Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Innovative approaches to anti-arrhythmic drug therapy

Key Points

  • The drug treatment of cardiac arrhythmias has been limited by the potential for serious adverse effects, particularly by the risk of causing serious arrhythmias ('pro-arrhythmia'). Pro-arrhythmic potential is largely due to drug actions that are not sufficiently selective for the arrhythmias targeted.

  • The two most important arrhythmias that present unmet therapeutic needs are atrial and ventricular fibrillation.

  • Atrial selective ionic-current targets (such as the ultra-rapid and the cholinergic potassium currents) might allow for new drugs that suppress atrial fibrillation with little or no risk of ventricular pro-arrhythmia.

  • The pathophysiology of acute myocardial ischaemia presents targets for novel and selective therapeutic development, such as adenosine triphosphate-regulated potassium current and connexin proteins, which might present practical new targets for drugs that selectively prevent potentially lethal arrhythmias arising in acutely ischaemic ventricular tissues.

  • Currents involved in generating focal arrhythmic activity, such as hyperpolarization-activated cyclic nucleotide binding channels, stretch-activated channels and sarcoplasmic reticulum calcium-release channels, might all have significant roles in specific forms of arrhythmias. Drugs that suppress arrhythmias by acting on each of these ion-handling systems have been developed and are in various stages of development.

  • Our understanding of the genetic basis of cardiac arrhythmias at the molecular level is in rapid evolution. Improved knowledge in this area could permit much safer targeting of drug therapy on an individualized, pathophysiological and pharmacogenetic basis.

  • Evolving technologies in cell and gene therapy could allow for gene-transfer approaches that deliver highly specific therapeutic interventions directly to the arrhythmic cardiac tissue.

Abstract

Normal cardiac function requires an appropriate and regular beating rate (cardiac rhythm). When the heart rhythm is too fast or too slow, cardiac function can be impaired, with derangements that vary from mild symptoms to life-threatening complications. Irregularities, particularly those involving excessively fast or slow rates, constitute cardiac 'arrhythmias'. In the past, drug treatment of cardiac arrhythmias has proven difficult, both because of inadequate effectiveness and a risk of serious complications. However, a variety of recent advances have opened up exciting possibilities for the development of novel and superior approaches to arrhythmia therapy. This article will review recent progress and future prospects for treating two particularly important cardiac arrhythmias: atrial fibrillation and ventricular fibrillation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrical functioning of the heart.
Figure 2: Cellular mechanisms of abnormal impulse formation and arrhythmia.
Figure 3: Re-entry.
Figure 4: Ion currents, ion channel subunits and ion transporters implicated in arrhythmogenesis.
Figure 5: Promising targets for ischaemia-selective anti-arrhythmics.
Figure 6: Examples of genetically based arrhythmia syndromes.

Similar content being viewed by others

Bianca J. J. M. Brundel, Xun Ai, … Natasja M. S. de Groot

References

  1. Wolf, P. A., Mitchell, J. B., Baker, C. S., Kannel, W. B. & D'Agostino, R. B. Impact of atrial fibrillation on mortality, stroke, and medical costs. Arch. Intern. Med. 158, 229–234 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. van den Berg, M. P., van Gelder, I. C. & van Veldhuisen, D. J. Impact of atrial fibrillation on mortality in patients with chronic heart failure. Eur. J. Heart Fail. 4, 571–575 (2002).

    Article  PubMed  Google Scholar 

  3. Nattel, S. New ideas about atrial fibrillation 50 years on. Nature 415, 219–226 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Miyasaka, Y. et al. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation 114, 119–125 (2006).

    Article  PubMed  Google Scholar 

  5. Kimura, K., Minematsu, K., Yamaguchi, T. & Japan Multicenter Stroke Investigators' Collaboration (J-MUSIC). Atrial fibrillation as a predictive factor for severe stroke and early death in 15, 831 patients with acute ischaemic stroke. J. Neurol. Neurosurg. Psychiatry 76, 679–683 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guerra, P. G. et al. Is there a future for antiarrhythmic drug therapy? Drugs 56, 767–781 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. The Sicilian Gambit. A new approach to the classification of antiarrhythmic drugs based on their actions on arrhythmogenic mechanisms. Task Force of the Working Group on Arrhythmias of the European Society of Cardiology. Circulation 84, 1831–1851 (1991). A classic description of the notion of mechanistically based anti-arrhythmic therapy.

  8. Nattel, S. The molecular and ionic specificity of antiarrhythmic drug actions. J. Cardiovasc. Electrophysiol. 10, 272–282 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Wible, B. A. et al. HERG-Lite: a novel comprehensive high-throughput screen for drug-induced hERG risk. J. Pharmacol. Toxicol. Methods 52, 136–145 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Roden, D. M. Taking the 'idio' out of 'idiosyncratic': predicting torsades de pointes. Pacing Clin. Electrophysiol. 21, 1029–1034 (1998). An important and thoughtful analysis of the factors promoting one of the most important forms of pro-arrhythmia that limits the usefulness of present anti-arrhythmic drug therapy.

    Article  CAS  PubMed  Google Scholar 

  11. Marban, E. Cardiac channelopathies. Nature 415, 213–218 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, Z., Fermini, B. & Nattel, S. Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K+ current similar to Kv1.5 cloned channel currents. Circ. Res. 73, 1061–1076 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Feng, J., Wible, B., Li, G.-R., Wang, Z. & Nattel, S. Antisense oligodeoxynucleotides directed against Kv1.5 mRNA specifically inhibit ultrarapid delayed rectifier K+ current in cultured adult human atrial myocytes. Circ. Res. 80, 572–579 (1997). The definitive demonstration of the molecular basis and tissue selectivity of the human ultrarapid delayed rectifier current, which serve as the underpinning for its development as an atrial-selective anti-arrhythmic drug target.

    Article  CAS  PubMed  Google Scholar 

  14. Li, G.-R., Feng, J., Yue, L., Carrier, M. & Nattel, S. Evidence for two components of delayed rectifier K+ current in human ventricular myocytes. Circ. Res. 78, 689–696 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Han, W., Zhang, L., Schram, G. & Nattel, S. Properties of potassium currents in human cardiac Purkinje cells of failing human hearts. Am. J. Physiol. (Heart & Circ. Physiol.) 283, H2495–H2503 (2002).

    Article  CAS  Google Scholar 

  16. Peukert, S. et al. Pharmacophore-based search, synthesis, and biological evaluation of anthranilic amides as novel blockers of the Kv1.5 channel. Bioorg. Med. Chem. Lett. 14, 2823–2827 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Blaauw, Y. et al. 'Early' class III drugs for the treatment of atrial fibrillation: efficacy and atrial selectivity of AVE0118 in remodeled atria of the goat. Circulation 110, 1717–1724 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Rivard, L. et al. Electrophysiological and atrial antiarrhythmic effects of a novel IKur/Kv1.5 blocker in dogs. Heart Rhythm 2 (Suppl.), S180 (2005).

    Article  Google Scholar 

  19. Shiroshita-Takeshita, A. et al. Electrophysiological and atrial antiarrhythmic effects of a novel IKur/Kv1.5 blocker in dogs with atrial tachycardia remodeling. Heart Rhythm 3, S183 (2006).

    Article  Google Scholar 

  20. Courtemanche, M., Ramirez, R. J. & Nattel, S. Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: Insights from a mathematical model. Cardiovasc. Res. 42, 477–489 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Wettwer, E. et al. Role of IKur in controlling action potential shape and contractility in the human atrium: influence of chronic atrial fibrillation. Circulation 110, 2299–2306 (2004).

    Article  PubMed  Google Scholar 

  22. Waldron, G. J. & Cole, W. C. Activation of vascular smooth muscle K+ channels by endothelium-derived relaxing factors. Clin. Exp. Pharmacol. Physiol. 26, 180–184 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Chung, S., Saal, D. B. & Kaczmarek, L. K. Elimination of potassium channel expression by antisense oligonucleotides in a pituitary cell line. Proc. Natl Acad. Sci. USA 92, 5955–5959 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Philipson, L. H. et al. Sequence and functional expression in Xenopus oocytes of a human insulinoma and islet potassium channel. Proc. Natl Acad. Sci. USA 88, 53–57 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ehrlich, J. R. et al. Characterization of a hyperpolarization-activated time-dependent potassium current in canine cardiomyocytes from pulmonary vein myocardial sleeves and left atrium. J. Physiol. 557, 583–597 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dobrev, D. et al. The G protein-gated potassium current I(K, ACh) is constitutively active in patients with chronic atrial fibrillation. Circulation 112, 3697–3706 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Cha, T. J., Ehrlich, J. R., Chartier, D., Xiao, L. & Nattel, S. Kir3-based inward rectifier potassium current: potential role in atrial tachycardia remodeling effects on atrial repolarization and arrhythmias. Circulation 113, 1730–1737 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Matsuda, T. et al. Blockade by NIP-142, an antiarrhythmic agent, of carbachol-induced atrial action potential shortening and GIRK1/4 channel. J. Pharmacol. Sci. 101, 303–310 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Kneller, J. et al. Mechanisms of AF termination by pure sodium channel blockade in an ionically-realistic mathematical model. Circ. Res. 96, e48–e57 (2005).

    Google Scholar 

  30. Nattel, S., De Blasio, E., Wang, W.-Q. & Beatch, G. N. RSD1235: A novel antiarrhythmic agent with a unique electrophysiological profile that terminates AF in dogs (abstract). Eur. Heart J. 22 (Suppl.), 448 (2001).

    Google Scholar 

  31. Roy, D. et al. CRAFT Investigators. A randomized, controlled trial of RSD1235, a novel anti-arrhythmic agent, in the treatment of recent onset atrial fibrillation. J. Am. Coll. Cardiol. 44, 2355–2361 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Fedida, D. et al. The mechanism of atrial antiarrhythmic action of RSD1235. J. Cardiovasc. Electrophysiol. 16, 1227–1238 (2005).

    Article  PubMed  Google Scholar 

  33. Carlsson, L., Chartier, D. & Nattel, S. Characterization of the in vivo and in vitro electrophysiological effects of the novel antiarrhythmic agent AZD7009 in atrial and ventricular tissue of the dog. J. Cardiovasc. Pharmacol. 47, 123–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Page, R. L. & Roden, D. M. Drug therapy for atrial fibrillation: where do we go from here? Nature Rev. Drug Discov. 4, 899–910 (2005).

    Article  CAS  Google Scholar 

  35. Elharrar, V. & Zipes, D. P. Cardiac electrophysiologic alterations during myocardial ischemia. Am. J. Physiol. 233, H329–H345 (1977).

    CAS  PubMed  Google Scholar 

  36. Janse, M. J. & Wit, A. L. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol. Rev. 69, 1049–1169 (1989).

    Article  CAS  PubMed  Google Scholar 

  37. Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. The Cardiac Arrhythmia Suppression Trial (CAST) Investigators. N. Engl. J. Med. 321, 406–412 (1989).

  38. Effect of the antiarrhythmic agent moricizine on survival after myocardial infarction. The Cardiac Arrhythmia Suppression Trial II Investigators. N. Engl. J. Med. 327, 227–233 (1992).

  39. Zareba, W. Implantable cardioverter defibrillator therapy in postinfarction patients. Curr. Opin. Cardiol. 19, 619–624 (2004).

    Article  PubMed  Google Scholar 

  40. Nattel, S. & Waters, D. What is an antiarrhythmic drug? From clinical trials to fundamental concepts. Am. J. Cardiol. 66, 96–99 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Noma, A. ATP-regulated K+ channels in cardiac muscle. Nature 305, 147–148 (1983).

    Article  CAS  PubMed  Google Scholar 

  42. Gross, G. J. The role of mitochondrial KATP channels in cardioprotection. Basic Res. Cardiol. 95, 280–284 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Gogelein, H., Hartung, J., Englert, H. C. & Scholkens, B. A. HMR 1883, a novel cardioselective inhibitor of the ATP-sensitive potassium channel. Part I: effects on cardiomyocytes, coronary flow and pancreatic β-cells. J. Pharmacol. Exp. Ther. 286, 1453–1464 (1998).

    CAS  PubMed  Google Scholar 

  44. Li, R. A., Leppo, M., Miki, T., Seino, S. & Marban, E. Molecular basis of electrocardiographic ST-segment elevation. Circ. Res. 87, 837–839 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Billman, G. E., Englert, H. C. & Scholkens, B. A. HMR 1883, a novel cardioselective inhibitor of the ATP-sensitive potassium channel. Part II: effects on susceptibility to ventricular fibrillation induced by myocardial ischemia in conscious dogs. J. Pharmacol. Exp. Ther. 286, 1465–1473 (1998).

    CAS  PubMed  Google Scholar 

  46. Brugada, J., Brugada, R. & Brugada, P. Right bundle-branch block and ST-segment elevation in leads V1 through V3: a marker for sudden death in patients without demonstrable structural heart disease. Circulation 97, 457–460 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Elharrar, V., Gaum, W. E. & Zipes, D. P. Effect of drugs on conduction delay and incidence of ventricular arrhythmias induced by acute coronary occlusion in dogs. Am. J. Cardiol. 39, 544–549 (1977).

    Article  CAS  PubMed  Google Scholar 

  48. Brugada, R. et al. Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circulation 101, 510–515 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Di Diego, J. M., Fish, J. M. & Antzelevitch, C. Brugada syndrome and ischemia-induced ST-segment elevation. Similarities and differences. J. Electrocardiol. 38 (Suppl. 4), 14–17 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Brown, H. & Difrancesco, D. Voltage-clamp investigations of membrane currents underlying pace-maker activity in rabbit sino-atrial node. J. Physiol. 308, 331–351 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stieber, J., Hofmann, F. & Ludwig, A. Pacemaker channels and sinus node arrhythmia. Trends Cardiovasc. Med. 14, 23–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Saint, D. A. Pacemaking in the heart: the interplay of ionic currents. Clin. Exp. Pharmacol. Physiol. 25, 841–846 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Difrancesco, D. Funny channels in the control of cardiac rhythm and mode of action of selective blockers. Pharmacol. Res. 53, 399–406 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Hsia, H. H. & Marchlinski, F. E. Electrophysiology studies in patients with dilated cardiomyopathies. Card. Electrophysiol. Rev. 6, 472–481 (2002).

    Article  PubMed  Google Scholar 

  55. Nazir, S. A. & Lab, M. J. Mechanoelectric feedback and atrial arrhythmias. Cardiovasc. Res. 32, 52–61 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Lab, M. J. Mechanoelectric feedback (transduction) in heart: concepts and implications. Cardiovasc. Res. 32, 3–14 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Henry, W. L. et al. Relation between echocardiographically determined left atrial size and atrial fibrillation. Circulation 53, 273–279 (1976).

    Article  CAS  PubMed  Google Scholar 

  58. Vaziri, S. M., Larsson, M. G., Benjamin, E. J. & Levy, D. Echocardiographic predictors of nonrheumatic atrial fibrillation: the Framingham Heart Study. Circulation 89, 724–730 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Zou, R., Kneller, J., Leon, L. J. & Nattel, S. Substrate size as a determinant of fibrillatory activity maintenance in a mathematical model of canine atrium. Am. J. Physiol. (Heart Circ. Physiol.) 289, H1002–H1012 (2005).

    Article  CAS  Google Scholar 

  60. Hu, H. & Sachs, F. Stretch-activated ion channels in the heart. J. Mol. Cell. Cardiol. 29, 1511–1523 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Suchyna, T. M. et al. The identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J. Gen. Physiol. 115, 583–598 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gottlieb, P. A., Suchyna, T. M., Ostrow, L. W. & Sachs, F. Mechanosensitive ion channels as drug targets. Curr. Drug Targets-CNS Neurol. Disord. 4, 287–295 (2004).

    Article  Google Scholar 

  63. Bode, F., Sachs, F. & Franz, M. R. Tarantula peptide inhibits atrial fibrillation. Nature 409, 35–36 (2001). A key description of the role of tissue stretch in atrial fibrillation and of the potential of stretch-channel inhibitors to suppress the arrhythmia.

    Article  CAS  PubMed  Google Scholar 

  64. Suchyna, T. M. et al. Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. Nature 430, 235–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Ninio, D. M., Murphy, K. J., Howe, P. R. & Saint, D. A. Dietary fish oil protects against stretch-induced vulnerability to atrial fibrillation in a rabbit model. J. Cardiovasc. Electrophysiol. 16, 1–6 (2005).

    Article  Google Scholar 

  66. Scoote, M. & Williams, A. J. Myocardial calcium signalling and arrhythmia pathogenesis. Biochem. Biophys. Res. Comm. 322, 1286–1309 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Marx, S. O. et al. PKA phosphorylation dissociates FKBP12. 6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101, 365–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Lehnart, S. E., Wehrens, X. H. T. & Marks, A. R. Calstabin deficiency, ryanodine receptors, and sudden death. Biochem. Biophys. Res. Comm. 322, 1267–1279 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Doggrell, S. A. Stabilisation of calstabin2 — a new approach in sudden cardiac death. Expert Opin. Ther. Targets 9, 955–962 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Yano, M. et al. FKBP12. 6 mediated stabilization of calcium release channel (ryanodine receptors) as a novel therapeutic strategy against heart failure. Circulation 107, 477–484 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Wehrens, X. H. et al. Protection from cardiac arrhythmia through ryanodine-receptor stabilizing protein calstabin2. Science 304, 292–296 (2004). A clear demonstration of the potential value of calcium-release channel stabilization in treating potentially malignant cardiac arrhythmias.

    Article  CAS  PubMed  Google Scholar 

  72. Kumagai, K., Nakashima, H., Gondo, N. & Saku, K. Antiarrhythmic effects of JVT-519, a novel cardiprotective drug, on atrial fibrillation/flutter in a canine sterile pericarditis model. J. Cardiovasc. Electrophysiol. 14, 880–884 (2003).

    Article  PubMed  Google Scholar 

  73. Vest, J. A. et al. Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation 111, 2025–2032 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Anderson, C. L. et al. Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation 113, 365–373 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Dzura, I., Wu, Y., Colbram, R. J., Balser, J. R. & Anderson, M. E. Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nature Cell Biol. 2, 173–177 (2000).

    Article  CAS  Google Scholar 

  76. Anderson, M. E. et al. Brugada syndrome. Report from the second consensus conference. Heart Rhythm 2, 429–440 (2005).

    Article  Google Scholar 

  77. Gutstein, D. E. et al. Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ. Res. 88, 333–339 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. De Groot, J. T. & Coronel, R. Acute ischemia-induced gap junctional uncoupling and arrhythmogenesis. Cardiovasc. Res. 62, 323–334 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Akar, F. G., Spragg, D. D., Tunin, R. S., Kass, D. A. & Tomaselli, G. F. Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ. Res. 95, 717–725 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Firouzi, M. et al. Association of human connexin40 gene polymorphisms with atrial vulnerability as a risk factor for idiopathic atrial fibrillation. Circ. Res. 95, e29–e33 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. van der Velden, H. M. et al. Altered pattern of connexin40 distribution in persistent atrial fibrillation in the goat. J. Cardiovasc. Electrophysiol. 9, 596–607 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Shaw, R. M. & Rudy, Y. Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ. Res. 81, 727–741 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Aonuma, S. et al. Studies on heart. XIX. Isolation of an atrial peptide that improves the rhythmicity of cultured myocardial cell clusters. Chem. Pharm. Bull. (Tokyo) 28, 3332–3339 (1980).

    Article  CAS  Google Scholar 

  84. Kjølbye, A. L., Knudsen, C. B., Jepsen, T., Larsen, B. D. & Petersen, J. S. Pharmacological characterization of the new stable antiarrhythmic peptide analog Ac-D-Pro-D-Hyp-Gly-D-Ala-Gly-NH2 (ZP123): In vivo and in vitro studies. J. Pharmacol. Exp. Ther. 306, 1191–1199 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Xing, D. et al. ZP123 increases gap junctional conductance and prevents reentrant ventricular tachycardia during myocardial ischemia in open chest dogs. J. Cardiovasc. Electrophysiol. 14, 510–520 (2003).

    Article  PubMed  Google Scholar 

  86. Haugan, K. et al. The antiarrhythmic peptide analog ZP123 prevents atrial conduction slowing during metabolic stress. J. Cardiovasc. Electrophysiol. 16, 537–545 (2005).

    PubMed  Google Scholar 

  87. Kääb, S. & Schulze-Bahr, E. Susceptibility genes and modifiers for cardiac arrhythmias. Cardiovasc. Res. 67, 397–413 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Bezzina, C. R. et al. Common sodium channel promoter haplotype in asian subjects underlies variability in cardiac conduction. Circulation 113, 338–344 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Priori, S. G. Inherited arrhythmogenic diseases. The complexity beyond monogenic disorders. Circ. Res. 94, 140–145 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Antzelevitch, C., Brugada, P., Brugada, J. & Brugada, R. Brugada syndrome: from cell to bedside. Curr. Probl. Cardiol. 30, 9–54 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Xu, X. et al. Increasing I(Ks) corrects abnormal repolarization in rabbit models of acquired LQT2 and ventricular hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 283, H664–H670 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Casis, O., Olesen, S. P. & Sanguinetti, M. C. Mechanism of action of a novel human ether-a-go-go-related gene channel activator. Mol. Pharmacol. 69, 658–665 (2006). Mechanistic description of a novel potassium-channel-activating drug that could provide an important new therapeutic approach.

    Article  CAS  PubMed  Google Scholar 

  93. Han, W., Wang, Z. & Nattel, S. Slow delayed rectifier current and repolarization in canine cardiac Purkinje cells. Am. J. Physiol. (Heart Circ. Physiol.) 280, H1075–H1080 (2001).

    Article  CAS  Google Scholar 

  94. Zhou, Z., Gong, Q., Epstein, M. L. & January, C. T. HERG channel dysfunction in human long QT syndrome: intracellular transport and functional defects. J. Biol. Chem. 273, 21061–21066 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Robertson, G. A. & January, C. T. HERG trafficking and pharmacological rescue of LQTS-2 mutant channels. Handb. Exp. Pharmacol. 171, 349–355 (2006). A detailed review of a novel pharmacological class: drugs that rescue channels that fail to traffic normally to the cell membrane.

    Article  CAS  Google Scholar 

  96. Delisle, B. P., Anson, B. D., Rajamani, S. & January, C. T. Biology of cardiac arrhythmias: ion channel protein trafficking. Circ. Res. 94, 1418–1428 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Rajamani, S., Anderson, C. L., Anson, B. D. & January, C. T. Pharmacological rescue of human K+ channel long QT2 mutations: human ether-a-go-go-related gene rescue without block. Circulation 105, 2830–2835 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Gong, Q., Anderson, C. L., January, C. T. & Zhou, Z. Pharmacological rescue of trafficking defective HERG channels formed by coassembly of wild-type and long QT mutant N470D subunits. Am. J. Physiol. Heart Circ. Physiol. 287, H652–H658 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Brugada, R. et al. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 109, 30–35 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Bellocq, C. et al. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation 109, 2394–2397 (2004).

    Article  PubMed  Google Scholar 

  101. Priori, S. G. et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ. Res. 96, 800–807 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Tamargo, J., Caballero, R., Gomez, R., Valenzuela, C. & Delpon, E. Pharmacology of cardiac potassium channels. Cardiovasc. Res. 62, 9–33 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Thomas, G. P., Gerlach, U. & Antzelevitch. C. HMR 1556, a potent and selective blocker of slowly activating delayed rectifier potassium current. J. Cardiovasc. Pharmacol. 41, 140–147 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Butcher, J. W. et al. Novel 5-cyclopropyl-1, 4-benzodiazepin-2-ones as potent and selective I(Ks)-blocking class III antiarrhythmic agents. Bioorg. Med. Chem. Lett. 13, 1165–1168 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Antzelevitch, C. et al. Brugada syndrome: report of the second consensus conference. Heart Rhythm 2, 429–440 (2005).

    Article  PubMed  Google Scholar 

  106. Marks, A. R., Priori, S., Memmi, M., Kontula, K. & Laitinen, P. J. Involvement of the cardiac ryanodine receptor/calcium release channel in catecholaminergic polymorphic ventricular tachycardia. J. Cell. Physiol. 190, 1–6 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Francis, J., Sankar, V., Nair, V. K. & Priori, S. G. Catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 2, 550–554 (2005).

    Article  PubMed  Google Scholar 

  108. Nam, G. B., Burashnikov, A. & Antzelevitch, C. Cellular mechanisms underlying the development of catecholaminergic ventricular tachycardia. Circulation 111, 2727–2733 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Jiang, D. et al. Enhanced store overload-induced Ca2+ release and channel sensitivity to luminal Ca2+ activation are common defects of RyR2 mutations linked to ventricular tachycardia and sudden death. Circ. Res. 97, 1173–1181 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Donahue, J. K., Kikuchi, K. & Sasano, T. Gene therapy for cardiac arrhythmias. Trends Cardiovasc. Med. 15, 219–224 (2005). A careful look at novel gene-transfer therapy approaches for cardiac arrhythmias by one of the leaders in the field.

    Article  CAS  PubMed  Google Scholar 

  111. Rosen, M. R. Biological pacemaking: in our lifetime? Heart Rhythm 2, 418–428 (2005). A detailed review of a very promising new approach to a particular class of arrhythmias, with genetically engineered biological pacemakers that might replace the long-standard electronic implantable devices.

    Article  PubMed  Google Scholar 

  112. Murata, M., Cingolani, E., McDonald, A. D., Donahue, J. K. & Marbán, E. Creation of a genetic calcium channel blocker by targeted Gem gene transfer in the heart. Circ. Res. 95, 398–405 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Johns, D. C. et al. Adenovirus-mediated expression of a voltage-gated potassium channel in vitro (rat cardiac myocytes) and in vivo (rat liver). A novel strategy for modifying excitability. J. Clin. Invest. 96, 1152–1158 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nuss, B., Marbá n, E. & Johns, D. Overexpression of a human potassium channel suppresses cardiac hyperexcitability in rabbit ventricular myocytes. J. Clin. Invest. 103, 889–896 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ennis, I., Li, R., Murphy, A. & Nuss, H. Dual gene therapy with SERCA1 and Kir 2.1 abbreviates excitation without suppressing contractility. J. Clin. Invest. 109, 393–400 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kodirov, S., Brunner, M., Busconi, L. & Koren, G. Long-term restitution of 4-aminopyridine-sensitive currents in Kv1DN ventricular myocytes using adeno-associated virus-mediated delivery of Kv1.5. FEBS Lett. 550, 74–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Kikuchi, K., McDonald, A. D., Sasano, T. & Donahue, J. K. Targeted modification of atrial electrophysiology by homogenous transmural atrial gene transfer. Circulation 111, 264–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Fabiato, A. & Fabiato, F. Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J. Physiol. 249, 469–495 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bers, D. M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Lehnart, S. E., Wehrens, X. H. T. & Marks, A. R. Calstabin deficiency, ryanodine receptors, and sudden death. Biochem. Biophys. Res. Comm. 322, 1267–1279 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Marx, S. O. et al. PKA phosphorylation dissociates FKBP12. 6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101, 365–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Ai, X., Curran, J. W., Shannon, T. R., Bers, D. M. & Pogwizd, SM. Ca2+(calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ. Res. 97, 1314–1322 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Scoote, M. & Williams, A. J. Myocardial calcium signalling and arrhythmia pathogenesis. Biochem. Biophys. Res. Comm. 322, 1286–1309 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Aonuma, S. et al. Studies on heart. XIX. Isolation of an atrial peptide that improves the rhythmicity of cultured myocardial cell clusters. Chem. Pharm. Bull. (Tokyo). 28, 3332–3339 (1980).

    Article  CAS  PubMed  Google Scholar 

  125. Aonuma, S., Kohama. Y., Makino, T. & Fujisawa, T. Studies of heart. XXI. Amino acid sequence of antiarrhythmic peptide (AAP) isolated from atria. J. Pharmacobiodyn. 5, 40–48 (1982).

    Article  CAS  PubMed  Google Scholar 

  126. Argentieri, T., Cantor, E. & Wiggins, J. R. Antiarrhythmic peptide has no direct cardiac actions. Experientia 45, 737–738 (1989).

    Article  CAS  PubMed  Google Scholar 

  127. Dhein, S. et al. A new synthetic antiarrhythmic peptide reduces dispersion of epicardial activation recovery interval and diminishes alterations of epicardial activation patterns induced by regional ischemia. Naunyn-Schmiedeberg´s Arch. Pharmacol. 350, 174–184 (1994).

    CAS  Google Scholar 

  128. Kohama, Y., Okimoto, N., Mimura, T., Fukaya, C., Watanabe, M., Yokoyama, K. A new antiarrhythmic peptide, N-3-(4-hydroxyphenyl)propionyl-Pro-Hyp-Gly-Ala-Gly. Chem. Pharm. Bull. 35, 3928–3930 (1987).

    Article  CAS  Google Scholar 

  129. Dhein, S. & Tudyka, T. Therapeutic potential of antiarrhythmic peptides. Cellular coupling as a new antiarrhythmic target. Drugs. 49, 851–855 (1995).

    Article  CAS  PubMed  Google Scholar 

  130. Weng, S., Lauven, M., Schaeffer, T., Polontchouk, L., Grover, R., Dhein, S. Pharmacological modification of gap junction coupling by an antiarrhythmic peptide via protein kinase C activation. FASEB J. 16, 1114–1116 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Grover, R. & Dhein, S. Structure-activity relationships of novel peptides related to the antiarrhythmic peptide AAP10 which reduce the dispersion of epicardial action potential duration. Peptides 22, 1011–1021 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Kjølbye, A. L., Knudsen, C. B., Jepsen, T., Larsen, B. D. & Petersen, J. S. Pharmacological characterization of the new stable antiarrhythmic peptide analog Ac-D-Pro-D-Hyp-Gly-D-Ala-Gly-NH2 (ZP123): In vivo and in vitro studies. J. Pharmacol. Exp. Ther. 306, 1191–1199 (2003). The first description of the pharmacology of a stable gap-junction-enhancing anti-arrhythmic peptide.

    Article  CAS  PubMed  Google Scholar 

  133. Xing, D. et al. ZP123 increases gap junctional conductance and prevents reentrant ventricular tachycardia during myocardial ischemia in open chest dogs. J. Cardiovasc. Electrophysiol. 14, 510–520 (2003).

    Article  PubMed  Google Scholar 

  134. Eloff, B. C., Gilat, E., Wan, X. & Rosenbaum D. S. Pharmacological modulation of cardiac gap junctions to enhance cardiac conduction. Evidence supporting a novel target for antiarrhythmic therapy. Circulation 108, 3157–3163 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Haugan, K. et al. The antiarrhythmic peptide analog ZP123 prevents atrial conduction slowing during metabolic stress. J. Cardiovasc. Electrophysiol. 16, 537–545 (2005).

    Article  PubMed  Google Scholar 

  136. Xing, D., Kjø lbye, A. L., Petersen, J. S. & Martins, J. B. Pharmacological stimulation of cardiac gap junction coupling does not affect ischemia-induced focal ventricular tachycardia or triggered activity in dogs. Am. J. Physiol. Heart Circ. Physiol. 288, H511–H516 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Hamman, J. H., Enslin, G. M. & Kotzé, A. F. Oral delivery of peptide drugs. Barriers and developments. Biodrugs 19, 165–177 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Nattel, S., Maguy, A., Le Bouter, S. & Yeh, Y. H. Arrhythmogenic ion-channel remodeling in the heart. Physiol. Rev. (in the press).

  139. Nattel, S., Shiroshita-Takeshita, A., Cardin, S. & Pelletier, P. Mechanisms of atrial remodeling and clinical relevance. Curr. Opin. Cardiol. 20, 21–25 (2005). A detailed analysis of the therapeutic implications of atrial remodelling, including implications for anti-arrhythmic drug use and development and potential for novel pharmaceutical targets in the treatment of atrial fibrillation.

    PubMed  Google Scholar 

  140. Li, D., Fareh, S., Leung, T. K. & Nattel, S. Promotion of atrial fibrillation by heart failure in dogs: Atrial remodeling of a different sort. Circulation 100, 87–95 (1999).

    Article  CAS  PubMed  Google Scholar 

  141. Cha, T. J. et al. Dissociation between ionic remodeling and ability to sustain atrial fibrillation during recovery from experimental congestive heart failure. Circulation 109, 412–418 (2004).

    Article  PubMed  Google Scholar 

  142. Li, D. et al. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation 104, 2608–2614 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Cardin, S. et al. Evolution of the atrial fibrillation substrate in experimental congestive heart failure: Angiotensin-dependent and independent pathways. Cardiovasc. Res. 60, 315–325 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Kumagai, K. et al.: Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. J. Am. Coll. Cardiol. 41, 2197–2204 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Healey, J. S. et al. Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: a meta-analysis. J. Am. Coll. Cardiol. 45, 1832–1839 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Carnes, C. A. et al.: Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ. Res. 89, E32–E38 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Kim, Y. M. et al. A myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative stress in human atrial fibrillation. Circ. Res. 97, 629–636 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Shiroshita-Takeshita, A., Brundel, B. J. J. M., Lavoie, J. & Nattel, S. Prednisone prevents atrial fibrillation promotion by atrial tachycardia remodeling in dogs. Cardiovasc. Res. 69, 865–875 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Dernellis, J. & Panaretou, M. Relationship between C-reactive protein concentrations during glucocorticoid therapy and recurrent atrial fibrillation. Eur. Heart J. 25, 1100–1107 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Shiroshita-Takeshita, A., Schram, G., Lavoie, J. & Nattel, S. The effect of simvastatin and antioxidant vitamins on atrial fibrillation-promotion by atrial tachycardia remodeling in dogs. Circulation 110, 2313–2319 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Wijffels, M. C. et al. : Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92, 1954–1968 (1995).

    Article  CAS  PubMed  Google Scholar 

  152. Shinagawa, K., Shiroshita-Takeshita, A., Schram, G. & Nattel, S. Effects of antiarrhythmic drugs on fibrillation in the remodeled atrium: Insights into the mechanism of the superior efficacy of amiodarone. Circulation 107, 1440–1446 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Fareh, S., Bé nardeau, A., Thibault, B. & Nattel, S. The T-type Ca2+ channel blocker mibefradil prevents the development of a substrate for atrial fibrillation by tachycardia-induced atrial remodeling in dogs. Circulation 100, 2191–2197 (1999).

    Article  CAS  PubMed  Google Scholar 

  154. Matsumoto, Y. et al. Long-term endothelin a receptor blockade inhibits electrical remodeling in cardiomyopathic hamsters. Circulation 106, 613–619 (2002).

    Article  CAS  PubMed  Google Scholar 

  155. Wang, Q. et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nature Genet. 12, 17–23 (1996).

    Article  PubMed  Google Scholar 

  156. Curran, M. E. et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome, Cell 80, 795–803 (1995).

    Article  CAS  PubMed  Google Scholar 

  157. Bennett, PB., Yazawa, K. & Makita, N. Molecular mechanism for an inherited cardiac arrhythmia. Nature 376, 683–685 (1995).

    Article  CAS  PubMed  Google Scholar 

  158. Mohler, P. J. et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421, 634–639 (2003).

    Article  CAS  PubMed  Google Scholar 

  159. Splawski, I., Tristani-Firouzi, M., Lehmann, M. H., Sanguinetti, M. C. & Keating, M. T. Mutations in the hminK gene cause long QT syndrome and suppress I(Ks) function. Nature Genet. 17, 338–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  160. Abbott, G. W. et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 97, 175–187 (1999).

    Article  CAS  PubMed  Google Scholar 

  161. Plaster, N. M. et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome. Cell 105, 511–519 (2001).

    Article  CAS  PubMed  Google Scholar 

  162. Splawski, I. et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119, 19–31 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Neyroud, N. et al. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange–Nielsen cardioauditory syndrome. Nature Genet. 15, 186–189 (1997).

    Article  CAS  PubMed  Google Scholar 

  164. Schulze-Bahr, E. et al. KCNE1 mutations cause Jervell and Lange–Nielsen syndrome. Nature Genet. 17, 267–268 (1997).

    Article  CAS  PubMed  Google Scholar 

  165. Brugada, R., Hong, K. & Dumaine, R. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 109, 30–35 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Bellocq, C. et al. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation 109, 2394–2397 (2004).

    Article  PubMed  Google Scholar 

  167. Priori, S. G. et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ. Res. 96, 800–807 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Chen, Q. et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392, 293–296 (1998).

    Article  CAS  PubMed  Google Scholar 

  169. Priori, S. G. et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103, 196–200 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Viatchenko-Karpinski, S. et al. Abnormal calcium signaling and sudden cardiac death associated with mutation of calsequestrin. Circ. Res. 94, 471–477 (2004).

    Article  CAS  PubMed  Google Scholar 

  171. Schulze-Bahr, E. et al. Pacemaker channel dysfunction in a patient with sinus node disease. J. Clin. Invest. 111, 1537–1545 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Benson, D. W. et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J. Clin. Invest. 112, 1019–1028 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Schott, J. J. et al. Cardiac conduction defects associate with mutations in SCN5A. Nature Genet. 23, 20–21 (1999).

    Article  CAS  PubMed  Google Scholar 

  174. Chen, Y. H. et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 299, 251–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  175. Yang, Y. et al. Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am. J. Hum. Genet. 75, 899–905 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Xia, M. et al. A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. Biochem. Biophys. Res. Commun. 332, 1012–1019 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Hong, K., Bjerregaard, P., Gussak, I. & Brugada, R. Short QT syndrome and atrial fibrillation caused by mutation in KCNH2. J. Cardiovasc. Electrophysiol. 4, 394–396 (2005).

    Article  Google Scholar 

  178. Hashimoto, N. et al. A novel IKACh channel blocker, NIP-151, terminates atrial fibrillation with atrial specific effective refractory period prolongation. Circulation 112, Abs II–191 (2005).

    Google Scholar 

Download references

Acknowledgements

Supported by the Canadian Institutes of Health Research, the Quebec Heart and Stroke Foundation and the Mathematics of Complex Systems and Information Technology (MITACS) Network of Centers of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley Nattel.

Ethics declarations

Competing interests

L.C. is an employee and shareholder of AstraZeneca Corp. S.N. has received research funding in the past 2 years from Xention, Inotek, Daiichi Asubi and AstraZeneca. S.N. is listed as inventor on patents pending for which intellectual property belongs to Montreal Heart Institute and the University of Montreal, regarding: (1) blockers of cholinergic potassium current for atrial fibrillation therapy; and (2) statins to prevent atrial fibrillation.

Related links

Related links

DATABASES

OMIM

Brugada syndrome

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nattel, S., Carlsson, L. Innovative approaches to anti-arrhythmic drug therapy. Nat Rev Drug Discov 5, 1034–1049 (2006). https://doi.org/10.1038/nrd2112

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing