Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Implications of protein flexibility for drug discovery

Key Points

  • A large number of pharmaceutically relevant targets have been shown to be flexible, which are collected in this article. This comprehensive list of present and historical pharmaceutical targets provides the basis for questioning the relevance of the rigid receptor hypothesis, which is commonly used during in silico drug design.

  • The role of protein flexibility in future pharmaceutical targets is likely to be even greater than in the past. Presently under-exploited target classes, such as ion channels, nuclear hormone receptors and transporters, have functions that are inextricably bound up with their structural flexibility.

  • This article uses illustrative examples to discuss the implications of protein flexibility in drug discovery, and highlights how it could be exploited in drug design.

Abstract

Proteins are in constant motion between different conformational states with similar energies. This has often been ignored in drug design. However, protein flexibility is fundamental to understanding the ways in which drugs exert biological effects, their binding-site location, binding orientation, binding kinetics, metabolism and transport. Protein flexibility allows increased affinity to be achieved between a drug and its target. This is crucial, because the lipophilicity and number of polar interactions allowed for an oral drug is limited by absorption, distribution, metabolism and toxicology considerations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein mobility and ligand binding.
Figure 2: Novel conformation of renin observed on binding a non-peptidomimetic ligand.
Figure 3: Conformational induction of proteins by ligands.
Figure 4: Common mechanisms for domain movement.
Figure 5: Multiple conformations of a single residue.
Figure 6: Chemical structures of various compounds highlighted.
Figure 7: Movement of a large number of residues: example 1.
Figure 8: Structurally diverse ligands in a single binding site.
Figure 9: Surprising orientations of structurally similar ligands.
Figure 10: Forcing new conformations.

Accession codes

Accessions

Protein Data Bank

References

  1. Bursavich, M. G. & Rich, D. H. Designing non-peptide peptidomimetics in the 21st century: inhibitors targeting conformational ensembles. J. Med. Chem. 45, 541–558 (2002).

    CAS  PubMed  Google Scholar 

  2. Marvin, J. S. & Hellinga, H. W. Manipulation of ligand binding affinity by exploitation of conformational coupling. Nature Struct. Biol. 8, 795–798 (2001).

    CAS  PubMed  Google Scholar 

  3. Baldwin, R. L. Making a network of hydophobic clusters. Science 295, 1657–1658 (2002). An excellent overview of the role of compact hydrophobic domains in protein folding.

    CAS  PubMed  Google Scholar 

  4. Oefner, C. et al. Renin inhibition by substituted piperidines: a novel paradigm for the inhibition of monomeric aspartyl proteases. Chem. Biol. 6, 127–131 (1999).

    CAS  PubMed  Google Scholar 

  5. Weichsel, A. & Montford, W. R. Ligand-induced distortion of an active site in thymidylate synthase upon binding anticancer drug 1843U89. Nature Struct. Biol. 2, 1095–1101 (1995).

    CAS  PubMed  Google Scholar 

  6. Falke, J. J. A moving story. Science 295, 1480–1481 (2002). A summary of the relationship between mobility and function and its study by various methods.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Eisenmesser, E. Z., Bosco, D. A., Akke, M. & Kern, D. Enzyme dynamics during catalysis. Science 295, 1520–1523 (2002).

    CAS  PubMed  Google Scholar 

  8. Lee, A. Y., Gulnik, S. V. & Erickson, J. W. Conformational switching in an aspartic proteinase. Nature Struct. Biol. 5, 866–871 (1998).

    CAS  PubMed  Google Scholar 

  9. Rahuel, J., Priestle, J. P. & Grutter, M. G. The crystal structures of recombinant glycosylated human renin alone and in complex with a transition state analogue inhibitor. J. Struct. Biol. 107, 227–236 (1991).

    CAS  PubMed  Google Scholar 

  10. Kenakin, T. Agonist receptor efficacy 1: mechanisms of efficacy and receptor promiscuity. Trends Pharmacol. Sci. 16, 188–192 (1995). A useful and brief account of the importance of conformational ensembles in pharmacology.

    CAS  PubMed  Google Scholar 

  11. Ma, B., Shatsky, M., Wolfson, H. J. & Nussinov, R. Multiple diverse ligands binding at a single protein site: a matter of pre-existing populations. Protein Sci. 11, 184–197 (2002). A key paper giving an account of ligand-binding phenomena from the perspective of lessons learned in the study of protein folding.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Shoichet, B. K., Baase, W. A., Kuroki, R. & Matthews, B. A relationship between protein stability and protein function. Proc. Natl Acad. Sci. USA 92, 452–456 (1995).

    CAS  PubMed  Google Scholar 

  13. Gerstein, M., Lesk, A. M. & Chothia, C. Structural mechanisms for domain movements in proteins. Biochemistry 33, 6739–6749 (1994).

    CAS  PubMed  Google Scholar 

  14. Davis, A. M. & Teague, S. J. Hydrogen bonding, hydrophobic interactions, and failure of the rigid receptor hypothesis. Angew. Chem. Int. Ed. Engl. 38, 736–749 (1999).

    CAS  PubMed  Google Scholar 

  15. Kryger, G., Silman, I. & Sussman, J. L. Structure of acetylcholinesterase complexed with E2020 (Aricept): implications for the design of new anti-Alzheimer drugs. Structure 7, 297–307 (1999). An outstanding account of the insights gained from the complex of a commercially important inhibitor with its target protein from the leading group in cholinesterase research.

    CAS  PubMed  Google Scholar 

  16. Smith, G. M. et al. Positions of His-64 and a bound water in human carbonic anhydrase II upon binding three structurally related inhibitors. Protein Sci. 3, 118–125 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Baldwin, J. J. et al. Thienothiopyran-2-sulfonamides: novel topically active carbonic anhydrase inhibitors for the treatment of glaucoma. J. Med. Chem. 32, 2510–2513 (1989). References 16 and 17 describe an early, successful and little-publicised account of the discovery of an important class of drugs using crystallography. The account provides many lessons including mutual fit of both ligand and drug, and the introduction of an amine to improve pharmaceutical properties.

    CAS  PubMed  Google Scholar 

  18. Harel, M. et al. Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Sci. 9, 1063–1072 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zidek, L., Novotny, M. V. & Stone, M. J. Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nature Struct. Biol. 6, 1118–1121 (1999).

    CAS  PubMed  Google Scholar 

  20. Yaremchuk, A., Tukalo, M., Grotli, M. & Cusack, S. A succession of substrate induced conformational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthetase: comparison with histidyl-tRNA synthetase. J. Mol. Biol. 309, 989–1002 (2001).

    CAS  PubMed  Google Scholar 

  21. Velazquez-Campoy, A., Luque, I. & Freire, E. The application of thermodynamic methods in drug design. Thermochimica Acta 380, 217–227 (2001).

    CAS  Google Scholar 

  22. Najmanovich, R., Kuttner, J., Sobolev, V. & Edelman, M. Side-chain flexibility in proteins upon ligand binding. Proteins 39, 261–268 (2000).

    CAS  PubMed  Google Scholar 

  23. Ren, J. et al. High resolution structures of HIV-1RT from four RT–inhibitor complexes. Nature Struct. Biol. 2, 293–302 (1995).

    CAS  PubMed  Google Scholar 

  24. Klabunde, T. et al. Rational design of potent human transthyretin amyloid disease inhibitors. Nature Struct. Biol. 7, 312–321 (2000).

    CAS  PubMed  Google Scholar 

  25. Smerdon, S. J. et al. Structure of the binding site for nonnucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1. Proc. Natl Acad. Sci. USA 91, 3911–3915 (1994).

    CAS  PubMed  Google Scholar 

  26. Esnouf, R. et al. Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors. Nature Struct. Biol. 2, 303–308 (1995). A beautiful, visually appealing and detailed account of the structural basis of allosteric modulation in these inhibitors.

    CAS  PubMed  Google Scholar 

  27. Oikonomakos, N. G., Skamnaki, V. T., Tsitsanou, K. E., Gavalas, N. G. & Johnson, L. N. A new allosteric site in glycogen phosphorylase b as a target for drug interactions. Structure 8, 575–584 (2000).

    CAS  PubMed  Google Scholar 

  28. Zographos, S. E. et al. The structure of glycogen phosphorylase b with an alkyl-dihydropyridine–dicarboxylic acid compound, a novel and potent inhibitor. Structure 5, 1413–1425 (1997).

    CAS  PubMed  Google Scholar 

  29. Wright, S. W. et al. Anilinoquinazoline inhibitors of fructose 1,6-bisphosphatase bind at a novel allosteric site: synthesis, in vitro characterization, and X–ray crystallography. J. Med. Chem. 45, 3865–3877 (2002).

    CAS  PubMed  Google Scholar 

  30. Abraham, D. J. et al. Allosteric modifiers of hemoglobin: 2-[4-[[(3,5-disubstituted anilino)carbonyl]methyl]phenoxy]-2-methylpropionic acid derivatives that lower the oxygen affinity of hemoglobin in red cell suspensions, in whole blood, and in vivo in rats. Biochemistry 31, 9141–9149 (1992).

    CAS  PubMed  Google Scholar 

  31. Pargellis, C. et al. Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nature Struct. Biol. 9, 268–272 (2002). A key paper for a detailed account of the relationship between protein mobility and kinetics.

    CAS  PubMed  Google Scholar 

  32. Ashani, Y., Peggins, J. O. III. & Doctor, B. P. Mechanism of inhibition of cholinesterases by huperzine A. Biochem. Biophys. Res. Commun. 184, 719–726 (1992).

    CAS  PubMed  Google Scholar 

  33. Graul, A., Leeson, P. A. & Castaner, J. Oseltamivir phosphate: anti-influenza, neuraminidase (sialidase) inhibitor. Drugs Future 24, 1189–1202 (1999).

    CAS  Google Scholar 

  34. Wang, M. Z., Tai, C. Y. & Mendel, D. B. Mechanism by which mutations at His274 alter sensitivity of influenza A virus N1 neuraminidase to oseltamivir carboxylate and zanamivir. Antimicrob. Agents Chemother. 46, 3809–3816 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kulmacz, R. & Lands, W. E. M. Stoichiometry and kinetics of the interaction of prostaglandin H synthase with anti-inflammatory agents. J. Biol. Chem. 260, 12572–12578 (1985).

    CAS  PubMed  Google Scholar 

  36. Gierse, J. K., Koboldt, C. M., Walker, M. C. Seibert, K. & Isakson, P. C. Kinetic basis for selective inhibition of cyclo-oxygenases. Biochem. J. 339, 607–614 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fritz, T. A., Tondi, D., Finer-Moore, J. S., Costi, M. P. & Stroud, R. M. Predicting and harnessing protein flexibility in the design of species-specific inhibitors of thymidylate synthase 1,2. Chem. Biol. 8, 981–995 (2001). An insightful paper from one of the leading groups in rational design.

    CAS  PubMed  Google Scholar 

  38. Stroud, R. M. & Finer-Moore, J. S. Conformational dynamics along an enzymatic reaction pathway: thymidylate synthase, 'the movie'. Biochemistry 42, 239–247 (2003).

    CAS  PubMed  Google Scholar 

  39. Taylor, N. R. et al. Dihydropyrancarboxamides related to zanamivir: a new series of inhibitors of influenza virus sialidases. 2. Crystallographic and molecular modeling study of complexes of 4-amino-4H-pyran-6-carboxamides and sialidase from influenza virus types A and B. J. Med. Chem. 41, 798–807 (1998). Probably the best account in the literature of the rationalization of selectivity between related receptors.

    CAS  PubMed  Google Scholar 

  40. Raag, R. & Poulos, T. L. Crystal structures of cytochrome P-450CAM complexed with camphane, thiocamphor, and adamantane: factors controlling P-450 substrate hydroxylation. Biochemistry 30, 2674–2684 (1991).

    CAS  PubMed  Google Scholar 

  41. Watkins, R. E. et al. The human nuclear xenobiotic receptor PXR: Structural determinants of directed promiscuity. Science 292, 2329–2333 (2001).

    CAS  PubMed  Google Scholar 

  42. Schumacher, M. A. et al. Structural mechanisms of QacR induction and multidrug recognition. Science 294, 2158–2163 (2001).

    CAS  PubMed  Google Scholar 

  43. Sinha, N., Tsai, C. -J. & Nussinov, R. Building blocks, hinge bending motions and protein topology. J. Biomol. Struct. Dyn. 19, 369–380 (2001). An important account of the relationship between hydrophobic domains, mobility, function and topology.

    CAS  PubMed  Google Scholar 

  44. Teague, S. J., Davis, A. M., Leeson, P. D. & Oprea, T. The design of leadlike combinatorial libraries. Angew. Chem. Int. Ed. Engl. 38, 3743–3748 (1999).

    CAS  PubMed  Google Scholar 

  45. Arkin, M. R. et al. Binding of small molecules to an adaptive protein–protein interface. Proc. Natl Acad. Sci. USA 100, 1603–1608 (2003). An interesting proof of principle using a significant pharmaceutical target.

    CAS  PubMed  Google Scholar 

  46. Podust, L. M., Poulos, T. L. & Waterman, M. R. Crystal structure of cytochrome P450 14α-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc. Natl Acad. Sci. USA 98, 3068–3073 (2001).

    CAS  PubMed  Google Scholar 

  47. Ren, J. et al. Binding of the second generation non-nucleoside inhibitor S-1153 to HIV-1 reverse transcriptase involves extensive main chain hydrogen bonding. J. Biol. Chem. 275, 14316–14320 (2000).

    CAS  PubMed  Google Scholar 

  48. Rose, R. B., Craik, C. S. & Stroud, R. M. Domain flexibility in retroviral proteases: structural implications for drug resistant mutations. Biochemistry 37, 2607–2621 (1998).

    CAS  PubMed  Google Scholar 

  49. Muzammil, S., Ross, P. & Freire, E. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance. Biochemistry 42, 631–638 (2003).

    CAS  PubMed  Google Scholar 

  50. Vogeley, L., Palm, G J., Mesters, J R. & Hilgenfeld, R. Conformational change of elongation factor Tu (EF-Tu) induced by antibiotic binding. Crystal structure of the complex between EF–Tu, GDP and aurodox. J. Biol. Chem. 276, 17149–17155 (2001).

    CAS  PubMed  Google Scholar 

  51. Luque, I. & Freire, E. Structural stability of binding sites: consequences for binding affinity and allosteric effects. Proteins 4, S63–S71 (2000). An insightful paper presenting the link between protein stability and function for a number of therapeutically important proteins.

    Google Scholar 

  52. Verkhivker, G. M. et al. Deciphering common failures in molecular docking of ligand-protein complexes. J. Comput. Aided Mol. Des. 14, 731–751 (2000).

    CAS  PubMed  Google Scholar 

  53. Morton, A. & Matthews, B. W. Specificity of ligand binding in a buried nonpolar cavity of T4 lysozyme: linkage of dynamics and structural plasticity. Biochemistry 34, 8576–8588 (1995).

    CAS  PubMed  Google Scholar 

  54. Murray, C. W., Baxter, C. A. & Frenkel, A. D. The sensitivity of the results of molecular docking to induced fit effects: application to thrombin, thermolysin and neuraminidase. J. Comput. Aided Mol. Des. 13, 547–562 (1999). An honest and thorough account of problems with docking and scoring algorithms. Refreshing in an area which has often been oversold.

    CAS  PubMed  Google Scholar 

  55. Carlson, H. A. Protein flexibility and drug design. How to hit a moving target. Curr. Opin. Chem. Biol. 6, 447–452 (2002).

    CAS  PubMed  Google Scholar 

  56. Verkhivker, G. M. et al. Complexity and simplicity of ligand-macromolecule interactions: the energy landscape perspective. Curr. Opin. Struct. Biol. 12, 197–203 (2002).

    CAS  PubMed  Google Scholar 

  57. Raves, M. L. et al. Structure of acetylcholinesterase complexed with the nootropic alkaloid, (–)-huperzine A. Nature Struct. Biol. 4, 57–63 (1997).

    CAS  PubMed  Google Scholar 

  58. Wilson, D. K., Tarle, I., Petrash, J. M. & Quiocho, F. A. Refined 1.8 Å structure of human aldose reductase complexed with the potent inhibitor zopolrestat. Proc. Natl Acad. Sci. USA 90, 9847–9851 (1993).

    CAS  PubMed  Google Scholar 

  59. Urzhumtsev, A. et al. A 'specificity' pocket inferred from the crystal structures of the complexes of aldose reductase with the pharmaceutically important inhibitors tolrestat and sorbinil. Structure 5, 601–612 (1997).

    CAS  PubMed  Google Scholar 

  60. Todone, F. et al. Active site plasticity in D-amino acid oxidase: a crystallographic analysis. Biochemistry 36, 5853–5860 (1997).

    CAS  PubMed  Google Scholar 

  61. Vandonselaar, M., Hickie, R. A., Quail, J. W. & Delbaere, L. T. J. Induction of a major conformational change in calcium–calmodulin (Ca2+–CAM) by trifluoperazine (TFP). Protein Eng. 10, S47 (1997).

    Google Scholar 

  62. Pouplana, R., Perez, C., Sanchez, J., Lozano, J. J. & Puig-Parellada, P. The structural and electronic factors that contribute affinity for the time-dependent inhibition of PGHS-1 by indomethacin, diclofenac and fenamates. J. Comput. Aided Mol. Des. 13, 297–313 (1999).

    CAS  PubMed  Google Scholar 

  63. Kurumbail, R. G. et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 384, 644–648 (1996).

    CAS  PubMed  Google Scholar 

  64. Steegborn, C., Laber, B., Messerschmidt, A., Huber, R. & Clausen, T. Crystal structures of cystathionine γ-synthase inhibitor complexes rationalize the increased affinity of a novel inhibitor. J. Mol. Biol. 311, 789–801 (2001).

    CAS  PubMed  Google Scholar 

  65. Shiau, A K. et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927–937 (1998).

    CAS  PubMed  Google Scholar 

  66. Brzozowski, A M. et al. Molecular basis of agonism and antagonism in the estrogen receptor. Nature 389, 753–758 (1997).

    CAS  PubMed  Google Scholar 

  67. Suresh, S. et al. Conformational changes in Leishmania mexicana glyceraldehyde-3-phosphate dehydrogenase induced by designed inhibitors. J. Mol. Biol. 309, 423–435 (2001).

    CAS  PubMed  Google Scholar 

  68. Rath, V. L. et al. Human liver glycogen phosphorylase inhibitors bind at a new allosteric site. Chem. Biol. 7, 677–682 (2000).

    CAS  PubMed  Google Scholar 

  69. Hopkins, A. L. et al. Complexes of HIV-1 reverse transcriptase with inhibitors of the HEPT series reveal conformational changes relevant to the design of potent non-nucleoside inhibitors. J. Med. Chem. 39, 1589–1600 (1996).

    CAS  PubMed  Google Scholar 

  70. Ala, P. J. et al. Molecular recognition of cyclic urea HIV-1 protease inhibitors. J. Biol. Chem. 273, 12325–12331 (1998).

    CAS  PubMed  Google Scholar 

  71. Tong, L. et al. Crystal structures of HIV-2 protease in complex with inhibitors containing the hydroxyethylamine dipeptide isostere. Structure 3, 33–40 (1995).

    CAS  PubMed  Google Scholar 

  72. Melnick, M. et al. Bis tertiary amide inhibitors of the HIV-1 protease generated via protein structure-based iterative design. J. Med. Chem. 39, 2795–2811 (1996).

    CAS  PubMed  Google Scholar 

  73. Istvan, E. S. & Deisenhofer, J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292, 1160–1164 (2001).

    CAS  PubMed  Google Scholar 

  74. Scrofani, S. D. B. et al. NMR characterization of the metallo-β-lactamase from Bacteroides fragilis and its interaction with a tight-binding inhibitor: role of an active-site loop. Biochemistry 38, 14507–14514 (1999).

    CAS  PubMed  Google Scholar 

  75. Lovejoy, B. et al. Crystal structures of MMP-1 and -13 reveal the structural basis for selectivity of collagenase inhibitors. Nature Struct. Biol. 6, 217–221 (1999).

    CAS  PubMed  Google Scholar 

  76. Feng, Y. et al. Solution structure and backbone dynamics of the catalytic domain of matrix metalloproteinase-2 complexed with a hydroxamic acid inhibitor. Biochim. Biophys. Acta 1598, 10–23 (2002).

    CAS  PubMed  Google Scholar 

  77. Brandstetter, H. et al. The 1.8- Å. crystal structure of a matrix metalloproteinase 8–barbiturate inhibitor complex reveals a previously unobserved mechanism for collagenase substrate recognition. J. Biol. Chem. 276, 17405–17412 (2001).

    CAS  PubMed  Google Scholar 

  78. Raman, C. S. et al. Crystal structure of nitric oxide synthase bound to nitro indazole reveals a novel inactivation mechanism. Biochemistry 40, 13448–13455 (2001).

    CAS  PubMed  Google Scholar 

  79. Faig, M. et al. Structure-based development of anticancer drugs. Complexes of NAD(P)H:quinone oxidoreductase 1 with chemotherapeutic quinones. Structure 9, 659–667 (2001).

    CAS  PubMed  Google Scholar 

  80. Wang, Z. et al. Structural basis of inhibitor selectivity in MAP kinases. Structure 6, 1117–1128 (1998). A good account of both the flexibility of Tyr side chain as different inhibitors bind and the basis of the compound's selectivity for p38 against extracellular signal-regulated kinase.

    CAS  PubMed  Google Scholar 

  81. Modi, S., Sutcliffe, M. J., Primrose, W. U., Lian, L. -Y. & Roberts, G. C. K. The catalytic mechanism of cytochrome P450 BM3 involves a 6 Å movement of the bound substrate on reduction. Nature Struct. Biol. 3, 414–417 (1996).

    CAS  PubMed  Google Scholar 

  82. Raag, R., Li, H., Jones, B. C. & Poulos, T. L. Inhibitor-induced conformational change in cyctochrome P-450cam. Biochemistry 32, 4571–4578 (1993).

    CAS  PubMed  Google Scholar 

  83. Poulos, T. L. & Howard, A. J. Crystal structures of metyrapone and phenylimidazole inhibited complexes of cytochrome P-450cam. Biochemistry 26, 8165–8174 (1987).

    CAS  PubMed  Google Scholar 

  84. Schevitz, R. W. et al. Structure-based design of the first potent and selective inhibitor of human non-pancreatic secretory phospholipase A2 . Nature Struct. Biol. 2, 458–465 (1995). A nice account of structure–activity relationships by crystallography of complexes along the road to the discovery of potent agents.

    CAS  PubMed  Google Scholar 

  85. Chirgadze, N. Y. et al. The crystal structure of human α-thrombin complexed with LY178550, a nonpeptidyl, active site-directed inhibitor. Protein Sci. 6, 1412–1417 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chirgadze, N. Y. et al. The crystal structures of human α-thrombin complexed with active site-directed diamino benzo[b]thiophene derivatives: a binding mode for a structurally novel class of inhibitors. Protein Sci. 9, 29–36 (2000). An interesting account of the discovery of some surprising compounds. Significantly, reference 87 also describes compounds that interact with the insertion loop, which is known to control access of substrates to the active site.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Tucker, T J. et al. Design of highly potent noncovalent thrombin inhibitors that utilize a novel lipophilic binding pocket in the thrombin active site. J. Med. Chem. 40, 830–832 (1997).

    CAS  PubMed  Google Scholar 

  88. Stout, T. J. et al. Structure-based design of inhibitors specific for bacterial thymidylate synthase. Biochemistry 38, 1607–1617 (1999).

    CAS  PubMed  Google Scholar 

  89. Sawaya, M. R. & Kraut, J. Loop and sub-domain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry 36, 586–603 (1997).

    CAS  PubMed  Google Scholar 

  90. Krebs, W. G. & Gerstein, M. The morph server: a standardized system for analyzing and visualizing macromolecular motions in a database framework. Nucleic Acids Res. 28, 1665–1675 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Echols, N. D., Milburn, D. & Gerstein, M. MolMovDB: analysis and visualization of conformational change and structural flexibility. Nucleic Acids Res. 31, 478–482 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I wish to acknowledge Dr A. M. Davis for invaluable discussions concerning this manuscript, and Dr S. St-Gallay for assistance with preparation of the figures.

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

FURTHER INFORMATION

Database of Macromolecular Movements with Associated Tools for Geometric Analysis

Protein Data Bank

Glossary

π–π STACKING

Weak non-covalent interactions between the faces of two aromatic moieties, one of which is electron rich and the other electron deficient.

CATION–π INTERACTION

A surprisingly strong non-covalent force in which cations bind to the π face of aromatic rings. The interaction can be considered an electrostatic attraction between a positive charge and the quadrupole moment of the aromatic moiety, typically the side chains of phenylalanine, tyrosine and tryptophan residues.

TRANSITION-STATE ANALOGUE

A compound designed to mimic the properties or geometry of the transition state of an enzymatic reaction, but which is stable to processing by the enzyme. Such compounds inhibit the enzyme by binding more tightly than the natural substrate(s).

χ1 ANGLE

χ1 is the torsional angle that describes the conformation(s) of atoms which form the side-chain of a particular amino-acid residue relative to the peptide backbone.

B-FACTORS

B-factors (also known as temperature factors) model the effect of static and dynamic disorder associated with an atom when it is observed by X-ray analysis. They are related to the atom's mean square displacement during observation.

APO FORM

Enzyme (receptor) in its free state without substrates or inhibitors bound.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teague, S. Implications of protein flexibility for drug discovery. Nat Rev Drug Discov 2, 527–541 (2003). https://doi.org/10.1038/nrd1129

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing