Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Model organisms

The ascent of mouse: advances in modelling human depression and anxiety

Key Points

  • Depression and anxiety disorders are serious, growing medical problems that remain poorly understood and inadequately treated. However, psychiatry has proven to be among the least penetrable clinical disciplines for the development of satisfactory in vivo model systems for evaluating novel treatment approaches.

  • Although the rat has traditionally been the species of choice for assessing behavioural effects of manipulations relating to mental illness, there has been a recent explosion in the use of genetically modified mice and enormous research efforts have been focused on developing mouse models of psychiatric disorders.

  • The success of using genetically modified mice as models of psychiatric disorders is largely contingent on the utility of available behavioural models of depression- and anxiety-related behaviours. Here, we assess the current status of research aimed at developing such models.

  • There are several challenges facing the drug discovery industry as it endeavours to identify 'translational models' for anxiety and depression. The development of animal models of specific features of the disease, 'endophenotypes', which have a defined neurocircuitry or genetic basis, is emerging as a useful strategy.

  • Mouse models of depression largely rely on the reaction of the animal to stressful situations, although efforts are underway to develop models of specific features of the disease, such as anhedonia and cognitive dysfunction.

  • Popular tests for anxiety-like behaviours are often based on ethologically relevant behaviours, such as aversion to exposed, well-lit spaces.

  • The use of cognitive-based tasks that involve Pavlovian fear conditioning is one approach that is being used in both mouse and human situations to explain the neural substrates of fear and learning and memory in the brain.

  • Recent emphasis has been placed on developing mouse models of the childhood origins of anxiety and depression as childhood trauma and neglect exert a profound and pervasive influence on risk for depression and anxiety disorders.

Abstract

Psychiatry has proven to be among the least penetrable clinical disciplines for the development of satisfactory in vivo model systems for evaluating novel treatment approaches. However, mood and anxiety disorders remain poorly understood and inadequately treated. With the explosion in the use of genetically modified mice, enormous research efforts have been focused on developing mouse models of psychiatric disorders. The success of this approach is largely contingent on the usefulness of available behavioural models of depression- and anxiety-related behaviours in mice. Here, we assess the current status of research into developing appropriate tests for assessing such behaviours.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 6: Timeline |
Figure 1: The human brain and the mouse brain.
Figure 2: Using the forced swim test to assess the role of the GABAB receptors in depression-related behaviour.
Figure 3: Using the tail suspension test to understand the mechanism of action of antidepressants.
Figure 4: Tests for assessing anxiety responses in mice.
Figure 5: Using the elevated plus-maze and light/dark exploration test to assess anxiety-related behaviour in genetically modified mice.

Similar content being viewed by others

References

  1. Wong, M. L. & Licinio, J. From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nature Rev. Drug Discov. 3, 136–151 (2004).

    Article  CAS  Google Scholar 

  2. Wong, M. L. & Licinio, J. Research and treatment approaches to depression. Nature Rev. Neurosci. 2, 343–351 (2001).

    Article  CAS  Google Scholar 

  3. Murray, C. J. & Lopez, A. D. Alternative projections of mortality and disability by cause 1990–2020: global burden of disease study. Lancet 349, 1498–1504 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Kessler, R. C. et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 289, 3095–3105 (2003).

    Article  PubMed  Google Scholar 

  5. Greenberg, P. E. et al. The economic burden of depression in the United States: how did it change between 1990 and 2000? J. Clin. Psychiatry 64, 1465–1475 (2003).

    Article  PubMed  Google Scholar 

  6. Sheps, D. S. & Sheffield, D. Depression, anxiety, and the cardiovascular system: the cardiologist's perspective. J. Clin. Psychiatry 62 (Suppl. 8), 12–16; discussion 17–18 (2001).

    PubMed  Google Scholar 

  7. Rumsfeld, J. S. & Ho, P. M. Depression and cardiovascular disease: a call for recognition. Circulation 111, 250–253 (2005).

    Article  PubMed  Google Scholar 

  8. Licinio, J. & Wong, M. L. Depression, antidepressants and suicidality: a critical appraisal. Nature Rev. Drug Discov. 4, 165–171 (2005).

    Article  CAS  Google Scholar 

  9. American Psychiatric Association. (ed.) Diagnostic and Statistical Manual of Mental Disorders 4th edn (American Psychiatric Press, Washington DC, 1994).

  10. Holmes, A., Heilig, M., Rupniak, N. M., Steckler, T. & Griebel, G. Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol. Sci. 24, 580–588 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. DiMasi, J. A., Hansen, R. W. & Grabowski, H. G. The price of innovation: new estimates of drug development costs. J. Health Econ. 22, 151–185 (2003).

    Article  PubMed  Google Scholar 

  12. Frantz, S. Therapeutic area influences drug development costs. Nature Rev. Drug Discov. 3, 466–467 (2004).

    Article  CAS  Google Scholar 

  13. Lakoff, A. The mousetrap: managing the placebo effect in antidepressant trials. Mol. Interv. 2, 72–76 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Insel, T. R. & Charney, D. S. Research on major depression: strategies and priorities. JAMA 289, 3167–3168 (2003).

    Article  PubMed  Google Scholar 

  15. Nestler, E. J. et al. Neurobiology of depression. Neuron 34, 13–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Cryan, J. F. & Mombereau, C. In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol. Psychiatry 9, 326–357 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. World Health Organization. ICD-10: The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines (Gaskell (Royal College of Psychiatrists), Geneva, 1992).

  18. Sramek, J. J., Zarotsky, V. & Cutler, N. R. Generalised anxiety disorder: treatment options. Drugs 62, 1635–1648 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Geyer, M. A. & Markou, A. in Neuropsycho-pharmacology: The Fifth Generation of Progress (eds Davis, K. L., Charney, D., Coyle, J. T. & Nemeroff, C.) 445–455 (Lippincott Williams and Wilkins, Philadelphia, 2002).

    Google Scholar 

  20. Hasler, G., Drevets, W. C., Manji, H. K. & Charney, D. S. Discovering endophenotypes for major depression. Neuropsychopharmacology 29, 1765–1781 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Gottesman, I. I. & Gould, T. D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160, 636–645 (2003).

    Article  PubMed  Google Scholar 

  22. Merikangas, K. R. et al. Longitudinal trajectories of depression and anxiety in a prospective community study: the Zurich Cohort Study. Arch. Gen. Psychiatry 60, 993–1000 (2003).

    PubMed  Google Scholar 

  23. Shorter, E. & Tyrer, P. Separation of anxiety and depressive disorders: blind alley in psychopharmacology and classification of disease. BMJ 327, 158–160 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Holmes, A., Lachowicz, J. E. & Sibley, D. R. Phenotypic analysis of dopamine receptor knockout mice; recent insights into the functional specificity of dopamine receptor subtypes. Neuropharmacology 47, 1117–1134 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Tecott, L. H. The genes and brains of mice and men. Am. J. Psychiatry 160, 646–656 (2003).

    Article  PubMed  Google Scholar 

  26. Crawley, J. N. What's Wrong With My Mouse? Behavioral Phenotyping of Transgenic and Knockout Mice (Wiley-Liss, New York, 2000). An excellent introduction to behavioural studies in mice with essential advice on avoiding some of the major pitfalls.

    Google Scholar 

  27. Joyner, A. L. & Sedivy, J. M. Gene Targeting: a Practical Approach (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  28. Holmes, A. Targeted gene mutation approaches to the study of anxiety-like behavior in mice. Neurosci. Biobehav. Rev. 25, 261–273 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Finn, D. A., Rutledge-Gorman, M. T. & Crabbe, J. C. Genetic animal models of anxiety. Neurogenetics 4, 109–135 (2003).

    Article  PubMed  Google Scholar 

  30. Cryan, J. F., Markou, A. & Lucki, I. Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol. Sci. 23, 238–245 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Xu, F. et al. Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nature Neurosci. 3, 465–471 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Rudolph, U. & Mohler, H. Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu. Rev. Pharmacol. Toxicol. 44, 475–498 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Cryan, J. F. et al. Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. Eur. J. Neurosci. 17, 2409–2417 (2003).

    Article  PubMed  Google Scholar 

  34. Holmes, A. et al. Galanin GAL-R1 receptor null mutant mice display increased anxiety-like behavior specific to the elevated plus-maze. Neuropsychopharmacology 28, 1031–1044 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Austin, C. P. et al. The knockout mouse project. Nature Genet. 36, 921–924 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Justice, M. J., Noveroske, J. K., Weber, J. S., Zheng, B. & Bradley, A. Mouse ENU mutagenesis. Hum. Mol. Genet. 8, 1955–1963 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Tarantino, L. M. & Bucan, M. Dissection of behavior and psychiatric disorders using the mouse as a model. Hum. Mol. Genet. 9, 953–965 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Phillips, T. J. et al. Harnessing the mouse to unravel the genetics of human disease. Genes, Brain & Behavior 1, 14–26 (2001).

    Article  Google Scholar 

  39. Flint, J. Analysis of quantitative trait loci that influence animal behavior. J. Neurobiol. 54, 46–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Yalcin, B. et al. Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice. Nature Genet. 36, 1197–1202 (2004). Comprehensive and multi-pronged approach to identifying naturally occurring gene variants underlying anxiety-like behaviours in mice.

    Article  CAS  PubMed  Google Scholar 

  41. Yoshikawa, T., Watanabe, A., Ishitsuka, Y., Nakaya, A. & Nakatani, N. Identification of multiple genetic loci linked to the propensity for 'behavioral despair' in mice. Genome Res. 12, 357–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Crowley, J. J. & Lucki, I. Opportunities to discover genes regulating depression and antidepressant response from rodent behavioral genetics. Curr. Pharm. Des. 11, 157–169 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. El Yacoubi, M. et al. Behavioral, neurochemical, and electrophysiological characterization of a genetic mouse model of depression. Proc. Natl Acad. Sci. USA 100, 6227–6232 (2003). As illustrated in this study, individual differences in behaviour within a population of mice can be used as a starting point to breed a genetic model of depression-related behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krömer, S. et al. Identification of glyoxalase-I as a protein marker in a mouse model of extremes in trait anxiety. J. Neurosci. 25, 4375–4384 (2005).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Rodgers, R. J. Animal models of 'anxiety': where next? Behav. Pharmacol. 8, 477–496; discussion 497–504 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. McKinney, W. T. Overview of the past contributions of animal models and their changing place in psychiatry. Semin. Clin. Neuropsychiatry 6, 68–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Jones, M. W. A comparative review of rodent prefrontal cortex and working memory. Curr. Mol. Med. 2, 639–647 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. McKinney, W. T. J. & Bunney, W. E. J. Animal model of depression. I. Review of evidence: implications for research. Arch. Gen. Psychiatry 21, 240–248 (1969). Seminal treatise on the criteria that constitute a valid animal model of depression.

    Article  PubMed  Google Scholar 

  49. Anisman, H. & Zacharko, R. M. Multiple neurochemical and behavioral consequences of stressors: implications for depression. Pharmacol. Ther. 46, 119–136 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. Kessler, R. C. The effects of stressful life events on depression. Annu. Rev. Psychol. 48, 191–214 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Sullivan, P. F., Neale, M. C. & Kendler, K. S. Genetic epidemiology of major depression: review and meta-analysis. Am. J. Psychiatry 157, 1552–1562 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Petit-Demouliere, B., Chenu, F. & Bourin, M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berl.) 177, 245–255 (2005).

    Article  CAS  Google Scholar 

  53. Porsolt, R. D., Le Pichon, M. & Jalfre, M. Depression: a new animal model sensitive to antidepressant treatments. Nature 266, 730–732 (1977). First description of the forced swim test, the most widely used test of antidepressant activity in rodents.

    Article  CAS  PubMed  Google Scholar 

  54. Porsolt, R. D., Bertin, A. & Jalfre, M. 'Behavioural despair' in rats and mice: strain differences and the effects of imipramine. Eur. J. Pharmacol. 51, 291–294 (1978).

    Article  CAS  PubMed  Google Scholar 

  55. Cryan, J. F., Mombereau, C. & Vassout, A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci. Biobehav. Rev. 29, 571–625 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Cryan, J. F., Valentino, R. J. & Lucki, I. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci. Biobehav. Rev. 29, 547–569 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Park, S. K. et al. Par-4 links dopamine signaling and depression. Cell 122, 275–287 (2005). Interesting example of how mouse behaviour can be used to unravel molecular pathways that are relevant to depression. Supplementary materials include movie files of some of the tasks used for assessing depression- and anxiety-related behaviour in mice.

    Article  CAS  PubMed  Google Scholar 

  58. Dulawa, S. C., Holick, K. A., Gundersen, B. & Hen, R. Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 29, 1321–1330 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Willner, P. Animal models of depression: an overview. Pharmacol. Ther. 45, 425–455 (1990).

    Article  CAS  PubMed  Google Scholar 

  60. Seligman, M. E. & Maier, S. F. Failure to escape traumatic shock. J. Exp. Psychol. 74, 1–9 (1967).

    Article  CAS  PubMed  Google Scholar 

  61. Weiss, J. M. & Kilts, C. D. in Textbook of Psychopharmacology 2nd edn (eds Nemeroff, C. B. & Schatzberg, A. F.) 88–123 (American Psychiatric Press, Washington DC, 1998).

    Google Scholar 

  62. Caldarone, B. J., George, T. P., Zachariou, V. & Picciotto, M. R. Gender differences in learned helplessness behavior are influenced by genetic background. Pharmacol. Biochem. Behav. 66, 811–817 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Anisman, H., DeCatanzaro, D. & Remington, G. Escape performance following exposure to inescapable shock: deficits in motor response maintenance. J. Exp. Psychol. Anim. Behav. Process 4, 197–218 (1978).

    Article  Google Scholar 

  64. Willner, P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl.) 134, 319–329 (1997).

    Article  CAS  Google Scholar 

  65. Ducottet, C., Griebel, G. & Belzung, C. Effects of the selective nonpeptide corticotropin-releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model of depression in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 625–631 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Griebel, G. et al. Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc. Natl Acad. Sci. USA 99, 6370–6375 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Harkin, A., Houlihan, D. D. & Kelly, J. P. Reduction in preference for saccharin by repeated unpredictable stress in mice and its prevention by imipramine. J. Psychopharmacol. 16, 115–123 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Strekalova, T., Spanagel, R., Bartsch, D., Henn, F. A. & Gass, P. Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology 29, 2007–2017 (2004).

    Article  PubMed  Google Scholar 

  69. Merali, Z., Brennan, K., Brau, P. & Anisman, H. Dissociating anorexia and anhedonia elicited by interleukin-1beta: antidepressant and gender effects on responding for 'free chow' and 'earned' sucrose intake. Psychopharmacology (Berl.) 165, 413–418 (2003).

    Article  CAS  Google Scholar 

  70. Gilliss, B., Malanga, C. J., Pieper, J. O. & Carlezon, W. A. Jr . Cocaine and SKF-82958 potentiate brain stimulation reward in Swiss-Webster mice. Psychopharmacology (Berl.) 163, 238–248 (2002).

    Article  CAS  Google Scholar 

  71. Barr, A. M., Markou, A. & Phillips, A. G. A 'crash' course on psychostimulant withdrawal as a model of depression. Trends Pharmacol. Sci. 23, 475–482 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Cryan, J. F., Hoyer, D. & Markou, A. Withdrawal from chronic amphetamine induces depressive-like behavioral effects in rodents. Biol. Psychiatry 54, 49–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Volkow, N. D. The reality of comorbidity: depression and drug abuse. Biol. Psychiatry 56, 714–717 (2004).

    Article  PubMed  Google Scholar 

  74. Harkin, A., Kelly, J. P. & Leonard, B. E. A review of the relevance and validity of olfactory bulbectomy as a model of depression. Clin. Neurosci. Res. 3, 253–262 (2003).

    Article  Google Scholar 

  75. Zueger, M. et al. Olfactory bulbectomy in mice induces alterations in exploratory behavior. Neurosci. Lett. 374, 142–146 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Cryan, J. F., McGrath, C., Leonard, B. E. & Norman, T. R. Combining pindolol and paroxetine in an animal model of chronic antidepressant action— can early onset of action be detected? Eur. J. Pharmacol. 352, 23–28 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Adrien, J. Neurobiological bases for the relation between sleep and depression. Sleep Med. Rev. 6, 341–351 (2002).

    Article  PubMed  Google Scholar 

  78. Wirz-Justice, A. & Van den Hoofdakker, R. H. Sleep deprivation in depression: what do we know, where do we go? Biol. Psychiatry 46, 445–453 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Rodgers, R. J., Cao, B. J., Dalvi, A. & Holmes, A. Animal models of anxiety: an ethological perspective. Braz. J. Med. Biol. Res. 30, 289–304 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Belzung, C. & Griebel, G. Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav. Brain Res. 125, 141–149 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Sato, T. The internal conflict model: a theoretical framework for integration. The Humanistic Psychologist 33, 33–44 (2005).

    Article  Google Scholar 

  82. Adler, A. Understanding Human Nature (Fawcett Books, New York, 1954).

    Google Scholar 

  83. Freud, S. The Complete Introductory Lectures on Psychoanalysis (Norton, New York, 1966).

    Google Scholar 

  84. Holmes, A., Yang, R. J., Murphy, D. L. & Crawley, J. N. Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology 27, 914–923 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Blanchard, D. C., Griebel, G. & Blanchard, R. J. The mouse defense test battery: pharmacological and behavioral assays for anxiety and panic. Eur. J. Pharmacol. 463, 97–116 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Borsini, F., Podhorna, J. & Marazziti, D. Do animal models of anxiety predict anxiolytic-like effects of antidepressants? Psychopharmacology (Berl.) 163, 121–141 (2002).

    Article  CAS  Google Scholar 

  87. Merali, Z., Levac, C. & Anisman, H. Validation of a simple, ethologically relevant paradigm for assessing anxiety in mice. Biol. Psychiatry 54, 552–565 (2003).

    Article  PubMed  Google Scholar 

  88. Geller, I. & Seifter, S. The effects of meprobamate, barbiturate, D-amphetamine and promazine on experimentally induced conflict in the rat. Psychopharmacologia 1, 482–492 (1960).

    Article  CAS  Google Scholar 

  89. Vogel, J. R., Beer, B. & Clody, D. E. A simple and reliable conflict procedure for testing anti-anxiety agents. Psychopharmacologia 21, 1–7 (1971).

    Article  CAS  PubMed  Google Scholar 

  90. Klemenhagen, K. C., Gordon, J. A., David, D. J., Hen, R. & Gross, C. Increased fear response to contextual cues in mice lacking the 5-HT1A receptor. Neuropsychopharmacology (in the press).

  91. van Gaalen, M. M., Stenzel-Poore, M. P., Holsboer, F. & Steckler, T. Effects of transgenic overproduction of CRH on anxiety-like behaviour. Eur. J. Neurosci. 15, 2007–2015 (2002).

    Article  PubMed  Google Scholar 

  92. Degroot, A. & Nomikos, G. G. Genetic deletion and pharmacological blockade of CB1 receptors modulates anxiety in the shock-probe burying test. Eur. J. Neurosci. 20, 1059–1064 (2004).

    Article  PubMed  Google Scholar 

  93. Treit, D. A comparison of anxiolytic and nonanxiolytic agents in the shock-probe/burying test for anxiolytics. Pharmacol. Biochem. Behav. 36, 203–205 (1990).

    Article  CAS  PubMed  Google Scholar 

  94. Njung'e, K. & Handley, S. L. Evaluation of marble-burying behavior as a model of anxiety. Pharmacol. Biochem. Behav. 38, 63–67 (1991).

    Article  CAS  PubMed  Google Scholar 

  95. Graeff, F. & Zangrossi, H. Jr in Biological Psychiatry (eds D'haenen, H., den Boer, J. A. & Willner, P.) 877–893 (Wiley Brothers, London, 2002).

    Book  Google Scholar 

  96. Treit, D. Animal models for the study of anti-anxiety agents: a review. Neurosci. Biobehav. Rev. 9, 203–222 (1985).

    Article  CAS  PubMed  Google Scholar 

  97. Miczek, K. A., Weerts, E. M., Vivian, J. A. & Barros, H. M. Aggression, anxiety and vocalizations in animals: GABAA and 5-HT anxiolytics. Psychopharmacology (Berl.) 121, 38–56 (1995).

    Article  CAS  Google Scholar 

  98. Sanchez, C. Stress-induced vocalisation in adult animals. A valid model of anxiety? Eur. J. Pharmacol. 463, 133–143 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Brunner, D., Buhot, M. C., Hen, R. & Hofer, M. Anxiety, motor activation, and maternal-infant interactions in 5HT1B knockout mice. Behav. Neurosci. 113, 587–601 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Blumberg, M. S. & Sokoloff, G. Do infant rats cry? Psychol. Rev. 108, 83–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Panksepp, J. Can anthropomorphic analyses of separation cries in other animals inform us about the emotional nature of social loss in humans? Comment on Blumberg and Sokoloff (2001). Psychol. Rev. 110, 376–388; discussion 389–396 (2003).

    Article  PubMed  Google Scholar 

  102. Olivier, B. et al. Stress-induced hyperthermia and anxiety: pharmacological validation. Eur. J. Pharmacol. 463, 117–132 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Salas, R., Pieri, F., Fung, B., Dani, J. A. & De Biasi, M. Altered anxiety-related responses in mutant mice lacking the beta4 subunit of the nicotinic receptor. J. Neurosci. 23, 6255–6263 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Brodkin, J. et al. Reduced stress-induced hyperthermia in mGluR5 knockout mice. Eur. J. Neurosci. 16, 2241–2244 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. van Gaalen, M. M. & Steckler, T. Behavioural analysis of four mouse strains in an anxiety test battery. Behav. Brain Res. 115, 95–106 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Coste, S. C. et al. Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nature Genet. 24, 403–409 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Kishimoto, T. et al. Deletion of Crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2. Nature Genet. 24, 415–419 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Bale, T. L. et al. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nature Genet. 24, 410–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Turri, M. G., Datta, S. R., DeFries, J., Henderson, N. D. & Flint, J. QTL analysis identifies multiple behavioral dimensions in ethological tests of anxiety in laboratory mice. Curr. Biol. 11, 725–734 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Shekhar, A. et al. Summary of a National Institute of Mental Health workshop: developing animal models of anxiety disorders. Psychopharmacology (Berl.) 157, 327–339 (2001).

    Article  CAS  Google Scholar 

  111. Netto, C. F. & Guimaraes, F. S. Anxiogenic effect of cholecystokinin in the dorsal periaqueductal gray. Neuropsychopharmacology 29, 101–107 (2004).

    Article  PubMed  CAS  Google Scholar 

  112. Dalley, J. W., Cardinal, R. N. & Robbins, T. W. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci. Biobehav. Rev. 28, 771–784 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Elliott, R., Rubinsztein, J. S., Sahakian, B. J. & Dolan, R. J. The neural basis of mood-congruent processing biases in depression. Arch. Gen. Psychiatry 59, 597–604 (2002).

    Article  PubMed  Google Scholar 

  114. Lang, P. J., Davis, M. & Ohman, A. Fear and anxiety: animal models and human cognitive psychophysiology. J. Affect. Disord. 61, 137–159 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Maren, S. Neurobiology of Pavlovian fear conditioning. Annu. Rev. Neurosci. 24, 897–931 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Fendt, M. & Fanselow, M. S. The neuroanatomical and neurochemical basis of conditioned fear. Neurosci. Biobehav. Rev. 23, 743–760 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Davis, M. Animal models of anxiety based on classical conditioning: the conditioned emotional response (CER) and the fear-potentiated startle effect. Pharmacol. Ther. 47, 147–165 (1990).

    Article  CAS  PubMed  Google Scholar 

  118. Pavlov, I. P. Conditioned Reflexes: an Investigation of the Physiological Activity of the Cerebral Cortex (Oxford Univ. Press, London, 1927).

    Google Scholar 

  119. Stiedl, O., Meyer, M., Jahn, O., Ogren, S. O. & Spiess, J. Corticotropin-releasing factor receptor 1 and central heart rate regulation in mice during expression of conditioned fear. J. Pharmacol. Exp. Ther. 312, 905–916 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Pawlyk, A. C., Jha, S. K., Brennan, F. X., Morrison, A. R. & Ross, R. J. A rodent model of sleep disturbances in posttraumatic stress disorder: the role of context after fear conditioning. Biol. Psychiatry 57, 268–277 (2005).

    Article  PubMed  Google Scholar 

  121. Jha, S. K., Brennan, F. X., Pawlyk, A. C., Ross, R. J. & Morrison, A. R. REM sleep: a sensitive index of fear conditioning in rats. Eur. J. Neurosci. 21, 1077–1080 (2005).

    Article  PubMed  Google Scholar 

  122. Sanford, L. D., Tang, X., Ross, R. J. & Morrison, A. R. Influence of shock training and explicit fear-conditioned cues on sleep architecture in mice: strain comparison. Behav. Genet. 33, 43–58 (2003).

    Article  PubMed  Google Scholar 

  123. Welzl, H., D'Adamo, P. & Lipp, H. P. Conditioned taste aversion as a learning and memory paradigm. Behav. Brain Res. 125, 205–213 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Yasoshima, Y. & Yamamoto, T. Effects of midazolam on the expression of conditioned taste aversion in rats. Brain Res. 1043, 115–123 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Guitton, M. J. & Dudai, Y. Anxiety-like state associates with taste to produce conditioned taste aversion. Biol. Psychiatry 56, 901–904 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. LeDoux, J. E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Eysenck, M. W. Anxiety and Cognition: a Unified Theory (Psychology, Hove, 1997).

    Google Scholar 

  128. Harding, E. J., Paul, E. S. & Mendl, M. Animal behaviour: cognitive bias and affective state. Nature 427, 312 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Paul, E. S., Harding, E. J. & Mendl, M. Measuring emotional processes in animals: the utility of a cognitive approach. Neurosci. Biobehav. Rev. 29, 469–491 (2005).

    Article  PubMed  Google Scholar 

  130. Crestani, F. et al. Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nature Neurosci. 2, 833–839 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. El-Ghundi, M., O'Dowd, B. F. & George, S. R. Prolonged fear responses in mice lacking dopamine D1 receptor. Brain Res. 892, 86–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Marsicano, G. et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Ressler, K. J. et al. Cognitive enhancers as adjuncts to psychotherapy: use of D-cycloserine in phobic individuals to facilitate extinction of fear. Arch. Gen. Psychiatry 61, 1136–1144 (2004).

    Article  PubMed  Google Scholar 

  134. Ledgerwood, L., Richardson, R. & Cranney, J. D-Cycloserine facilitates extinction of learned fear: effects on reacquisition and generalized extinction. Biol. Psychiatry 57, 841–847 (2005). References 133 and 134 highlight the potential of translational research, from mouse to man, for driving therapeutic advances in the treatment of depression and anxiety.

    Article  CAS  PubMed  Google Scholar 

  135. Holmes, P. V. Olfactory bulbectomy increases prepro-enkephalin mRNA levels in the ventral striatum in rats. Neuropeptides 33, 206–211 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. Wahlsten, D. et al. Different data from different labs: lessons from studies of gene-environment interaction. J. Neurobiol. 54, 283–311 (2003).

    Article  PubMed  Google Scholar 

  137. Crabbe, J. C., Wahlsten, D. & Dudek, B. C. Genetics of mouse behavior: interactions with laboratory environment. Science 284, 1670–1672 (1999). References 136 and 137 document landmark research on the potential for differences in environmental factors between laboratories to influence mouse anxiety-related phenotypes.

    Article  CAS  PubMed  Google Scholar 

  138. Holmes, A., Iles, J. P., Mayell, S. J. & Rodgers, R. J. Prior test experience compromises the anxiolytic efficacy of chlordiazepoxide in the mouse light/dark exploration test. Behav. Brain Res. 122, 159–167 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Schramm, N. L., McDonald, M. P. & Limbird, L. E. The α2A-adrenergic receptor plays a protective role in mouse behavioral models of depression and anxiety. J. Neurosci. 21, 4875–4882 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. McIlwain, K. L., Merriweather, M. Y., Yuva-Paylor, L. A. & Paylor, R. The use of behavioral test batteries: effects of training history. Physiol. Behav. 73, 705–717 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Wahlsten, D., Rustay, N. R., Metten, P. & Crabbe, J. C. In search of a better mouse test. Trends Neurosci. 26, 132–136 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Anisman, H., Hayley, S., Kelly, O., Borowski, T. & Merali, Z. Psychogenic, neurogenic, and systemic stressor effects on plasma corticosterone and behavior: mouse strain-dependent outcomes. Behav. Neurosci. 115, 443–454 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Shanks, N. & Anisman, H. Strain-specific effects of antidepressants on escape deficits induced by inescapable shock. Psychopharmacology (Berl.) 99, 122–128 (1989).

    Article  CAS  Google Scholar 

  144. Griebel, G., Belzung, C., Perrault, G. & Sanger, D. J. Differences in anxiety-related behaviours and in sensitivity to diazepam in inbred and outbred strains of mice. Psychopharmacology (Berl.) 148, 164–170 (2000).

    Article  CAS  Google Scholar 

  145. Lucki, I., Dalvi, A. & Mayorga, A. J. Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl.) 155, 315–322 (2001). References 143–145 describe the marked differences in anxiety- and depression-related behaviours found between different strains of mice.

    Article  CAS  Google Scholar 

  146. Holmes, A. & Cryan, J. F. in Transgenic and Knockout Models of Neuropsychiatric Disorders (eds Fisch, G. & Flint, J.) (Humana Press, Totowa, in the press).

  147. Zhang, X., Beaulieu, J. M., Sotnikova, T. D., Gainetdinov, R. R. & Caron, M. G. Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305, 217 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Zhang, X. et al. Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 45, 11–16 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Kendler, K. S. Twin studies of psychiatric illness: an update. Arch. Gen. Psychiatry 58, 1005–1014 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Caspi, A. et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301, 386–389 (2003). Highly influential study showing the influence of a polymorphism in the serotonin transporter gene on risk for depression in humans with strong parallels to the findings from studies using gene mutant mice, which are described in reference 155.

    Article  CAS  PubMed  Google Scholar 

  151. McGuffin, P., Riley, B. & Plomin, R. Genomics and behavior. Toward behavioral genomics. Science 291, 1232–1249 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. Holmes, A. & Hariri, A. R. The serotonin transporter gene-linked polymorphism and negative emotionality: placing single gene effects in the context of genetic background and environment. Genes Brain Behav. 2, 332–335 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Rutter, M. & Silberg, J. Gene-environment interplay in relation to emotional and behavioral disturbance. Annu. Rev. Psychol. 53, 463–490 (2002).

    Article  PubMed  Google Scholar 

  154. Singer, J. B. et al. Genetic dissection of complex traits with chromosome substitution strains of mice. Science 304, 445–448 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Holmes, A., Murphy, D. L. & Crawley, J. N. Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biol. Psychiatry 54, 953–959 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Thakker, D. R. et al. siRNA-mediated knockdown of the serotonin transporter in the adult mouse brain. Mol. Psychiatry 10, 782–789 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Thakker, D. R. et al. Neurochemical and behavioral consequences of widespread gene knockdown in the adult mouse brain by using nonviral RNA interference. Proc. Natl Acad. Sci. USA 101, 17270–17275 (2004). There is growing application of novel approaches to experimentally manipulating the function of gene products to study mouse emotion-related behaviours, such as the nonviral RNA interference technique described in references 156 and 157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hommel, J. D., Sears, R. M., Georgescu, D., Simmons, D. L. & DiLeone, R. J. Local gene knockdown in the brain using viral-mediated RNA interference. Nature Med. 9, 1539–1544 (2003).

    Article  CAS  PubMed  Google Scholar 

  159. Matthews, K., Christmas, D., Swan, J. & Sorrell, E. Animal models of depression: navigating through the clinical fog. Neurosci. Biobehav. Rev. 29, 503–513 (2005).

    Article  PubMed  Google Scholar 

  160. Robbins, T. W. Homology in behavioural pharmacology: an approach to animal models of human cognition. Behav. Pharmacol. 9, 509–519 (1998).

    Article  CAS  PubMed  Google Scholar 

  161. Cannistraro, P. A. & Rauch, S. L. Neural circuitry of anxiety: evidence from structural and functional neuroimaging studies. Psychopharmacol. Bull. 37, 8–25 (2003).

    PubMed  Google Scholar 

  162. Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Horrobin, D. F. Modern biomedical research: an internally self-consistent universe with little contact with medical reality? Nature Rev. Drug Discov. 2, 151–154 (2003).

    Article  CAS  Google Scholar 

  164. Jovanovic, T. et al. Fear potentiation and fear inhibition in a human fear-potentiated startle paradigm. Biol. Psychiatry 57, 1559–1564 (2005).

    Article  PubMed  Google Scholar 

  165. Myers, K. M. & Davis, M. AX+, BX– discrimination learning in the fear-potentiated startle paradigm: possible relevance to inhibitory fear learning in extinction. Learn. Mem. 11, 464–475 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Baas, J. M., Nugent, M., Lissek, S., Pine, D. S. & Grillon, C. Fear conditioning in virtual reality contexts: a new tool for the study of anxiety. Biol. Psychiatry 55, 1056–1060 (2004).

    Article  PubMed  Google Scholar 

  167. Pizzagalli, D. A., Jahn, A. L. & O'Shea, J. P. Toward an objective characterization of an anhedonic phenotype: a signal-detection approach. Biol. Psychiatry 57, 319–327 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Heim, C. & Nemeroff, C. B. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol. Psychiatry 49, 1023–1039 (2001).

    Article  CAS  PubMed  Google Scholar 

  169. Meaney, M. J. Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu. Rev. Neurosci. 24, 1161–1192 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Holmes, A. et al. Early life genetic, epigenetic and environmental factors shaping emotionality in rodents. Neurosci. Biobehav. Rev. (in the press).

  171. Calatayud, F., Coubard, S. & Belzung, C. Emotional reactivity in mice may not be inherited but influenced by parents. Physiol. Behav. 80, 465–474 (2004).

    Article  CAS  PubMed  Google Scholar 

  172. Francis, D. D., Szegda, K., Campbell, G., Martin, W. D. & Insel, T. R. Epigenetic sources of behavioral differences in mice. Nature Neurosci. 6, 445–446 (2003).

    Article  CAS  PubMed  Google Scholar 

  173. Gross, C. et al. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416, 396–400 (2002). References 172 and 173 describe two excellent examples of the power of mouse models to study environmental and genetic influences on the development of the neural circuits that subserve emotional behaviour.

    Article  CAS  PubMed  Google Scholar 

  174. Gaspar, P., Cases, O. & Maroteaux, L. The developmental role of serotonin: news from mouse molecular genetics. Nature Rev. Neurosci. 4, 1002–1012 (2003).

    Article  CAS  Google Scholar 

  175. Esaki, T. et al. Developmental disruption of serotonin transporter function impairs cerebral responses to whisker stimulation in mice. Proc. Natl Acad. Sci. USA 102, 5582–5587 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hendricks, T. J. et al. Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37, 233–247 (2003).

    Article  CAS  PubMed  Google Scholar 

  177. Mombereau, C. et al. Altered anxiety and depression-related behaviour in mice lacking GABA(B)2 receptor subunits. Neuroreport 16, 307–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Cryan, J. F. et al. Norepinephrine-deficient mice lack responses to antidepressant drugs, including selective serotonin reuptake inhibitors. Proc. Natl Acad. Sci. USA 101, 8186–8191 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Holmes, A. et al. Evaluation of an anxiety-related phenotype in galanin-overexpressing transgenic mice. J. Mol. Neurosci. 18, 151–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  180. Mombereau, C. et al. Genetic and pharmacological evidence of a role for GABA(B) receptors in the modulation of anxiety- and antidepressant-like behavior. Neuropsychopharmacology 29, 1050–1062 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JFC is supported by a grant from the National Institutes of Mental Health/National Institute on Drug Abuse. AH is supported by the National Institute on Alcohol Abuse and Alcoholism intramural research programme and by the National Alliance for Research on Schizophrenia and Depression.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John F. Cryan or Andrew Holmes.

Ethics declarations

Competing interests

J.F.C. is an employee of Novartis Pharma AG.

Related links

Related links

FURTHER INFORMATION

AAAS Behaviour Genetics Project

Ensembl Mouse

German Mouse Clinic

Mouse Genome Resources

National Institute of Mental Health

RDS

Tennessee Mouse Genome Consortium

Trans-National Institutes of Health Initiative, Neuromice

Glossary

QUANTITATIVE TRAIT LOCUS ANALYSIS

Mapping the location of a genomic locus and estimating the percentage of its contribution (effect size) to the genetic basis of a specific behavioural phenotype that is genetically complex and continuous in a population.

PROGRESSIVE RATIO SCHEDULE

Requires an increase in operant responding for reward until a 'break-point' is reached. The break-point determines the maximal amount of effort made to procure the reward and therefore the subject's level of motivation.

INTRACRANIAL SELF-STIMULATION (ICSS)

A direct measure of brain reward function that works by mice pressing lever or turning a wheel to receive electrical intracranial self-stimulation of brain regions that are activated by natural reinforcers.

FLANKING GENES

DNA sequences on either side of a targeted gene mutation that derive from the embryonic donor mouse strain and could contain genes foreign to the host mouse that spuriously influence the behavioural phenotype of the host.

CONGENIC

A mutant line generated from repeated backcrossing to an inbred strain for ten generations or more.

GALVANIC SKIN CONDUCTANCE RESPONSES

A measure of electrical resistance used as a marker for changes in emotional arousal.

SIGNAL DETECTION TASK

Measures whether a subject perceives an ambiguous stimulus as being similar to an emotionally charged target stimulus.

CONSTITUTIVE MUTATION

A targeted mutation that prevents transcription of a gene of interest throughout development and adulthood in all cells where it is normally expressed.

TRANSLATIONAL MEDICINE

The testing of novel therapeutic strategies (in humans) that were developed through basic laboratory experimentation. Observations taken from the bedside-to-the-bench also constitute translational medicine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cryan, J., Holmes, A. The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4, 775–790 (2005). https://doi.org/10.1038/nrd1825

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1825

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing