Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The ultimate model organism: progress in experimental medicine

Abstract

Experimental medicine is the use of innovative measurements, models and designs in studying human subjects for establishing proof of mechanism and concept of new drugs, for exploring the potential for market differentiation for successful drug candidates, and for efficiently terminating the development of unsuccessful ones. Humans are the ultimate 'model' because of the uncertain validity and efficacy of novel targets and drug candidates that emerge from genomics, combinatorial chemistry and high-throughput screening and the use of poorly predictive preclinical models. The in-depth investigation of the effects of drugs and the nature of disease progression is becoming ever more feasible because of advances in clinical biomarkers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A new strategy for implementing experimental medicine into drug development.
Figure 2: Schematic showing changing realization of predictive power of biomarkers and surrogate endpoints.
Figure 3: Evolution of a new biomarker.
Figure 4: Typical example of an experimental medicine displacement experiment using positron-emission tomography imaging.
Figure 5: Magnetic resonance images and processed image analyses of the knee joint showing biomarkers of osteoarthritis.

Similar content being viewed by others

References

  1. Sheiner, L. B. Learning versus confirming in clinical drug development. Clin. Pharmacol. Ther. 61, 275–291 (1997).

    Article  CAS  Google Scholar 

  2. Levy, G. in Pharmacodynamics and Toxicokinetics in Rational Drug Development (Plenum, New York, 1993).

    Google Scholar 

  3. Booz Allen Hamilton & Credit Suisse First Boston. Know thy R&D enemy: the key to fighting attrition. IN VIVO 19, 59 (2005).

  4. Meyer, J. M. & Ginsburg, G. S. The path to personalized medicine. Curr. Opin. Chem. Biol. 6, 434–438 (2002).

    Article  CAS  Google Scholar 

  5. Pharma 2010: The Threshold on Innovation. IBM Business Consulting Services [online], <http://www-1.ibm.com/services/us/index.wss/xs/imc/a1001099> (April 2004).

  6. Branca, M. A. Impact of technological advances on pharmaceutical productivity. SPECTRUM Pharmaceutical Industry Dynamics [online],(May 2004).

    Google Scholar 

  7. Lehman Brothers. The Fruits of Genomics [online], <http://www.lehman.com> (2001).

  8. Winslow, R. What makes a drug too risky? there's no easy answer. Wall Street J. (11 Feb 2005) [online], <http://www.aegis.com/news/wsj/2005/WJ050206.html>

  9. Greaves, P., Williams, A. & Eve, M. First dose of potential new medicines to humans: how animals help. Nature Rev. Drug Discov. 3, 226–236 (2004).

    Article  CAS  Google Scholar 

  10. Ratner, M. L. How experimental medicine is affecting big pharma. IN VIVO 18, 59 (2004)

    Google Scholar 

  11. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Discov. 3, 711–715 (2004).

    Article  CAS  Google Scholar 

  12. Leaf, C. Why we're losing the war on cancer — and how to win it. Fortune 9, March (2004).

  13. Polmar, S., Diaz-Gonzalez, F., Dougados, M., Ortiz, P. & de-Miguel, G. Limited clinical efficacy of a leukotriene B4 receptor (LTB4) antagonist in patients with active rheumatoid arthritis (RA). Arthritis Rheum. 50, S239 (2004).

    Google Scholar 

  14. Tarazi F. I., Zhang K. & Baldessarini R. J. Review: dopamine D4 receptors: beyond schizophrenia. J. Recept. Signal Transduct. Res. 24, 131–147 (2004).

    Article  CAS  Google Scholar 

  15. Ikonomidou, C. & Turski, L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 6, 383–486 (2002).

    Article  Google Scholar 

  16. DiMasi, J. A. The value of improving the productivity of the drug development process. Pharmacoeconomics 20 (Suppl. 3), 1–10 (2002).

    Article  Google Scholar 

  17. BoozAllen Hamilton. Pharmaceutical Industry — 2002 Year in Review (2003).

  18. Altshuler, J., Flanagan A., Guy P., Steiner, M. & Tollman, P. Boston Consulting Group. A Revolution in R&D – The Impact of Genomics [online], <http://www.bcg.com/publications/publications_search_results.jsp?PUBID=653> (November 26 2001).

  19. Roner, L. Bridging the great divide between R&D and Commercial. [online], <http://www.eyeforpharma.com/index.asp?news=45028> (14 Feb 2005).

  20. Gray, M. L. et al. Toward imaging biomarkers for osteoarthritis. Clin. Orthop. Relat. Res. 427 (Suppl.), S175–S181 (2004).

    Article  Google Scholar 

  21. Lohmander, L. S. Markers of altered metabolism in osteoarthritis. J. Rheumatol. Suppl. 70, 28–35 (2004)

    CAS  Google Scholar 

  22. Graichen, H., von Eisenhart-Rothe, R., Vogl, T., Englmeier, K. H. & Eckstein, F. Quantitative assessment of cartilage status in osteoarthritis by quantitative magnetic resonance imaging: technical validation for use in analysis of cartilage volume and further morphologic parameters. Arthritis Rheum. 50, 811–816 (2004).

    Article  Google Scholar 

  23. Tamez-Pena, J. G., Barbu-McInnis, M. & Totterman, S. Knee cartilage extraction and bone-cartilage interface analysis from 3D MRI data sets. Proc. SPIE 5370, 1774–1784 (2004).

    Article  Google Scholar 

  24. Tiderius, C. J., Olsson, L. E., Leander, P., Ekberg, O. & Dahlberg, L. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magn Reson Med. 49, 488–492 (2003).

    Article  Google Scholar 

  25. Williams, A. et al. Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. AJR Am. J. Roentgenol. 182, 167–172 (2004).

    Article  Google Scholar 

  26. Branca, M. A new perspective on pharmacogenomics in drug development. SPECTRUM Therapy Markets and Emerging Technologies [online], (June 2004).

    Google Scholar 

  27. Drews, J. Strategic trends in the drug industry. Drug Discov. Today 8, 411–420 (2003).

    Article  Google Scholar 

  28. Pickering, L. Systems biology approaches in drug discovery. SPECTRUM Drug Discovery and Design, 2610–2618 [online], (Nov 2003).

  29. Kaiser, J. NCI gears up for Cancer Genome Project. Science 307, 1182 (2005)

    Article  CAS  Google Scholar 

  30. Echt, D. S. et al. Mortality and morbidity in patients receiving encainide, flecainide or placebo. The Cardiac Arrhythmia Suppression Trial. N. Engl. J. Med. 324, 781–788 (1991)

    Article  CAS  Google Scholar 

  31. Fleming, T. R. & DeMets, D. L. Surrogate endpoints in clinical trials: are we being misled? Ann. Intern. Med. 125, 605–613 (1996).

    Article  CAS  Google Scholar 

  32. US FDA. Challenge and Opportunity on the Critical Path to New Medical Products [online], <http://www.fda.gov/oc/initiatives/criticalpath/> (2004).

  33. Lesko, L. J. & Atkinson Jr., A. J. Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu. Rev. Pharmacol. Toxicol. 41, 347–661 (2001).

    Article  CAS  Google Scholar 

  34. Katz, R. Biomarkers and surrogate markers: an FDA perspective. NeuroRx 1, 189–195 (2004).

    Article  Google Scholar 

  35. Prentice, R. L. Surrogate endpoints in clinical trials: definition and operational criteria. Stat. Med. 8, 431–440 (1989).

    Article  CAS  Google Scholar 

  36. Fischman, A. J. et al. Positron emission tomographic analysis of central 5-hydroxytryptamine2 receptor occupancy in healthy volunteers treated with the novel antipsychotic agent, ziprasidone. J. Pharmacol. Exp. Ther. 279, 939–947 (1996).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Williams.

Ethics declarations

Competing interests

B.H.L and S.A.W. are employees of and equity holders in Pfizer Inc., which has a strategic alliance with Virtualscopics LLC.

Related links

Related links

FURTHER INFORMATION

Osteoarthritis initiative

Mark McClellan: speech before PhRMA March 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Littman, B., Williams, S. The ultimate model organism: progress in experimental medicine. Nat Rev Drug Discov 4, 631–638 (2005). https://doi.org/10.1038/nrd1800

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1800

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing