omission and premature responding are punished with a form of task reset.

Continuous performance task

This task measures sustained attention and vigilance. Subjects view a series of target (requiring a response) and non-target (not requiring a response) stimuli, such as letters, numbers or figures.

Fear-conditioning models

In these approaches, a neutral stimulus that is paired repeatedly with an aversive stimulus can elicit a fear response measurable in animals as physiological (for example, heart rate) and behavioural (for example, immobility) changes, and in humans with self-report and galvanic skin response.

Startle response

A physiological response, such as eye blink or bulk muscle contraction, to the presentation of an unexpected, brief stimulus, typically a quantifiable one such as a flash of light or audible tone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerman, C., LeSage, M., Perkins, K. et al. Translational research in medication development for nicotine dependence. Nat Rev Drug Discov 6, 746–762 (2007). https://doi.org/10.1038/nrd2361

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2361

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing