Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Biochemical mechanisms of drug action: what does it take for success?

Abstract

Drug discovery is extremely difficult. There are many unanticipated scientific, medical and business challenges to every drug discovery programme. It is important to increase our understanding of the fundamental properties of effective drugs so that we can anticipate potential problems in developing new agents. This article addresses potential drug discovery and development risks associated with the biochemical mechanism of drug action, and proposes simple rules to minimize these risks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Equilibrium/steady-state competitive blockade.
Figure 2: Mechanisms of non-equilibrium blockade not in mass-action equilibrium with agonist/substrate.
Figure 3: Compound progression scheme for optimizing non-equilibrium parameters.

Similar content being viewed by others

References

  1. Hopkins, A. L., & Groom, C. R. The druggable genome. Nature Rev. Drug Discov. 1, 727?730 (2002).

    Article  CAS  Google Scholar 

  2. Cheng, Y. -C., & Prusoff, W. H. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (IC50) or an enzymatic reaction. Biochem. Pharm. 22, 3099?3108 (1973).

    Article  CAS  Google Scholar 

  3. Westley, A. M. & Westley J. Enzyme inhibition in open systems. Superiority of uncompetitive agents. J. Biol. Chem. 271, 5347?5352 (1996).

    Article  CAS  Google Scholar 

  4. Roth, G. J. & Majerus, P. W. The mechanism of the effect of aspirin on human platelets. I. Acetylation of a particulate fraction protein. J. Clin. Invest. 56, 624?632 (1975).

    Article  CAS  Google Scholar 

  5. Wallmark, B., Brandstrom, A. & Larsson, H. Evidence for acid-induced transformation of omeprazole into an active inhibitor of (H+/K+)-ATPase within the parietal cell. Biochim. Biophys. Acta 778, 549?558 (1984).

    Article  CAS  Google Scholar 

  6. Sachs, G., Shin, J. M., Briving, C., Wallmark, B. & Hersey, S. The pharmacology of the gastric acid pump: the H+,K+ ATPase. Annu. Rev. Pharmacol. Toxicol. 35, 277?305 (1995).

    Article  CAS  Google Scholar 

  7. Brown, R. P., Aplin, R. T. & Schofield, C. J. Inhibition of TEM-2 β-lactamase from Escherichia coli by clavulanic acid: observation of intermediates by electrospray ionization mass spectrometry. Biochemistry 35, 12421?12432 (1996).

    Article  CAS  Google Scholar 

  8. Therrien, C., Kotra, L. P., Sanschagrin, F., Mobashery, S. & Levesque, R. C. Evaluation of inhibition of the carbenicillin-hydrolyzing β-lactamase PSE-4 by the clinically used mechanism-based inhibitors. FEBS Let. 470, 285?292 (2000).

    Article  CAS  Google Scholar 

  9. Therapeutic Drugs 2nd edn (ed. Dollery, C.) T16?T20 (Churchill Livingston Edinburgh, 1999).

  10. Laux G., Volz, H. P. & Moller, H. J. Newer and older monoamine oxidase inhibitors: a comparative profile. CNS Drugs 3, 145?158 (1995).

    Article  CAS  Google Scholar 

  11. Angehagen, M., Ben-Menachem, E., Ronnback, L. & Hansson, E. Novel mechanisms of action of three antiepileptic drugs, vigabatrin, tiagabine, and topiramate. Neurochem. Res. 28, 333?340 (2003).

    Article  CAS  Google Scholar 

  12. Bull, H. G. et al. Mechanism-based inhibition of human steroid 5α-reductase by finasteride: enzyme-catalyzed formation of NADP-dihydrofinasteride, a potent bisubstrate analog inhibitor. J. Am. Chem. Soc. 118, 2359?2365 (1996).

    Article  CAS  Google Scholar 

  13. Brodie, A. M. H., Wing, L. Y., Goss, P., Dowsett, M. & Coombes, R. C. Aromatase inhibitors and the treatment of breast cancer. J. Steroid Biochem. 24, 91?97 (1986).

    Article  CAS  Google Scholar 

  14. Walker, M. C. et al. A three-step kinetic mechanism for selective inhibition of cyclooxygenase-2 by diarylheterocyclic inhibitors. Biochem. J. 357, 709?718 (2001)

    Article  CAS  Google Scholar 

  15. Hood, W. F. et al. Characterization of celecoxib and valdecoxib binding to cyclooxygenase. Mol. Pharmacol. 63, 870?877 (2003).

    Article  CAS  Google Scholar 

  16. Bar-on, P. et al. Kinetic and structural studies on the interaction of cholinesterase with the anti-Alzheimer drug rivastigmine. Biochemistry 41, 3555?3564 (2002).

    Article  CAS  Google Scholar 

  17. So, O. -Y., Scarafia, L. S., Mak, A. Y., Callan, O. H. & Swinney, D. C. The dynamics of prostaglandin H synthases. Studies with prostaglandin H synthase 2 Y355F unmask mechanisms of time-dependent inhibition and allosteric activation. J. Biol. Chem. 273, 5801?5807 (1998).

    Article  CAS  Google Scholar 

  18. Copeland, R. A. et al. Mechanism of selective inhibition of the inducible isoform of prostaglandin G/H synthase. Proc. Natl Acad. Sci. USA 91, 11202?11206 (1994).

    Article  CAS  Google Scholar 

  19. Vauquelin, G., Van Liefde, I., Birzbier, B. B. & Vanderheyden, P. M. L. New insights in insurmountable antagonism. Fundam. Clin. Pharmacol. 16, 263?272 (2002).

    Article  CAS  Google Scholar 

  20. Fierens, F. L. P. et al. Tight binding of angiotensin AT1 receptor antagonist 3H-candesartan is independent of receptor internalization. Biochem. Pharmacol. 61, 1227?1235 (2001).

    Article  Google Scholar 

  21. Maillard, M. P. et al. In vitro and in vivo characterization of the activity of telmisartan: an insurmountable angiotensin II receptor antagonist. J. Pharmacol. Exp. Ther. 302, 1089?1095 (2002).

    Article  CAS  Google Scholar 

  22. Anthes, J. C. et al. Biochemical characterization of desloratadine, a potent antagonist of the human histamine H1 receptor. Euro. J. Pharmacol. 449, 229?237 (2002).

    Article  CAS  Google Scholar 

  23. Steinmetz, A. C. U., Renaud, J. -P. & Moras, D. Binding of ligands and activation of transcription by nuclear receptors. Annu. Rev. Biophys. Biomol. Struct. 30, 329?359 (2001).

    Article  CAS  Google Scholar 

  24. Dennis, A. P., Haq, R. U. I. & Nawaz, Z. Importance of the regulation of nuclear receptor degradation. Front. Biosci. 6, 954?959 (2001).

    Article  Google Scholar 

  25. Waller, A. S., Sharrard, R. M., Berthon, P. & Maitland, N. J. Androgen receptor localisation and turnover in human prostate epithelium treated with the antiandrogen, casodex. J. Mol. Endocrin. 24, 339?351 (2000).

    Article  CAS  Google Scholar 

  26. McDonnell, D. P. The molecular pharmacology of SERMs. Trends Endocrin. Metabol. 10, 301?311 (1999).

    Article  CAS  Google Scholar 

  27. Fagart, J. et al. Antagonism in the human mineralocorticoid receptor. EMBO J. 17, 3317?3325 (1998).

    Article  CAS  Google Scholar 

  28. Fleckenstein, A. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu. Rev. Pharmacol. Tox. 17, 149?166 (1977).

    Article  CAS  Google Scholar 

  29. Lee, K. S. & Tsien, R. W. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature 302, 790?794 (1983).

    Article  CAS  Google Scholar 

  30. Johnson, B. D., Hockerman, G. H., Scheuer, T. & Catterall, W. A. Distinct effects of mutations in transmembrane segment IVS6 on block of L-type calcium channels by structurally similar phenylalkylamines. Mol. Pharmacol. 50, 1388?1400 (1996).

    CAS  PubMed  Google Scholar 

  31. Catterall, W. A. Molecular properties of brain sodium channels: an important target for anticonvulsant drugs. Adv. Neurol. 79, 441?456 (1999).

    CAS  PubMed  Google Scholar 

  32. Kuo, C. -C. & Bean, B. P. Slow binding of phenytoin to inactivated sodium channels in rat hippocampal neurons. Mol. Pharmacol. 46, 716?725 (1994).

    CAS  PubMed  Google Scholar 

  33. Lewis, H. D., Davis, J. W. & Archibald, D. G. Protective effects of aspirin against acute myocardial infarction and death in men with unstable angina. New Eng. J. Med. 309, 396?403 (1983).

    Article  Google Scholar 

  34. Blower, P. R. Granisetron: relating pharmacology to clinical efficacy. Support Care Cancer 11, 93?100 (2003).

    PubMed  Google Scholar 

  35. Van Noord, J. A., Smeets, J. J., Custers, F. L. J., Korducki, L. & Cornelissen, P. J. G. Pharmacodynamic steady state of tiotropium in patients with chronic obstructive pulmonary disease. Eur. Respir. J. 19, 639?644 (2002).

    Article  CAS  Google Scholar 

  36. Kapur, S. & Seeman, P. Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics?: a new hypothesis. Am. J. Psychiatry 158, 360?369 (2001).

    Article  CAS  Google Scholar 

  37. Rabinowitz, J. D., Beeson, C., Lyons, D. S., Davis, M. M. & McConnell, H. M. Kinetic discrimination in T-cell activation. Proc. Natl. Acad. Sci. USA 93, 1401?1405 (1996).

    Article  CAS  Google Scholar 

  38. Savage, P. A., Boniface, J. J. & Davis, M. M. A kinetic basis for T-cell receptor repertoire selection during an immune response. Immunity 10, 485?492 (1999).

    Article  CAS  Google Scholar 

  39. Liu, X. & Bosselut, R. Duration of TCR signaling controls CD4-CD8 lineage differentiation in vivo. Nature Immunol. 5, 280?288 (2004).

    Article  CAS  Google Scholar 

  40. Bjork, I., Nordling, K., Larsson, I. & Olson, S. T. Kinetic characterization of the substrate reaction between a complex of antithrombin with a synthetic reactive-bond loop tetradecapeptide and four target proteinases of the inhibitor. J. Biol. Chem. 267, 19047?19050 (1992).

    CAS  PubMed  Google Scholar 

  41. Stone, S. R. & Hermans, J. M. Inhibitory mechanism of serpins. Interaction of thrombin with antithrombin and protease nexin I. Biochemistry 34, 5164?5172 (1995).

    Article  CAS  Google Scholar 

  42. Cunningham, E. L., Jaswal, S. S., Sohl, J. L. & Agard, D. A. Kinetic stability as a mechanism for protease longevity. Proc. Natl Acad. Sci. USA 96, 11008?11014 (1999).

    Article  CAS  Google Scholar 

  43. Rindeau, D. et al. Comparison of the cyclooxygenase-1 inhibitory properties of nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors using sensitive microsomal and platelet assays. Can. J. Physiol. Pharmacol. 75, 1088?1095 (1997).

    Article  Google Scholar 

  44. Fierens, F., Vanderheyden, P. M. L., De Backer, J. -P. & Vauquelin, G. Binding of the antagonist [3H]candesartan to angiotensin II AT1 receptor-transfected Chinese hamster ovary cells. Eur. J. Pharmacol. 367, 413?422 (1999).

    Article  CAS  Google Scholar 

  45. Garcha, R. S., Sever, P. S. & Hughes, A. D. Action of AT1 receptor antagonists on angiotensin II induced tone in human isolated subcutaneous resistance arteries. Br. J. Pharmacol. 127, 1876?1882 (1999).

    Article  CAS  Google Scholar 

  46. Bernhart, C. A. et al. A new series of imidazolones: highly specific and potent nonpeptide AT1 angiotensin II receptor antagonists. J. Med. Chem. 36, 3371?3380 (1993).

    Article  CAS  Google Scholar 

  47. Cazaubon, C. et al. Pharmacological characterization of SR 47436, a new nonpeptide AT1 subtype angiotensin II receptor antagonist. J. Pharmacol. Exp. Ther. 265, 826?834 (1993).

    CAS  PubMed  Google Scholar 

  48. Criscione, L. et al. Pharmacological profile of valsartan: a potent, orally active, nonpeptide antagonist of the angiotensin II AT1-receptor subtype. Br. J. Pharmacol. 110, 761?771 (1993).

    Article  CAS  Google Scholar 

  49. Wienen, W. et al. Pharmacological characterization of the novel nonpeptide angiotensin II receptor antagonist, BIBR 277. Br. J. Pharmacol. 110, 245?252 (1993).

    Article  CAS  Google Scholar 

  50. Edwards, R. M. et al. Pharmacological characterization of the nonpeptide angiotensin II receptor antagonist, SF&F 108566. J. Pharmacol. Exp. Ther. 260, 175?181 (1992).

    CAS  PubMed  Google Scholar 

  51. Corsini, A., Maggi, F. M. & Catapano, A. L. Pharmacology of competitive inhibitors of HMG-CoA reductase. Pharm. Rev. 31, 9?27 (1995).

    CAS  Google Scholar 

  52. Haddad, E. -B., Mak, J. C. W. & Barnes, P. J. Characterization of [3H]Ba 679, a slow-dissociating muscarinic receptor antagonist in human lung: radioligand binding and autoradiographic mapping. Mol. Pharmacol. 45, 899?907 (1994).

    CAS  PubMed  Google Scholar 

  53. Nilvebrant, L., Hallen, B. & Larsson, G. Tolerodine ? a bladder selective muscarinic receptor antagonist: preclinical pharmacology and clinical data. Life Sci. 60, 1129?1136 (1997).

    Article  CAS  Google Scholar 

  54. Nayler, W. G. & Gu, X. H. (-)[3H]Amlodipine binding to rat cardiac membranes. J. Cardiovasc. Pharmacol. 17, 587?592 (1991).

    Article  CAS  Google Scholar 

  55. Sun, J. & Triggle, D. J. Calcium channel antagonists: cardiovascular selectivity of action. J. Pharmacol. Exp. Ther. 274, 419?426 (1995).

    CAS  PubMed  Google Scholar 

  56. Kemppainen, J. A. et al. Distinguishing androgen receptor agonists and antagonists: distinct mechanisms of activation by medroxyprogesterone acetate and dihydrotestosterone. Mol. Endocrinol. 13, 440?454 (1999).

    Article  CAS  Google Scholar 

  57. Kraft, K. S., Ruenitz, P. C. & Bartlett, M. G. Carboxylic acid analogues of tamoxifen: (Z)-2[p-(1,2-diphenyl-a-butenyl)phenoxy]-N,N-dimethylethylamine. Estrogen receptor affinity and estrogen antagonist effects in MCF cells. J. Med. Chem. 42, 3126?3133 (1999).

    Article  CAS  Google Scholar 

  58. Miller, C. P. et al. Design, synthesis, and preclinical characterization of novel, highly selective indole estrogens. J. Med. Chem. 44, 1654?1657 (2001).

    Article  CAS  Google Scholar 

  59. Couette, B., Lombes, M., Baulieu, E. -E. & Rafestin-Oblin, M. -E. Aldosterone antagonists destabilize the mineralocorticosteroid receptor. Biochem. J. 282, 697?702 (1992).

    Article  CAS  Google Scholar 

  60. Massaad. C., Lombes, M., Aggerbeck, M., Rafestin-Oblin, M. -E. & Barouki, R. Cell-specific, promoter-dependent mineralocorticoid agonist activity of spironolactone. Mol. Pharmacol. 51, 285?297 (1996).

    Article  Google Scholar 

  61. Edwards, D. E. et al. Progesterone receptor and the mechanism of action of progesterone antagonists. J. Steroid Biochem. Mol. Biol. 53, 449?458 (1995).

    Article  CAS  Google Scholar 

  62. Hill, E. E., Husbands, D. R. & Lands, W. E. M. The selective incorporation of 14C-glycerol into different species of phosphatidic acid, phosphatidylethanolamine, and phosphatidylcholine. J. Biol. Chem. 243, 4440?4451 (1968).

    CAS  PubMed  Google Scholar 

  63. Carter, G. W. et al. 5-Lipoxygenase inhibitory activity of Zileuton. J. Pharmacol. Exp. Ther. 256, 929?937 (1990).

    Google Scholar 

  64. Krell, R. D. et al. The preclinical pharmacology of ICI 204,219. A peptide leukotriene antagonist. Am. Rev. Respir. Dis. 141, 978?987 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank E. Sjogren and D. Chen for many interesting discussions.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

D.C.S. is employed by Roche Pharmaceuticals.

Related links

Related links

DATABASES

Entrez Gene

5α-reductase

Aromatase

COX2

ER

Histamine receptors

Muscarinic receptors

Online Mendelian Inheritance in Man

Chronic obstructive pulmonary disease

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swinney, D. Biochemical mechanisms of drug action: what does it take for success?. Nat Rev Drug Discov 3, 801–808 (2004). https://doi.org/10.1038/nrd1500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1500

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing