Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The antifungal pipeline: a reality check

Key Points

  • Invasive fungal infections are a substantial medical concern, particularly in immunocompromised patients. As medical advances increase the size of this population, invasive fungal infections will continue to be a large medical issue.

  • Progress has been made recently in developing antifungal agents, but more agents, particularly those with a broad spectrum and low toxicity, are needed. New formulations of existing antifungals are being developed to address these issues.

  • Novel antifungal pathways and targets are being used to identify potential antifungal agents with new mechanisms of action, which could lead to the development of new drugs.

  • Alternative strategies to target drugs to infection sites, to repurpose agents for antifungal use and to use the immune system as adjunctive therapies are discussed in this Review.

Abstract

Invasive fungal infections continue to appear in record numbers as the immunocompromised population of the world increases, owing partially to the increased number of individuals who are infected with HIV and partially to the successful treatment of serious underlying diseases. The effectiveness of current antifungal therapies — polyenes, flucytosine, azoles and echinocandins (as monotherapies or in combinations for prophylaxis, or as empiric, pre-emptive or specific therapies) — in the management of these infections has plateaued. Although these drugs are clinically useful, they have several limitations, such as off-target toxicity, and drug-resistant fungi are now emerging. New antifungals are therefore needed. In this Review, I discuss the robust and dynamic antifungal pipeline, including results from preclinical academic efforts through to pharmaceutical industry products, and describe the targets, strategies, compounds and potential outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Currently available antifungal compounds and future derivatives thereof.
Figure 2: Antifungal targets.

Similar content being viewed by others

References

  1. Brown, G. D., Denning, D. W. & Levitz, S. M. Tackling human fungal infections. Science 336, 647 (2012). This work reviews the current magnitude of issues relating to invasive fungal infections.

    CAS  PubMed  Google Scholar 

  2. Park, B. J. et al. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23, 525–530 (2009).

    PubMed  Google Scholar 

  3. Patterson, T. F. et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 63, e1–e60 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. Pappas, P. G. et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 62, e1–e50 (2016).

    PubMed  Google Scholar 

  5. Galgiani, J. N. et al. 2016 Infectious Diseases Society of America (IDSA) clinical practice guideline for the treatment of coccidioidomycosis. Clin. Infect. Dis. 63, e112–e146 (2016).

    PubMed  Google Scholar 

  6. Perfect, J. R. et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 50, 291–322 (2010).

    PubMed  PubMed Central  Google Scholar 

  7. Kauffman, C. A., Hajjeh, R. & Chapman, S. W. Practice guidelines for the management of patients with sporotrichosis. For the Mycoses Study Group. Infectious Diseases Society of America. Clin. Infect. Dis. 30, 684–687 (2000).

    CAS  PubMed  Google Scholar 

  8. Oliver, J. D. et al. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc. Natl Acad. Sci. USA 113, 12809–12814 (2016).

    CAS  PubMed  Google Scholar 

  9. Shahid, S. K. Newer patents in antimycotic therapy. Pharm. Pat. Anal. 5, 115–134 (2016).

    CAS  PubMed  Google Scholar 

  10. Pouliot, M. & Jeanmart, S. Pan assay interference compounds (PAINS) and other promiscuous compounds in antifungal research. J. Med. Chem. 59, 497–503 (2016).

    CAS  PubMed  Google Scholar 

  11. Pitman, S. K., Drew, R. H. & Perfect, J. R. Addressing current medical needs in invasive fungal infection prevention and treatment with new antifungal agents, strategies and formulations. Expert Opin. Emerg. Drugs 16, 559–586 (2011). This study is an extensive review of the available antifungal agents and discusses how they are optimally used today.

    CAS  PubMed  Google Scholar 

  12. Cuenca-Estrella, M. Antifungal drug resistance mechanisms in pathogenic fungi: from bench to bedside. Clin. Microbiol. Infect. 20 (Suppl. 6), 54–59 (2014).

    CAS  PubMed  Google Scholar 

  13. Smith, K. D. et al. Increased antifungal drug resistance in clinical isolates of Cryptococcus neoformans in Uganda. Antimicrob. Agents Chemother. 59, 7197–7204 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Denning, D. W. & Bromley, M. J. Infectious disease. How to bolster the antifungal pipeline. Science 347, 1414–1416 (2015). This insightful discussion describes the potential needs and barriers to antifungal development.

    CAS  PubMed  Google Scholar 

  15. Ostrosky-Zeichner, L., Casadevall, A., Galgiani, J. N., Odds, F. C. & Rex, J. H. An insight into the antifungal pipeline: selected new molecules and beyond. Nat. Rev. Drug Discov. 9, 719–727 (2010). By comparing reference 15 and this Review, the progress that has been made in the antifungal pipeline in the past decade can be determined.

    CAS  PubMed  Google Scholar 

  16. Osherov, N. & Kontoyiannis, D. P. The anti-Aspergillus drug pipeline: is the glass half full or empty? Med. Mycol. 55, 118–124 (2017).

    CAS  PubMed  Google Scholar 

  17. Odds, F. C., Brown, A. J. & Gow, N. A. Antifungal agents: mechanisms of action. Trends Microbiol. 11, 272–279 (2003).

    CAS  PubMed  Google Scholar 

  18. Allen, D., Wilson, D., Drew, R. & Perfect, J. Azole antifungals: 35 years of invasive fungal infection management. Expert Rev. Anti Infect. Ther. 13, 787–798 (2015).

    CAS  PubMed  Google Scholar 

  19. Hamill, R. J. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 73, 919–934 (2013).

    CAS  PubMed  Google Scholar 

  20. Holt, S. L. & Drew, R. H. Echinocandins: addressing outstanding questions surrounding treatment of invasive fungal infections. Am. J. Health Syst. Pharm. 68, 1207–1220 (2011).

    CAS  PubMed  Google Scholar 

  21. Peyton, L. R., Gallagher, S. & Hashemzadeh, M. Triazole antifungals: a review. Drugs Today (Barc.) 51, 705–718 (2015).

    CAS  Google Scholar 

  22. Nett, J. E. & Andes, D. R. Antifungal agents: spectrum of activity, pharmacology, and clinical indications. Infect. Dis. Clin. North Am. 30, 51–83 (2016).

    PubMed  Google Scholar 

  23. Andes, D. R. et al. Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin. Infect. Dis. 54, 1110–1122 (2012).

    CAS  PubMed  Google Scholar 

  24. Bratton, E. W. et al. Comparison and temporal trends of three groups with cryptococcosis: HIV-infected, solid organ transplant, and HIV-negative/non-transplant. PLoS ONE 7, e43582 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nyazika, T. K. et al. Cryptococcus neoformans population diversity and clinical outcomes of HIV-associated cryptococcal meningitis patients in Zimbabwe. J. Med. Microbiol. 65, 1281–1288 (2016).

    PubMed  Google Scholar 

  26. Marr, K. A. et al. Combination antifungal therapy for invasive aspergillosis: a randomized trial. Ann. Intern. Med. 162, 81–89 (2015).

    PubMed  Google Scholar 

  27. Perfect, J. R. Fungal virulence genes as targets for antifungal chemotherapy. Antimicrob. Agents Chemother. 40, 1577–1583 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kitamura, A., Someya, K., Hata, M., Nakajima, R. & Takemura, M. Discovery of a small-molecule inhibitor of β-1,6-glucan synthesis. Antimicrob. Agents Chemother. 53, 670–677 (2009).

    CAS  PubMed  Google Scholar 

  29. Baxter, B. K., DiDone, L., Ogu, D., Schor, S. & Krysan, D. J. Identification, in vitro activity and mode of action of phosphoinositide-dependent-1 kinase inhibitors as antifungal molecules. ACS Chem. Biol. 6, 502–510 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Breger, J. et al. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog. 3, e18 (2007).

    PubMed  PubMed Central  Google Scholar 

  31. Spitzer, M. et al. Cross-species discovery of syncretic drug combinations that potentiate the antifungal fluconazole. Mol. Syst. Biol. 7, 499 (2011).

    PubMed  PubMed Central  Google Scholar 

  32. Roemer, T. et al. Confronting the challenges of natural product-based antifungal discovery. Chem. Biol. 18, 148–164 (2011).

    CAS  PubMed  Google Scholar 

  33. Tebbets, B. et al. Identification and characterization of antifungal compounds using a Saccharomyces cerevisiae reporter bioassay. PLoS ONE 7, e36021 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Krysan, D. J. & Didone, L. A high-throughput screening assay for small molecules that disrupt yeast cell integrity. J. Biomol. Screen. 13, 657–664 (2008).

    CAS  PubMed  Google Scholar 

  35. Lamoth, F., Juvvadi, P. R. & Steinbach, W. J. Editorial: advances in Aspergillus fumigatus pathobiology. Front. Microbiol. 7, 43 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. Juvvadi, P. R., Lee, S. C., Heitman, J. & Steinbach, W. J. Calcineurin in fungal virulence and drug resistance: prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach. Virulence 8, 186–197 (2017).

    CAS  PubMed  Google Scholar 

  37. Blankenship, J. R., Steinbach, W. J., Perfect, J. R. & Heitman, J. Teaching old drugs new tricks: reincarnation immunosuppressants as antifungal drugs. Curr. Opin. Investig. Drugs 4, 192–199 (2003).

    CAS  PubMed  Google Scholar 

  38. Cowen, L. E. et al. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc. Natl Acad. Sci. USA 106, 2818–2823 (2009).

    CAS  PubMed  Google Scholar 

  39. Pachl, J. et al. A randomized, blinded, multicenter trial of lipid-associated Amphotericin B alone versus in combination with an antibody-based inhibitor of heat shock protein 90 in patients with invasive candidiasis. Clin. Infect. Dis. 42, 1404–1413 (2006).

    CAS  PubMed  Google Scholar 

  40. Nambu, M. et al. A calcineurin antifungal strategy with analogs of FK506. Bioorg. Med. Chem. Lett. http://dx.doi.org/10.1016/j.bmcl.2017.04.004 (2011).

  41. Hast, M. A. et al. Structures of Cryptococcus neoformans protein farnesyltransferase reveal strategies for developing inhibitors that target fungal pathogens. J. Biol. Chem. 286, 35149–35162 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mor, V. et al. Identification of a new class of antifungals targeting the synthesis of fungal sphingolipids. mBio 6, e00647 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rollin-Pinheiro, R., Singh, A., Barreto-Bergter, E. & Del Poeta, M. Sphingolipids as targets for treatment of fungal infections. Future Med. Chem. 8, 1469–1484 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Perfect, J. R., Tenor, J. L., Miao, Y. & Brennan, R. G. Trehalose pathway as an antifungal target. Virulence 8, 143–149 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. Petzold, E. W. et al. Characterization and regulation of the trehalose synthesis pathway and its importance in the pathogenicity of Cryptococcus neoformans. Infect. Immun. 74, 5877–5887 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ngamskulrungroj, P. et al. The trehalose pathway: an integral part of virulence composite for Cryptococcus gattii. Infect. Immun. 77, 4584–4596 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Miao, Y. et al. Structures of trehalose-6-phosphate phosphatase from pathogenic fungi reveal the mechanisms of substrate recognition and catalysis. Proc. Natl Acad. Sci. USA 113, 7148–7153 (2016).

    CAS  PubMed  Google Scholar 

  48. Cheah, H. L., Lim, V. & Sandai, D. Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents. PLoS ONE 9, e95951 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Knauth, P. & Reichenbach, H. On the mechanism of action of the myxobacterial fungicide ambruticin. J. Antibiot. (Tokyo) 53, 1182–1190 (2000).

    CAS  Google Scholar 

  50. Levine, H. B., Ringel, S. M. & Cobb, J. M. Therapeutic properties of oral ambruticin (W7783) in experimental pulmonary coccidioidomycosis of mice. Chest 73, 202–206 (1978).

    CAS  PubMed  Google Scholar 

  51. Shubitz, L. F. et al. Efficacy of ambruticin analogs in a murine model of coccidioidomycosis. Antimicrob. Agents Chemother. 50, 3467–3469 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hagihara, K. et al. Fingolimod (FTY720) stimulates Ca2+/calcineurin signaling in fission yeast. PLoS ONE 8, e81907 (2013).

    PubMed  PubMed Central  Google Scholar 

  53. Gallo-Ebert, C. et al. Novel antifungal drug discovery based on targeting pathways regulating the fungus-conserved Upc2 transcription factor. Antimicrob. Agents Chemother. 58, 258–266 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. Hein, K. Z. et al. Disulphide-reduced psoriasin is a human apoptosis-inducing broad-spectrum fungicide. Proc. Natl Acad. Sci. USA 112, 13039–13044 (2015).

    CAS  PubMed  Google Scholar 

  55. Valiante, V. et al. Hitting the caspofungin salvage pathway of human-pathogenic fungi with the novel lasso peptide humidimycin (MDN-0010). Antimicrob. Agents Chemother. 59, 5145–5153 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu, N., Wang, C., Su, H., Zhang, W. & Sheng, C. Strategies in the discovery of novel antifungal scaffolds. Future Med. Chem. 8, 1435–1454 (2016).

    CAS  PubMed  Google Scholar 

  57. Scorzoni, L. et al. Searching new antifungals: the use of in vitro and in vivo methods for evaluation of natural compounds. J. Microbiol. Methods 123, 68–78 (2016).

    CAS  PubMed  Google Scholar 

  58. Nobrega, R. O., Teixeira, A. P., Oliveira, W. A., Lima, E. O. & Lima, I. O. Investigation of the antifungal activity of carvacrol against strains of Cryptococcus neoformans. Pharm. Biol. 54, 2591–2596 (2016).

    CAS  PubMed  Google Scholar 

  59. Zuo, R. et al. In vitro antifungal and antibiofilm activities of halogenated quinoline analogues against Candida albicans and Cryptococcus neoformans. Int. J. Antimicrob. Agents 48, 208–211 (2016).

    CAS  PubMed  Google Scholar 

  60. Ghannoum, M. A., Kim, H. G. & Long, L. Efficacy of aminocandin in the treatment of immunocompetent mice with haematogenously disseminated fluconazole-resistant candidiasis. J. Antimicrob. Chemother. 59, 556–559 (2007).

    CAS  PubMed  Google Scholar 

  61. Warn, P. A., Sharp, A., Morrissey, G. & Denning, D. W. Activity of aminocandin (IP960; HMR3270) compared with amphotericin B, itraconazole, caspofungin and micafungin in neutropenic murine models of disseminated infection caused by itraconazole-susceptible and -resistant strains of Aspergillus fumigatus. Int. J. Antimicrob. Agents 35, 146–151 (2010).

    CAS  PubMed  Google Scholar 

  62. Hanadate, T. et al. FR290581, a novel sordarin derivative: synthesis and antifungal activity. Bioorg. Med. Chem. Lett. 19, 1465–1468 (2009).

    CAS  PubMed  Google Scholar 

  63. Hasenoehrl, A. et al. In vitro activity and in vivo efficacy of icofungipen (PLD-118), a novel oral antifungal agent, against the pathogenic yeast Candida albicans. Antimicrob. Agents Chemother. 50, 3011–3018 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sigurgeirsson, B., van Rossem, K., Malahias, S. & Raterink, K. A phase II, randomized, double-blind, placebo-controlled, parallel group, dose-ranging study to investigate the efficacy and safety of 4 dose regimens of oral albaconazole in patients with distal subungual onychomycosis. J. Am. Acad. Dermatol. 69, 416–425 (2013).

    CAS  PubMed  Google Scholar 

  65. Miller, J. L. et al. In vitro and in vivo efficacies of the new triazole albaconazole against Cryptococcus neoformans. Antimicrob. Agents Chemother. 48, 384–387 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nakamura, I. et al. ASP2397: a novel antifungal agent produced by Acremonium persicinum MF-347833. J. Antibiot. (Tokyo) 70, 45–51 (2017).

    CAS  Google Scholar 

  67. Nakamura, I. et al. Discovery of a new antifungal agent ASP2397 using a silkworm model of Aspergillus fumigatus infection. J. Antibiot. (Tokyo) 70, 41–44 (2017).

    CAS  Google Scholar 

  68. Nishikawa, H. et al. T-2307, a novel arylamidine, is transported into Candida albicans by a high-affinity spermine and spermidine carrier regulated by Agp2. J. Antimicrob. Chemother. 71, 1845–1855 (2016).

    CAS  PubMed  Google Scholar 

  69. Shibata, T. et al. T-2307 causes collapse of mitochondrial membrane potential in yeast. Antimicrob. Agents Chemother. 56, 5892–5897 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mitsuyama, J. et al. In vitro and in vivo antifungal activities of T-2307, a novel arylamidine. Antimicrob. Agents Chemother. 52, 1318–1324 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Yamada, E., Nishikawa, H., Nomura, N. & Mitsuyama, J. T-2307 shows efficacy in a murine model of Candida glabrata infection despite in vitro trailing growth phenomena. Antimicrob. Agents Chemother. 54, 3630–3634 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Koselny, K. et al. The celecoxib derivative AR-12 has broad spectrum antifungal activity in vitro and improves the activity of fluconazole in a murine model of cryptococcosis. Antimicrob. Agents Chemother. 60, 7115–7127 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Koselny, K. et al. Antitumor/antifungal celecoxib derivative AR-12 is a non-nucleoside inhibitor of the ANL-family adenylating enzyme acetyl CoA synthetase. ACS Infect. Dis. 2, 268–280 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Richard, M. L. & Plaine, A. Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in Candida albicans. Eukaryot. Cell 6, 119–133 (2007).

    CAS  PubMed  Google Scholar 

  75. Watanabe, N. A. et al. E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis. Antimicrob. Agents Chemother. 56, 960–971 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. McLellan, C. A. et al. Inhibiting GPI anchor biosynthesis in fungi stresses the endoplasmic reticulum and enhances immunogenicity. ACS Chem. Biol. 7, 1520–1528 (2012).

    CAS  PubMed  Google Scholar 

  77. Hata, K. et al. Efficacy of oral E1210, a new broad-spectrum antifungal with a novel mechanism of action, in murine models of candidiasis, aspergillosis, and fusariosis. Antimicrob. Agents Chemother. 55, 4543–4551 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wiederhold, N. P. et al. The investigational agent E1210 is effective in treatment of experimental invasive candidiasis caused by resistant Candida albicans. Antimicrob. Agents Chemother. 59, 690–692 (2015).

    PubMed  Google Scholar 

  79. Miyazaki, M. et al. In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds. Antimicrob. Agents Chemother. 55, 4652–4658 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Shubitz, L. F. et al. Modeling nikkomycin Z dosing and pharmacology in murine pulmonary coccidioidomycosis preparatory to phase 2 clinical trials. J. Infect. Dis. 209, 1949–1954 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hector, R. F., Zimmer, B. L. & Pappagianis, D. Evaluation of nikkomycins X and Z in murine models of coccidioidomycosis, histoplasmosis, and blastomycosis. Antimicrob. Agents Chemother. 34, 587–593 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Fortwendel, J. R. et al. Differential effects of inhibiting chitin and 1,3-β-D-glucan synthesis in ras and calcineurin mutants of Aspergillus fumigatus. Antimicrob. Agents Chemother. 53, 476–482 (2009).

    CAS  PubMed  Google Scholar 

  83. Lilla, E. A. & Yokoyama, K. Carbon extension in peptidylnucleoside biosynthesis by radical SAM enzymes. Nat. Chem. Biol. 12, 905–907 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Pfaller, M. A. et al. Activity of MGCD290, a Hos2 histone deacetylase inhibitor, in combination with azole antifungals against opportunistic fungal pathogens. J. Clin. Microbiol. 47, 3797–3804 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Pfaller, M. A., Rhomberg, P. R., Messer, S. A. & Castanheira, M. In vitro activity of a Hos2 deacetylase inhibitor, MGCD290, in combination with echinocandins against echinocandin-resistant Candida species. Diagn. Microbiol. Infect. Dis. 81, 259–263 (2015).

    CAS  PubMed  Google Scholar 

  86. Cowen, L. E. The fungal Achilles' heel: targeting Hsp90 to cripple fungal pathogens. Curr. Opin. Microbiol. 16, 377–384 (2013).

    CAS  PubMed  Google Scholar 

  87. Lamoth, F., Alexander, B. D., Juvvadi, P. R. & Steinbach, W. J. Antifungal activity of compounds targeting the Hsp90-calcineurin pathway against various mould species. J. Antimicrob. Chemother. 70, 1408–1411 (2015).

    CAS  PubMed  Google Scholar 

  88. Bugli, F. et al. Human monoclonal antibody-based therapy in the treatment of invasive candidiasis. Clin. Dev. Immunol. 2013, 403121 (2013).

    PubMed  PubMed Central  Google Scholar 

  89. Louie, A. et al. Dose range evaluation of Mycograb C28Y variant, a human recombinant antibody fragment to heat shock protein 90, in combination with amphotericin B-desoxycholate for treatment of murine systemic candidiasis. Antimicrob. Agents Chemother. 55, 3295–3304 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Aeed, P. A. Young, C. L., Nagiec, M. M. & Elhammer, A. P. Inhibition of inositol phosphorylceramide synthase by the cyclic peptide aureobasidin A. Antimicrob. Agents Chemother. 53, 496–504 (2009).

    CAS  PubMed  Google Scholar 

  91. Kurome, T., Inoue, T., Takesako, K. & Kato, I. Syntheses of antifungal aureobasidin A analogs with alkyl chains for structure-activity relationship. J. Antibiot. 51, 359–367 (1998).

    CAS  PubMed  Google Scholar 

  92. Kumaresan, P. R. et al. Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proc. Natl Acad. Sci. USA 111, 10660–10665 (2014).

    CAS  PubMed  Google Scholar 

  93. Arikan, S. & Rex, J. H. Nystatin LF (Aronex/Abbott). Curr. Opin. Investig. Drugs 2, 488–495 (2001).

    CAS  PubMed  Google Scholar 

  94. Janout, V., Bienvenu, C., Schell, W., Perfect, J. R. & Regen, S. L. Molecular umbrella-amphotericin B conjugates. Bioconjug. Chem. 25, 1408–1411 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Yang, Z. et al. Development and characterization of amphotericin B nanosuspensions for oral administration through a simple top-down method. Curr. Pharm. Biotechnol. 15, 569–576 (2014).

    PubMed  Google Scholar 

  96. Halperin, A. et al. Novel water-soluble amphotericin B-PEG conjugates with low toxicity and potent in vivo efficacy. J. Med. Chem. 59, 1197–1206 (2016).

    CAS  PubMed  Google Scholar 

  97. Ickowicz, D. E. et al. Activity, reduced toxicity, and scale-up synthesis of amphotericin B-conjugated polysaccharide. Biomacromolecules 15, 2079–2089 (2014).

    CAS  PubMed  Google Scholar 

  98. Jung, S. H. et al. Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Eur. J. Pharm. Sci. 37, 313–320 (2009).

    CAS  PubMed  Google Scholar 

  99. Janout, V. et al. Taming amphotericin B. Bioconjug. Chem. 26, 2021–2024 (2015).

    CAS  PubMed  Google Scholar 

  100. Delmas, G. et al. Efficacy of orally delivered cochleates containing amphotericin B in a murine model of aspergillosis. Antimicrob. Agents Chemother. 46, 2704–2707 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ong, V. et al. Preclinical evaluation of the stability, safety and efficacy of CD101, a novel echinocandin. Antimicrob. Agents Chemother. 60, 6872–6879 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Pfaller, M. A., Messer, S. A., Rhomberg, P. R., Jones, R. N. & Castanheira, M. Activity of a long-acting echinocandin, CD101, determined using CLSI and EUCAST reference methods, against Candida and Aspergillus spp., including echinocandin- and azole-resistant isolates. J. Antimicrob. Chemother. 71, 2868–2873 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Walker, S. S. et al. Discovery of a novel class of orally active antifungal β-1,3-d-glucan synthase inhibitors. Antimicrob. Agents Chemother. 55, 5099–5106 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Gebremariam, T. et al. VT-1161 protects immunosuppressed mice from Rhizopus arrhizus var. arrhizus infection. Antimicrob. Agents Chemother. 59, 7815–7817 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Warrilow, A. G. et al. The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme. Antimicrob. Agents Chemother. 58, 7121–7127 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Gupta, A. K. & Studholme, C. Novel investigational therapies for onychomycosis: an update. Expert Opin. Investig. Drugs 25, 297–305 (2016).

    CAS  PubMed  Google Scholar 

  107. Lockhart, S. R. et al. The investigational fungal Cyp51 inhibitor VT-1129 demonstrates potent in vitro activity against Cryptococcus neoformans and Cryptococcus gattii. Antimicrob. Agents Chemother. 60, 2528–2531 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Butts, A. & Krysan, D. J. Antifungal drug discovery: something old and something new. PLoS Pathog. 8, e1002870 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Christenson, J. C., Shalit, I., Welch, D. F., Guruswamy, A. & Marks, M. I. Synergistic action of amphotericin B and rifampin against Rhizopus species. Antimicrob. Agents Chemother. 31, 1775–1778 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu, S. et al. Synergistic effect of fluconazole and calcium channel blockers against resistant Candida albicans. PLoS ONE 11, e0150859 (2016).

    PubMed  PubMed Central  Google Scholar 

  111. Coelho, C. & Casadevall, A. Cryptococcal therapies and drug targets: the old, the new and the promising. Cell. Microbiol. 18, 792–799 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Shirazi, F. & Kontoyiannis, D. P. The calcineurin pathway inhibitor tacrolimus enhances the in vitro activity of azoles against Mucorales via apoptosis. Eukaryot. Cell 12, 1225–1234 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Husain, S., Wagner, M. & Singh, N. Cryptococcus neoformans infection in organ transplant recipients: variables influencing clinical characteristics and outcome. Emerg. Infect. Dis. 7, 375–381 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Duke, S. S. & Fromtling, R. A. Effects of diethyl-stilbestrol and cyclophosphamide on the pathogenesis of experimental Cryptococcus neoformans infections. Sabouraudia 22, 125–135 (1984).

    CAS  PubMed  Google Scholar 

  115. Mohr, J. A., Tatem, B. A., Long, H., Muchmore, H. G. & Felton, F. G. Increased susceptibility of Cryptococcus neoformans to amphotericin B in the presence of steroids. Sabouraudia 11, 140–142 (1973).

    CAS  PubMed  Google Scholar 

  116. Butts, A. et al. Estrogen receptor antagonists are anti-cryptococcal agents that directly bind EF hand proteins and synergize with fluconazole in vivo. mBio 5, e00765-13 (2014).

    PubMed  PubMed Central  Google Scholar 

  117. Dolan, K. et al. Antifungal activity of tamoxifen: in vitro and in vivo activities and mechanistic characterization. Antimicrob. Agents Chemother. 53, 3337–3346 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhai, B., Wu, C., Wang, L., Sachs, M. S. & Lin, X. The antidepressant sertraline provides a promising therapeutic option for neurotropic cryptococcal infections. Antimicrob. Agents Chemother. 56, 3758–3766 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Rhein, J. et al. Efficacy of adjunctive sertraline for the treatment of HIV-associated cryptococcal meningitis: an open-label dose-ranging study. Lancet Infect. Dis. 16, 809–818 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Del Poeta, M. et al. Comparison of in vitro activities of camptothecin and nitidine derivatives against fungal and cancer cells. Antimicrob. Agents Chemother. 43, 2862–2868 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Cardenas, M. E. et al. Antifungal activities of antineoplastic agents: Saccharomyces cerevisiae as a model system to study drug action. Clin. Microbiol. Rev. 12, 583–611 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Widmer, F. et al. Hexadecylphosphocholine (miltefosine) has broad-spectrum fungicidal activity and is efficacious in a mouse model of cryptococcosis. Antimicrob. Agents Chemother. 50, 414–421 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Wiederhold, N. P. et al. Limited activity of miltefosine in murine models of cryptococcal meningoencephalitis and disseminated cryptococcosis. Antimicrob. Agents Chemother. 57, 745–750 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Pace, J. R. et al. Repurposing the clinically efficacious antifungal agent itraconazole as an anticancer chemotherapeutic. J. Med. Chem. 59, 3635–3649 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Abuhelwa, A. Y., Foster, D. J., Mudge, S., Hayes, D. & Upton, R. N. Population pharmacokinetic modeling of itraconazole and hydroxyitraconazole for oral SUBA-itraconazole and sporanox capsule formulations in healthy subjects in fed and fasted states. Antimicrob. Agents Chemother. 59, 5681–5696 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Le, J. & Schiller, D. S. Aerosolized delivery of antifungal agents. Curr. Fungal Infect. Rep. 4, 96–102 (2010).

    PubMed  PubMed Central  Google Scholar 

  127. Pornputtapitak, W., El-Gendy, N. & Berkland, C. NanoCluster itraconazole formulations provide a potential engineered drug particle approach to generate effective dry powder aerosols. J. Aerosol Med. Pulm. Drug Deliv. 28, 341–352 (2015).

    CAS  PubMed  Google Scholar 

  128. Walraven, C. J. & Lee, S. A. Antifungal lock therapy. Antimicrob. Agents Chemother. 57, 1–8 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Tramsen, L. et al. Clinical-scale generation of multi-specific anti-fungal T cells targeting Candida, Aspergillus and mucormycetes. Cytotherapy 15, 344–351 (2013).

    CAS  PubMed  Google Scholar 

  130. Zhao, X. et al. JNK1 negatively controls antifungal innate immunity by suppressing CD23 expression. Nat. Med. 23, 337–346 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Galgiani, J. N. Vaccines to prevent systemic mycoses: holy grails meet translational realities. J. Infect. Dis. 197, 938–940 (2008). This article discusses the potential for antifungal vaccines.

    PubMed  PubMed Central  Google Scholar 

  132. Casadevall, A. & Pirofski, L. A. Feasibility and prospects for a vaccine to prevent cryptococcosis. Med. Mycol. 43, 667–680 (2005).

    CAS  PubMed  Google Scholar 

  133. Cutler, J. E., Deepe, G. S. Jr & Klein, B. S. Advances in combating fungal diseases: vaccines on the threshold. Nat. Rev. Microbiol. 5, 13–28 (2007).

    CAS  PubMed  Google Scholar 

  134. Levitz, S. M. Aspergillus vaccines: hardly worth studying or worthy of hard study? Med. Mycol. 55, 103–108 (2017).

    CAS  PubMed  Google Scholar 

  135. Upadhya, R. et al. Induction of protective immunity to cryptococcal infection in mice by a heat-killed, chitosan-deficient strain of Cryptococcus neoformans. mBio 7, e00547-16 (2016).

    PubMed  PubMed Central  Google Scholar 

  136. Mor, V. et al. Glucosylceramide administration as a vaccination strategy in mouse models of cryptococcosis. PLoS ONE 11, e0153853 (2016).

    PubMed  PubMed Central  Google Scholar 

  137. Wormley, F. L. Jr, Perfect, J. R., Steele, C. & Cox, G. M. Protection against cryptococcosis by using a murine gamma interferon-producing Cryptococcus neoformans strain. Infect. Immun. 75, 1453–1462 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Pappagianis, D. Evaluation of the protective efficacy of the killed Coccidioides immitis spherule vaccine in humans. The Valley Fever Vaccine Study Group. Am. Rev. Respir. Dis. 148, 656–660 (1993).

    CAS  PubMed  Google Scholar 

  139. Edwards, J. E. Jr. Fungal cell wall vaccines: an update. J. Med. Microbiol. 61, 895–903 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Larsen, R. A. et al. Phase I evaluation of the safety and pharmacokinetics of murine-derived anticryptococcal antibody 18B7 in subjects with treated cryptococcal meningitis. Antimicrob. Agents Chemother. 49, 952–958 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Bryan, R. A. et al. Toward developing a universal treatment for fungal disease using radioimmunotherapy targeting common fungal antigens. Mycopathologia 173, 463–471 (2012).

    CAS  PubMed  Google Scholar 

  142. Jarvis, J. et al. Adjunctive interferon-γ immnotherapy for the treatment of HIV-associated cryptococcal meningitis: a randomized controlled trial. AIDS 26, 1105–1113 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Pappas, P. G. et al. Recombinant interferon-γ 1b as adjunctive therapy for AIDS-related acute cryptococcal meningitis. J. Infect. Dis. 189, 2185–2191 (2004).

    CAS  PubMed  Google Scholar 

  144. Rodero, L. et al. In vitro susceptibility studies of Cryptococcus neoformans isolated from patients with no clinical response to amphotericin B therapy. J. Antimicrob. Chemother. 45, 239–242 (2000).

    CAS  PubMed  Google Scholar 

  145. Sanglard, D. & Odds, F. C. Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect. Dis. 2, 73–85 (2002).

    CAS  PubMed  Google Scholar 

  146. Verweij, P. E., Chowdhary, A., Melchers, W. J. & Meis, J. F. Azole resistance in Aspergillus fumigatus: can we retain the clinical use of mold-active antifungal azoles? Clin. Infect. Dis. 62, 362–368 (2016).

    CAS  PubMed  Google Scholar 

  147. Alexander, B. D. et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin. Infect. Dis. 56, 1724–1732 (2013).

    PubMed  PubMed Central  Google Scholar 

  148. Healey, K. R. et al. Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance. Nat. Commun. 7, 11128 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Edlind, T. D. & Katiyar, S. K. Mutational analysis of flucytosine resistance in Candida glabrata. Antimicrob. Agents Chemother. 54, 4733–4738 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author has research support from Public Health Service Grants (AI73896, AI04533, AI93257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Perfect.

Ethics declarations

Competing interests

The author declares research grants, consulting arrangements, honorariums and advisory committees from the following companies: Merck & Co., Astellas, Pfizer Inc, F2G, Vical, Arno Therapeutics, Cidara, Scynexis, Viamet, Matinas BioPharma, Amplyx Pharmaceuticals and Teva Pharmaceutical Industries.

Related links

PowerPoint slides

Glossary

Mycetomas

Chronic fungal infections of skin and soft tissue.

T2 MRI

(Magnetic resonance imaging). A testing system from T2 Biosystems that uses advances in nanotechnology and molecular biology to detect microorganisms directly from body fluids.

GAIN Act

The Generating Antibiotic Incentives Now (GAIN) Act by the US Federal Government is legislation that aims to stimulate antimicrobial discovery.

Orphan Drug Act

The Orphan Drug Act enables the US Food and Drug Administration (FDA) to designate a treatment as being developed for a rare disease upon request from a sponsor.

Fast Track

Fast Track is a US Food and Drug Administration (FDA) designation for expedited review of drugs to fill unmet medical needs, as requested by a drug company.

Nosocomial

Hospital-based.

Virulence composite

The genetic and phenotypic traits that encompass pathogenicity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perfect, J. The antifungal pipeline: a reality check. Nat Rev Drug Discov 16, 603–616 (2017). https://doi.org/10.1038/nrd.2017.46

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2017.46

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research