Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cyclodextrin-based pharmaceutics: past, present and future

Key Points

  • Cyclodextrins are cyclic oligomers of glucose that have a significant number of applications in the pharmaceutical industries.

  • Water-soluble cyclodextrins can form inclusion complexes with small molecules and portions of large compounds that have limited aqueous solubility to provide improved bioavailability of drugs.

  • Here, we outline the structures and properties of the most relevant cyclodextrins for pharmaceutical applications, review the history of cyclodextrin use and describe several possibilities for future applications, review the history of cyclodextrin-containing polymers and end with a discussion on the use of cyclodextrin-containing materials for gene delivery.

  • Cyclodextrins and materials containing cyclodextrins are likely to find increasing usage in a growing diversity of pharmaceutical application, most notably those involving macromolecular therapeutics.

Abstract

Cyclodextrins are cyclic oligomers of glucose that can form water-soluble inclusion complexes with small molecules and portions of large compounds. These biocompatible, cyclic oligosaccharides do not elicit immune responses and have low toxicities in animals and humans. Cyclodextrins are used in pharmaceutical applications for numerous purposes, including improving the bioavailability of drugs. Current cyclodextrin-based therapeutics are described and possible future applications discussed. Cyclodextrin-containing polymers are reviewed and their use in drug delivery presented. Of specific interest is the use of cyclodextrin-containing polymers to provide unique capabilities for the delivery of nucleic acids.

This is a preview of subscription content, access via your institution

Access options

Figure 1: Schematic representations of β-cyclodextrin.
Figure 2: Schematic representations of cyclodextrins.
Figure 3: Schematic illustration of the association of free cyclodextrin (CD) and drug to form drug–CD complexes.
Figure 4: Biopharmaceutical Classification System (BCS) characterization of drugs based on solubility and permeability measures.
Figure 5
Figure 6
Figure 7: Examples of linear β-cyclodextrin-containing polymers and their use in compositions with small-molecule (top pathway) and nucleic-acid (bottom pathway) therapeutics.

Similar content being viewed by others

References

  1. Atwood, J. L. et al. (eds). Comprehensive Supramolecular Chemistry Vol. 3: Cyclodextrins (Pergamon, New York, 1996). An extensive overview of all aspects of CDs.

    Google Scholar 

  2. Villiers, A. Sur la fermentation de la fecule par l'action du ferment butyrique. C. R. Hebd. Seances Acad. Sci. 112, 536 (1891).

    Google Scholar 

  3. Freudenberg, K., Cramer, F. & Plieninger, H. Verfahren zur Herstellung von Einschlussverbindungen physiologisch wirksamer organischer Verbindungen. German Pat. 895, 769 (1953).

  4. Qi, Z. H. & Sikorski, C. T. Controlled delivery using cyclodextrin technology. Am. Chem. Soc. Symp. Ser. 728, 113–130 (1999).

    CAS  Google Scholar 

  5. Frank, D. W., Gray, J. E. & Weaver, R. N. Cyclodextrin nephrosis in rat. Am. J. Pathol. 83, 367–382 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Matsuda, K. et al. Oyo Yakuri 26, 287 (1983); and Chem. Abs. 100, 699 (1984).

    CAS  Google Scholar 

  7. Szejtli, J. Medicinal applications of cyclodextrins. Med. Res. Ref. 14, 353–386 (1994).

    CAS  Google Scholar 

  8. Rajewski, R. A. & Stella, V. J. Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J. Pharm. Sci. 85, 1142–1169 (1996).

    CAS  Google Scholar 

  9. Irie, T. & Uekama, K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J. Pharm. Sci. 86, 147–162 (1997).

    CAS  Google Scholar 

  10. Stella, V. J. & Rajewski, R. A. Cyclodextrins: their future in drug formulation and delivery. Pharm. Res. 14, 556–567 (1997).

    CAS  Google Scholar 

  11. Uekama, K., Hirayama, F. & Irie, T. Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998).

    CAS  Google Scholar 

  12. Hirayama, F. & Uekama, K. Cyclodextrin-based controlled drug release system. Adv. Drug Del. Rev. 36, 125–141 (1999).

    CAS  Google Scholar 

  13. Arima, H., Hirayama, F., Okamoto, C. T. & Uekama, K. Recent aspects of cyclodextrin-based pharmaceutical formulations. Recent Res. Devel. Chem. Pharm. Sci. 2, 155–193 (2002). A newer review on issues of CD-based phamaceutical uses.

    CAS  Google Scholar 

  14. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).

    CAS  Google Scholar 

  15. Lipinski, C. A. Avoiding investment in doomed drugs. Curr. Drug Discov. 1, 17–19 (2001).

    Google Scholar 

  16. Prentis, R. A., Lis, Y. & Walker, S. R. Pharmaceutical innovation by seven UK-owned pharmaceutical companies (1964–1985). Br. J. Clin. Pharmacol. 25, 387–396 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Amidon, G. L., Lennernäs, H., Shah, V. P. & Crison, J. R. Theoretical basis for a biopharmaceutical drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12, 413–420 (1995).

    CAS  Google Scholar 

  18. Dressman, J. B., Amidon, G., Reppas, C. & Shah, V. P. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm. Res. 15, 11–22 (1998).

    CAS  Google Scholar 

  19. Ahr, G., Voith, B. & Kuhlmann, J. Guidance related to bioavailability and bioequivalence: European industry perspective. Eur. J. Drug Metab. Pharmacokinet. 25, 25–27 (2000).

    CAS  Google Scholar 

  20. Loftsson, T. Cyclodextrins and the biopharmaceutical classification system of drugs. J. Incl. Phenom. Macrocycl. Chem. 44, 63–67 (2002). An illustration of the classifications of drugs.

    CAS  Google Scholar 

  21. Strickley, R. G. Solubilizing excipients in oral and injectable formulation. Pharm. Res. 21, 201–230 (2004).

    CAS  Google Scholar 

  22. Dressman, J., Butler, J., Hempenstall, J. & Reppas, C. The BCS: where do we go from here? Pharm. Tech. 25, 68–76 (2001).

    CAS  Google Scholar 

  23. Pagington, J. S. β-Cyclodextrin: the success of molecular inclusion. Chem. Brit. 23, 455–458 (1987).

    CAS  Google Scholar 

  24. Uekama, K., Hirayama, F. & Irie, T. Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998).

    CAS  Google Scholar 

  25. Thompson, D. O. Cyclodextrins — enabling excipients: their present and future use in pharmaceuticals. Crit. Rev. Ther. Drug Carrier Syst. 14, 1–104 (1997).

    CAS  Google Scholar 

  26. Loftsson, T. & Brewster, M. E. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996).

    CAS  Google Scholar 

  27. Uekama, K. & Otagiri, M. Cyclodextrins in drug carrier systems. Crit. Rev. Ther. Drug Carrier Syst. 3, 1–40 (1987).

    CAS  Google Scholar 

  28. Loftsson, T., Brewster, M. E. & Masson, M. Role of cyclodextrins in improving oral drug delivery. Am. J. Drug Deliv., (in the press).

  29. Tsuboshima, M., Matsumoto, K., Aral, Y., Wakatsuka, H. & Kawasaki, A. Prostaglandins: synthetic and pharmaceutical studies and development. Yakugaku Zasshi 112, 447–469 (1992).

    CAS  Google Scholar 

  30. Inaba, K. Application of cyclodextrin to prostaglandin formulation. Denpun Kagaku 31, 107–111 (1984).

    CAS  Google Scholar 

  31. Shabsigh, R. et al. Intracavernous alprostadil alfadex is more efficacious, better tolerated and preferred over intraurethral alprostadil plus optional actis: a comparative, randomized, crossover, multicenter study. Urology 55, 109–113 (2000).

    CAS  Google Scholar 

  32. Rajpurkar, A. & Dhabuwala, C. B. Comparison of satisfaction rates and erectile function in patients treated with sildenafil, intracavernous prostaglandin E1 and penile implant surgery for erectile dysfunction in urology practice. J. Urol. 170, 159–163 (2003).

    CAS  Google Scholar 

  33. Buvat, J. et al. Double-blind multicenter study comparing alprostabil α-cyclodextrin with moxisylyte hydrochloride in patients with chronic erectile dysfunction. J. Urol. 159, 116–119 (1998).

    CAS  Google Scholar 

  34. Goldstein, I. et al. Axial penile rigidity as primary efficacy outcome during multi-institutional in-office dose titration clinical trials with alprostadil alfadex in patients with erectile dysfunction. Int. J. Impot. Res. 12, 205–211 (2000).

    CAS  Google Scholar 

  35. Shabsigh, R. et al. Intracavernous alprostadil alfadex (Edex/Viridal) is effective and safe in patients with erectile dysfunction after failing sildenafil (Viagra). Urology 55, 477–480 (2000).

    CAS  Google Scholar 

  36. Nakai, K. et al. Effects of OP-1206 α-CD on walking dysfunction in the rat neuropathic intermittent claudication model: comparison with nifedipine, ticlopidine and cilostazol. Prostag. Oth. Lipid M. 71, 253–263 (2003).

    CAS  Google Scholar 

  37. Yamamoto, M. et al. Analysis of localization of adult T-cell leukemia-derived factor in the transient ischemic rat retina after treatment with OP-1206 α-CD, a prostaglandin E1 analog. J. Histochem. Cytochem. 45, 63–70 (1997).

    CAS  Google Scholar 

  38. Brooks, P. Use and benefits of nonsteroidal anti-inflammatory drugs. Am. J. Med. 104, S9–S13 (1998).

    Google Scholar 

  39. Bjarnason, I., Takeuchi, K. & Simpson, R. NSAIDs: the emperor's new dogma? Gut 52, 1376–1378 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wiseman, E. H. Pharmacologic studies with a new class of nonsteroidal anti-inflammatory agents — the oxicams — with special reference to piroxicam (Feldene). Am. J. Med. 72, 2–8 (1982).

    CAS  Google Scholar 

  41. Ando, G. A. & Lombardino, J. G. Piroxicam — a literature review of new results from laboratory and clinical studies. Eur. J. Rheumatol. Inflamm. 6, 3–23 (1983).

    CAS  Google Scholar 

  42. Fenner, H. Pharmacokinetics of piroxicam: new aspects. Eur. J. Rheumatol. Inflamm. 8, 42–48 (1987).

    CAS  Google Scholar 

  43. Olkkola, K., Brunetto, A. & Mattila, M. Pharmacokinetics of oxicam nonsteroidal anti-inflammatory agents. Clin. Pharmacokinet. 26, 107–120 (1994).

    CAS  Google Scholar 

  44. Giordano, F. & Bettini, R. Process for preparation of inclusion compounds between a non-steroidal anti-inflammatory drug and β-cyclodextrin by microwave treatment. WO053475 (2003).

  45. Caril, F. & Chiesi, P. Process for preparing piroxicam/cyclodextrin complexes, the products obtained and their pharmaceutical compositions. EP0449167 (1991).

  46. Capocchi, A. A process for the preparation of piroxicam: β-cyclodextrin inclusion compounds. WO03105906 (2003).

  47. Redenti, E. et al. A study on the differentiation between amorphous piroxicam:β-cyclodextrin complex and a mixture of the two amorphous components. Int. J. Pharm. 129, 289–294 (1996).

    CAS  Google Scholar 

  48. McEwen, J. Clinical pharmacology of piroxicam-β-cyclodextrin. Implications for innovative patient care. Clin. Drug Invest. 19 (Suppl. 2), 27–31 (2000).

    CAS  Google Scholar 

  49. Woodcock, B. G., Acerbi, D., Merz, P. G., Rietbrock, S. & Rietbrock, N. Supermolecular inclusion of piroxicam with β-cyclodextrin: pharmacokinetic properties in man. Eur. J. Rheumatol. Inflamm. 12, 12–28 (1993).

    CAS  Google Scholar 

  50. Serni, U. Rheumatic disease — clinical experience with piroxicam-β-cyclodextrin. Eur. J. Rheumatol. Inflamm. 12, 47–54 (1993).

    CAS  Google Scholar 

  51. Lee, C. R. & Balfour, J. A. Piroxicam-β-cyclodextrin. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in rheumatic diseases and pain states. Drugs 48, 907–929 (1994). Overview of NAIDS application of CDs.

    CAS  Google Scholar 

  52. Santucci, L. et al. Placebo-controlled comparison of piroxicam-β-cyclodextrin, piroxicam and indomethacin on gastric potential differences and mucosal injury in humans. Digest. Dis. Sci. 37, 1825–1832 (1992).

    CAS  Google Scholar 

  53. Patoia, L. et al. Comparison of fecal blood loss, upper gastrointestinal mucosal integrity and symptoms after piroxicam β-cyclodextrin, piroxicam and placebo administration. Eur. J. Clin. Pharmacol. 36, 599–604 (1989).

    CAS  Google Scholar 

  54. Nervetti, A., Ambanelli, U. & Ugolotti, G. Assessment of gastric mucosal damage by a new inclusion complex of piroxicam with β-cyclodextrin: a functional study by a scintigraphic method. J. Drug Develop. 1 (Suppl. 1), 39–42 (1991).

    Google Scholar 

  55. Szente, L. & Szejtli, J. Highly soluble cyclodextrin derivatives: chemistry, properties and trends in development. Adv. Drug Deliv. Rev. 36, 17–28 (1999). Review of newer variants of CDs that have high water solubility.

    CAS  Google Scholar 

  56. Studd, J. et al. Efficacy and acceptability of intranasal 17 β-estradiol for menopausal symptoms: randomized dose–response study. Lancet 353, 1574–1578 (1999).

    CAS  Google Scholar 

  57. Pelissier, C. et al. Clinical evaluation, dose-finding and acceptability of Aerodiol, the pulsed estrogen therapy for treatment of climacteric symptoms. Maturitas 37, 181–189 (2001).

    CAS  Google Scholar 

  58. Gompel, A. et al. Endometrial safety and tolerability of Aerodiol (intranasal estradiol) for 1 year. Maturitas 36, 209–215 (2000).

    CAS  Google Scholar 

  59. Panay, N., Toth, K., Pelissier, C. & Studd, J. Dose-ranging studies of a novel intranasal estrogen replacement therapy. Maturitas 38 (Suppl. 1), S15–S22 (2001).

    CAS  Google Scholar 

  60. Doren, M. et al. Therapeutic value and long-term safety of pulsed estrogen therapy. Maturitas 38 (Suppl. 1), S23–S30 (2001).

    CAS  Google Scholar 

  61. Welnicka-Jaskiewicz, M. & Jassem, J. The risks and benefits of hormonal replacement therapy in healthy women and in breast cancer survivors. Cancer Treat. Rev. 29, 355–361 (2003).

    CAS  Google Scholar 

  62. Kahn, N. & Malhotra, S. Effect of hormone replacement therapy on cardiovascular disease, current opinion. Exp. Opin. Pharmacother. 4, 667–674 (2003).

    Google Scholar 

  63. Henzl, M. R. & Loomba, P. K. Transdermal delivery of sex steroids for hormonal replacement therapy and contraception: a review of principles and practice. J. Reprod. Med. 48, 525–540 (2003).

    CAS  Google Scholar 

  64. Stevenson, J. C. Optimizing delivery systems for HRT. Maturitas 33 (Suppl. 1), S31–S38 (1999).

    CAS  Google Scholar 

  65. Montgomery Rice, V. Optimizing the dose of hormone replacement therapy. Int. J. Fertil. Womens Med. 47, 205–211 (2002).

    CAS  Google Scholar 

  66. Albers, E. & Muller, B. W. Cyclodextrin derivatives in pharmaceutics. Crit. Rev. Ther. Drug Carrier Syst. 12, 311–337 (1995).

    CAS  Google Scholar 

  67. Brewster, M. E., Simpkins, J. W., Hora, M. S., Stern, W. C. & Bodor, N. The potential use of cyclodextrins in parenteral formulations. J. Parenter. Sci. Technol. 43, 231–240 (1989).

    CAS  Google Scholar 

  68. Mosher, G. & Thompson, D. O. Complexation and cyclodextrins. Encyclopedia of Pharmaceutical Technology, 531–558 (2002).

  69. Loftsson, T. & Brewster, M. E. Cyclodextrins as pharmaceutical excipients. Pharm. Tech. Eur. 9, 26–34 (1997).

    CAS  Google Scholar 

  70. Mester, U. et al. A comparison of two different formulations of diclofenac sodium 0.1% in the treatment of inflammation following cataract-intraocular lens surgery. Drugs R&D 3, 143–151 (2002).

    CAS  Google Scholar 

  71. Peeters, J., Neeskens, P., Tollenaere, J. P., Van Remoortere, P. & Brewster, M. E. Characterization of the interaction of 2-hydroxypropyl-β-cyclodextrin with itraconazole at pH 2, 4 and 7. J. Pharm. Sci. 91, 1414–1422 (2002).

    CAS  Google Scholar 

  72. De Beule, K. Itraconazole: pharmacology, clinical experience and future development. Int. J. Antimicrob. Agents 6, 175–181 (1996).

    CAS  Google Scholar 

  73. Negroni, R. & Arechavala, A. I. Itraconazole: pharmacokinetics and indications. Arch. Med. Res. 24, 387–393 (1993).

    CAS  Google Scholar 

  74. Pierard, G. E., Arrese, J. E. & Pierard-Franchimont, C. Itraconazole. Expert Opin. Pharmacother. 1, 287–304 (2000).

    CAS  Google Scholar 

  75. Jain, S. & Sehgal, V. N. Itraconazole: an effective oral antifungal for onchomycosis. Int. J. Dermatol. 40, 1–5 (2001).

    CAS  Google Scholar 

  76. Verreck, G., Chun, I., Peeters, J., Rosenblatt, J. & Brewster, M. Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm. Res. 20, 810–817 (2003).

    CAS  Google Scholar 

  77. Vandecruys, R., De Conde, V., Gillis, P. & Peeters, J. Pellets having a core coated with an antifungal and a polymer. WO9842318 (1998).

  78. Jaruratanasirikul, S. & Kleepkaew. A. Influence of an acidic beverage (Coca-Cola) on the absorption of itraconazole. Eur. J. Clin. Pharmacol. 52, 235–237 (1997).

    CAS  Google Scholar 

  79. Grant, E. M. Optimizing the bioavailability of itraconazole. Conn. Med. 64, 415–417 (2000).

    CAS  Google Scholar 

  80. Welage, L. S., Carver, P. L., Revankar, S., Pierson, C. & Kauffman, C. A. Alterations in gastric acidity in patients infected with human immunodeficiency virus. Clin. Infect. Dis. 21, 1431–1438 (1995).

    CAS  Google Scholar 

  81. De Beule, K. & Van Gestel, J. Pharmacology of itraconazole. Drugs 61 (Suppl. 1), 27–33 (2001).

    CAS  Google Scholar 

  82. Slain, D., Rogers, P. D., Cleary, J. D. & Chapman, S. W. Intravenous itraconazole. Ann. Pharmacother. 35, 720–729 (2001).

    CAS  Google Scholar 

  83. Willems, L., Van der Geest, R. & De Beule, K. Itraconazole oral solution and intravenous formulations: A review of pharmacokinetics and pharmacodynamics. J. Clin. Pharm. Ther. 26, 159–169 (2001).

    CAS  Google Scholar 

  84. Physician's Desk Reference

  85. Brewster, M. E. et al. The use of polymer-based electrospun nanofibers containing amorphous drug dispersions in the delivery of poorly water-soluble pharmaceuticals. Pharmazie 59, 387–391 (2004).

    CAS  Google Scholar 

  86. Zia, V., Rajewski, R. A. & Stella, V. J. Effect of cyclodextrin charge on complexation of neutral and charged substrates: comparison of (SBE)7M-β-CD to HP-β-CD. Pharm. Res. 18, 667–673 (2001).

    CAS  Google Scholar 

  87. Rajewski, R. A. et al. Preliminary safety evaluation of parenterally administered sulfoalkyl ether β-cyclodextrin derivatives. J. Pharm. Sci. 84, 927–932 (1995).

    CAS  Google Scholar 

  88. Kim, Y. et al. Inclusion complexation of ziprasidone mesylate with β-cyclodextrin sulfobutyl ether. J. Pharm. Sci. 87, 1560–1567 (1998).

    CAS  Google Scholar 

  89. Jeu, L., Piacenti, F. J., Lyakhovetskiy, A. G. & Fung, H. B. Voriconazole. Clin. Ther. 25, 1321–1381 (2003).

    CAS  Google Scholar 

  90. Purkins, L., Wood, N., Greenhalgh, K., Allen, M. J. & Oliver, S. D. Voriconazole, a novel wide-spectrum triazole: oral pharmacokinetics and safety. Br. J. Clin. Pharmacol. 56, 10–16 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Purkins, L. et al. The pharmacokinetics and safety of intravenous voriconazole — a novel wide-spectrum antifungal agent. Br. J. Clin. Pharmacol. 56, 2–9 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Harding, V. D. Pharmaceutical formulations containing voriconazole. WO9858677 (1998).

  93. FDA Web site (http://www.fda.gov/)

  94. Irie, T. & Uekama, K. Cyclodextrin in peptide and protein delivery. Adv. Drug Deliv. Rev. 36, 101–123 (1999).

    CAS  Google Scholar 

  95. Cserhati, T., Forgacs, E. & Szejtli, J. Inclusion complex formation of antisense nucleotides with hydroxypropyl-β-cyclodextrin. Int. J. Pharm. 141, 1–7 (1996).

    CAS  Google Scholar 

  96. Zhao, Q., Temsamani, J. & Agrawal, S. Use of cyclodextrin and its derivatives as carriers for oligonucleotide delivery. Antisense Res. Dev. 5, 185–192 (1995).

    CAS  Google Scholar 

  97. Redenti, E., Pietra, C., Gerloczy, A. & Szente, L. Cyclodextrins in oligonucleotide delivery. Adv. Drug Deliv. Res. 53, 235–244 (2001).

    CAS  Google Scholar 

  98. Brewster, M., Simpkins, J., Hora, M. & Bodor, N. Use of 2-hydroxypropyl-β-cyclodextrin as a solubilizing and stabilizing excipient for protein drugs. Pharm. Res. 8, 792–795 (1991).

    CAS  Google Scholar 

  99. Charman, S. A., Mason, K. L. & Charman, W. N. Techniques for assessing the effect of pharmaceutical excipients on aggregation of porcine growth hormone. Pharm. Res. 10, 954–962 (1993).

    CAS  Google Scholar 

  100. Leung, D. K., Yang, Z. & Breslow, R. Selective disruption of protein aggregation by cyclodextrin dimers. Proc. Natl Acad. Sci. USA 97, 5050–5053 (2000).

    CAS  Google Scholar 

  101. Rozema, D. & Gellman, S. Artificial chaperone-assisted refolding of denatured-reduced lysozyme: modulation of the competition between renaturation and aggregation. Biochemistry-US 35, 15760–15771 (1996).

    CAS  Google Scholar 

  102. Rozema, D. & Gellman, S. Artificial chaperone-assisted refolding of carbonic anhydrase B. J. Biol. Chem. 271, 3478–3487 (1996).

    CAS  Google Scholar 

  103. Rozeman, D. & Gellman, S. H. Artificial chaperones: protein refolding via sequential use of detergent and cyclodextrin. J. Am. Chem. Soc. 117, 2373–2374 (1995).

    Google Scholar 

  104. Couthon, F., Clottes, E. & Vial, C. Refolding of SDS- and thermally denatured MM-creatine kinase using cyclodextrins. Biochem. Biophys. Res. Commun. 227, 854–860 (1996).

    CAS  Google Scholar 

  105. Liao, Z., Graham, D. & Hildreth, J. E. K. Lipid rafts and HIV pathogenesis: viron-associated cholesterol is required for fusion and infection of susceptible cells. AIDS Res. Human Retroviruses 19, 675–687 (2003).

    CAS  Google Scholar 

  106. Graham, D., Chertova, E., Hilburn, J., Arthur, L. & Hildreth, J. E. K. Cholesterol depletion of human immunodeficiency virus type 1 and simian immunodeficiency virus with β-cyclodextrin inactivates and permeabilizes the virons: evidence for viron-associated lipid rafts. J. Virol. 77, 8237–8248 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Bom, A. et al. A novel concept of reversing neuromuscular block: chemical encapsulation of rocuronium bromide by a cyclodextrin-based synthetic host. Angew. Chem. Int. Ed. Engl. 41, 266–270 (2002). Application involving the capture of a molecule rather than the delivery.

    Google Scholar 

  108. Loftsson, T. & Másson, M. The effects of water-soluble polymers on cyclodextrins and cyclodextrin solubilization of drugs. J. Drug Deliv. Sci. Tech. 14, 35–43 (2004).

    CAS  Google Scholar 

  109. Yue, I. C. et al. A novel polymeric chlorhexidine delivery device for the treatment of periodontal disease. Biomaterials 25, 3743–3750 (2004).

    CAS  Google Scholar 

  110. Huang, L. et al. Formation of antibiotic, biodegradable/bioabsorbable polymers by processing with neomycin sulfate and its inclusion compound with β-cyclodextrin. J. Appl. Poly. Sci. 74, 937–947 (1999).

    CAS  Google Scholar 

  111. Lu, J. et al. Formation of antibiotic, biodegradable polymers processing with Irgasan DP300R (Triclosan) and its inclusion compound with β-cyclodextrin. J. Appl. Poly. Sci. 82, 300–309 (2001).

    CAS  Google Scholar 

  112. Rusa, C. C. et al. Controlling the behaviors of biodegradable/bioadsorbable polymers with cyclodextrins. J. Polym. Environ. 12, 157 (2004).

    CAS  Google Scholar 

  113. Kis, G., Schoch, C. & Bizec, J. -C. Quaternary ammonium cyclodextrins — molecules with a wide range of applications. 12th International Cyclodextrin Symposium (Montpellier, France), P-203, May 16–19, 2004. New application with a new deriviative of cyclodextrins.

    Google Scholar 

  114. Szeman, J. et al. Water soluble cyclodextrin polymers: their interaction with drugs. J. Inclus. Phenom. 5, 427–431 (1987).

    CAS  Google Scholar 

  115. Szeman, J. et al. Complexation of several drugs with water-soluble cyclodextrin polymer. Chem. Pharm. Bull. 35, 282–288 (1987).

    CAS  Google Scholar 

  116. Fenyvesi, E., Ujházy, A., Szejtli, J., Pütter, S. & Gan, T. G. Controlled release of drugs from CD polymers substituted with ionic groups. J. Inclus. Phenom. Mol. 25, 185–189 (1996).

    CAS  Google Scholar 

  117. Fenyvesi, E. Cyclodextrin polymers in pharmaceutical industry. J. Inclus. Phenom. 6, 537–545 (1988).

    CAS  Google Scholar 

  118. Mocanu, G., Vizitiu, D. & Carpov, A. Cyclodextrin polymers. J. Bioact. Compat. Pol. 16, 315–342 (2001).

    CAS  Google Scholar 

  119. Solms, J., & Egli, R. H. Harze mit Einschlusshohlraumen von cyclodextrin-struktur. Helv. Chim. Acta 48, 1225–1228 (1965).

    CAS  Google Scholar 

  120. Ma, M. & Li, D. -Q. New organic nanoporous polymers and their inclusion complexes. Chem. Mater. 11, 872–874 (1999).

    CAS  Google Scholar 

  121. Daoud-Mahammed, S. et al. Original tamoxifen-loaded gels containing cyclodextrins: in situ self-assembling systems for cancer treatment. J. Drug. Del. Sci. Tech. 14, 51–55 (2004).

    CAS  Google Scholar 

  122. Li, J., Xiao, H., Li, J. & Zhong, Y. Drug carrier systems based on water-soluble cationic β-cyclodextrin polymers. Int. J. Pharm. 278, 329–342 (2004).

    CAS  Google Scholar 

  123. Daoud-Mahammed, S. et al. Original tamoxifen-loaded gels containing cyclodextrins: in situ self-assembling systems for cancer treatment. J. Drug Del. Sci. Tech. 14, 51–55 (2004).

    CAS  Google Scholar 

  124. Harada, A., Furue, M. & Nozakura, S. -I. Cyclodextrin-containing polymers. 1. Preparation of polymers. Macromolecules 9, 701–704 (1976).

    CAS  Google Scholar 

  125. Harada, A., Furue, M. & Nozakura, S. -I. Inclusion of aromatic compounds by a β-cyclodextrin–epichlorohydrin polymer. Polym. J. 13, 777–781 (1981).

    CAS  Google Scholar 

  126. Seo, T., Kajihara, T. & Iijima, T. The synthesis of poly(allylamine) containing covalently bound cyclodextrin and its catalytic effect in the hydrolysis of phenyl-esters. Makromol. Chem. 188, 2071–2082 (1987).

    CAS  Google Scholar 

  127. Ruebner, A., Statton, G. L. & James, M. R. Synthesis of a linear polymer with pendent γ-cyclodextrins. Macromol. Chem. Phys. 201, 1185–1188 (2000).

    CAS  Google Scholar 

  128. Bachmann, F., Höpken, J., Kohli, R., Lohmann, D. & Schneider, J. Synthesis and polymerization of carbamate-linked cyclodextrin methacrylate monomers. J. Carbohyd. Chem. 17, 1359–1375 (1998).

    CAS  Google Scholar 

  129. Tojima, T. et al. Preparation of an α-cyclodextrin-linked chitosan derivative via reductive amination strategy. J. Polym. Sci. A 36, 1965–1968 (1998).

    CAS  Google Scholar 

  130. Tanida, F. et al. Novel synthesis of a water-soluble cyclodextrin-polymer having a chitosan skeleton. Polymer 39, 5261–5263 (1998).

    CAS  Google Scholar 

  131. Weickenmeier, M. & Wenz, G. Cyclodextrin sidechain polyesters — synthesis and inclusion of adamantan derivatives. Macromol. Rapid Commun. 17, 731–736 (1996).

    CAS  Google Scholar 

  132. Suh, J., Lee, S. -H. & Zoh, K. D. A novel host containing both binding site and nucleophile prepared by attachment of β-cyclodextrin to poly(ethylenimine). J. Am. Chem. Soc. 114, 7916–7917 (1992).

    CAS  Google Scholar 

  133. Pun, S. H. et al. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug. Chem. 15, 831–840 (2004).

    CAS  Google Scholar 

  134. Suh, J., Hah, S. S. & Lee, S. H. Dendrimer poly(ethylenimine)s linked to β-cyclodextrin. Bioorg. Chem. 25, 63–75 (1997).

    CAS  Google Scholar 

  135. Arima, H., Kihara, F., Hiryama, F. & Uekama, K. Enhancement of gene expression by polyamidoamine dendrimer conjugates with α-, β-, and γ-cyclodextrins. Bioconjug. Chem. 12, 476–484 (2001).

    CAS  Google Scholar 

  136. Kihara, F., Arima, H., Tsutsumi, T., Hirayama, F. & Uekama, K. Effects of structure of polyamidoamine dendrimer on gene transfer efficiency of the dendrimer conjugate with α-cyclodextrin. Bioconjug. Chem. 13, 1211–1219 (2002).

    CAS  Google Scholar 

  137. Kihara, F., Arima, H., Tsutsumi, T., Hirayama, F. & Uekama, K. In vitro and in vivo gene transfer by an optimized α-cyclodextrin conjugate with polyamidoamine dendrimer. Bioconjug. Chem. 14, 342–350 (2003).

    CAS  Google Scholar 

  138. Newkome, G. R., Godínez, L. A. & Moorefield, C. N. Molecular recognition using β-cyclodextrin-modified dendrimers: novel building blocks for convergent self-assembly. Chem. Commun. 1821–1822 (1998).

  139. Baussanne, I. et al. Synthesis and comparative lectin-binding affinity of mannosyl-coated β-cyclodextrin-dendrimer constructs. Chem. Commun. 1489–1490 (2000).

  140. Ohno, K., Wong, B. & Haddelton, D. M. Synthesis of well-defined cyclodextrin-core star polymers. J. Polym. Sci. A 39, 2206–2214 (2001).

    CAS  Google Scholar 

  141. Harada, A., Furue, M. & Nozakura, S. Cyclodextrin-containing polymers. 2. Cooperative effects in catalysis and binding. Macromolecules 9, 705–709 (1976).

    CAS  Google Scholar 

  142. Harada, A., Furue, M. & Nozakura, S. Inclusion of aromatic-compounds by a β-cyclodextrin–epichlorohydrin polymer. Polym. J. 13, 777–781 (1981).

    CAS  Google Scholar 

  143. Asanuma, H., Kakazu, M., Shibata, M., Hishiya, T. & Komiyama, M. Molecularly imprinted polymer of β-cyclodextrin for the efficient recognition of cholesterol. Chem. Commun. 1971–1972 (1997).

  144. Gonzalez, H., Hwang, S. J. & Davis, M. E. New class of polymers for the delivery of macromolecular therapeutics. Bioconjug. Chem. 10, 1068–1074 (1999). The first example of a CD-containing polymer for the delivery of nucleic acids.

    CAS  Google Scholar 

  145. Hwang, S. J., Bellocq, N. C. & Davis, M. E. Effects of structure of β-cyclodextrin-containing polymers on gene delivery. Bioconjug. Chem. 12, 280–290 (2001).

    CAS  Google Scholar 

  146. Pun, S. H. & Davis, M. E. Development of a nonviral gene delivery vehicle for systemic application. Bioconjug. Chem. 13, 630–639 (2002).

    CAS  Google Scholar 

  147. Reineke, T. M. & Davis, M. E. Structural effects of carbohydrate-containing polycations on gene delivery. 1. Carbohydrate size and its distance from charge centers. Bioconjug. Chem. 14, 247–254 (2003).

    CAS  Google Scholar 

  148. Reineke, T. M. & Davis, M. E. Structural effects of carbohydrate-containing polycations on gene delivery. 2. Charge center type. Bioconjug. Chem. 14, 255–261 (2003).

    CAS  Google Scholar 

  149. Popielarski, S. R., Mishra, S. & Davis, M. E. Structural effects of carbohydrate-containing polycations on gene delivery. 3. Cyclodextrin type and functionalization. Bioconjug. Chem. 14, 672–678 (2003).

    CAS  Google Scholar 

  150. Bellocq, N. C., Pun, S. H., Jensen, G. S. & Davis, M. E. Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjug. Chem. 14, 1122–1132 (2003).

    CAS  Google Scholar 

  151. Cheng, J., Khin, K. T., Jensen, G. S., Liu, A. & Davis, M. E. Synthesis of linear, β-cyclodextrin-based polymers and their camptothecin conjugates. Bioconjug. Chem. 14, 1007–1017 (2003).

    CAS  Google Scholar 

  152. Cheng, J., Khin, K. T. & Davis, M. E. Antitumor activity of β-cyclodextrin polymer-camptothecin conjugates. Mol. Pharm. 1, 183–193 (2004).

    CAS  Google Scholar 

  153. Davis, M. E. et al. Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers. Curr. Med. Chem. 11, 1241–1253 (2004).

    Google Scholar 

  154. Pun, S. H. et al. Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biol. Ther. 3, 31–40 (2004).

    Google Scholar 

  155. Cryan, S. -A., Holohan, A., Donohue, R., Darcy, R. & O'Driscoll, C. M. Cell transfection with polycationic cyclodextrin vectors. Eur. J. Pharm. Sci. 21, 625–633 (2004).

    CAS  Google Scholar 

  156. Cryan, S. A., Donohue, R., Ravoo, B. J., Darcy, R. & O'Driscoll, C. M. Cationic cyclodextrin amphiphiles as gene delivery vectors. J. Drug Deliv. Sci. Tech. 14, 57–62 (2004).

    CAS  Google Scholar 

  157. Wolff, J. A. et al. Compositions and methods for drug delivery using amphiphile binding molecules. US Pat 6,740,643 (2004).

  158. Amiel, C., Galant, C. & Auvray, L. Ternary complexes involving β–cyclodextrin polymer, a cationic surfactant and an anionic polymer. Prog. Colloid Polym. Sci. 126 (in the press).

  159. Zanta, M. A., Boussif, O., Adib, A. & Behr, J. P. In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjug. Chem. 8, 839–844 (1997).

    CAS  Google Scholar 

  160. Forrest, M. L., Meister, G. E., Koerber, J. T. & Pack, D. W. Partial acetylation of polyethylenimine enhances in vitro gene delivery. Pharm. Res. 21, 365–371 (2004).

    CAS  Google Scholar 

  161. Thomas, M. & Klibanov, A. M. Enhancing polyethylenimine's delivery of plasmid DNA into mammalian cells. Proc. Natl Acad. Sci. USA 99, 14640–14645 (2002).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Davis.

Ethics declarations

Competing interests

M.E.D. is a consultant to, and has financial interests in, Insert Therapeutics, Inc.

Related links

Related links

DATABASES

Entrez Gene

Phosphodiesterase-5

OMIM

Buerger's disease

osteoarthritis

rheumatoid arthritis

Glossary

α-1,4- AND α-1,6- GLYCOSIDIC LINKAGES

The D-glucopyranoside unit contains six carbons and two of these units can be chemically linked from the 1-carbon of a unit to either the 4-carbon or the 6-carbon of the second unit.

HYDROPHOBIC

An affinity for, and propensity to dissolve in, non-polar solvents such as hydrocarbons.

HYDROPHILIC

An affinity for, and propensity to dissolve in, water and other polar solvents.

WETTABILITY

The wettability of a liquid is defined as the contact angle between a droplet of the liquid in thermal equilibrium on a horizontal surface.

LOG P

The logarithm of the partition coefficient of a substance in octanol–water.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, M., Brewster, M. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3, 1023–1035 (2004). https://doi.org/10.1038/nrd1576

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1576

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing