Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in targeting cyclic nucleotide phosphodiesterases

Subjects

Key Points

  • The nucleotides cAMP and cGMP both regulate myriad effects in virtually all animal cells. These actions are coordinated through protein kinase A (PKA), PKG, exchange factor directly activated by cAMP1 (EPAC1), EPAC2 and cyclic nucleotide-gated ion channels.

  • Intracellular levels of cAMP and cGMP are controlled through their synthesis by nucleotidyl cyclases and their hydrolysis by enzymes of the cyclic nucleotide phosphodiesterase (PDE) family of enzymes. Eleven families of PDEs, containing at least 25 genes, are each defined based on differences in their sequence, substrate specificity, regulatory characteristics, inhibitor sensitivity and tissue distribution.

  • PDEs have consistently been considered to be key therapeutic targets, from both clinical and economic perspectives, and numerous PDE inhibitors have been developed for use in the treatment of many diseases and conditions.

  • The emergence of the structure-based design of novel specific inhibitors and of allosteric modulators, which take advantage of interactions between regulatory and catalytic structures in these enzymes, has further increased the ability to target individual enzymes from this large family.

  • Most recently, crucial roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways have been established by the concept that PDEs are incorporated into localized macromolecular complexes with cyclic nucleotide effectors — structures termed signalosomes. This knowledge has spurred the development of more sophisticated strategies to target individual PDE variants.

  • The incorporation of individual PDEs from distinct families, with their distinct intrinsic characteristics and regulatory properties, into signalosomes allows crosstalk between cyclic nucleotides and other signalling networks and systems.

  • Advances in identifying protein components of individual signalosomes and in establishing how these interact are beginning to permit the targeting of intermolecular protein–protein interactions between PDEs and their regulatory partners. There is enormous hope and confidence that this will hasten the development of signalosome disruptors that target individual PDEs and provide treatment for a broad range of clinical indications.

Abstract

Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and domain organization of 11 mammalian PDE families.
Figure 2: Binding of substrates and inhibitors to the active site of PDEs.
Figure 3: PDE-containing signalosomes couple cAMP–PKA signalling to myocardial contractility.
Figure 4: Human arterial endothelial cells construct two distinct PDE- and EPAC-based signalosomes to regulate, spatially and functionally, integrin- and vascular endothelial cadherin-based adhesions, respectively.
Figure 5: Allosteric modulation of PDE2 and PDE4.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Conti, M. & Beavo, J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu. Rev. Biochem. 76, 481–511 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Francis, S., Blount, M. & Corbin, J. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol. Rev. 91, 651–690 (2011). This is an excellent, comprehensive and very timely review of PDEs.

    Article  CAS  PubMed  Google Scholar 

  3. Keravis, T. & Lugnier, C. Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br. J. Pharmacol. 165, 1288–1305 (2012). This is an excellent and concise review of PDEs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Derbyshire, E. & Marletta, M. Structure and regulation of soluble guanylate cyclase. Annu. Rev. Biochem. 81, 533–559 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Potter, L. R. Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases. Pharmacol. Ther. 130, 71–82 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Pierre, S., Eschenhagen, T., Geisslinger, G. & Scholich, K. Capturing adenylyl cyclases as potential drug targets. Nature Rev. Drug Disc. 8, 321–335 (2009).

    Article  CAS  Google Scholar 

  7. Tamm, M., Richards, D. H., Beghé, B. & Fabbri, L. Inhaled corticosteroid and long-acting β2-agonist pharmacological profiles: effective asthma therapy in practice. Respir. Med. 106, S9–S19 (2012).

    Article  PubMed  Google Scholar 

  8. Parkes, D. G., Mace, K. F. & Trautmann, M. E. Discovery and development of exenatide: the first antidiabetic agent to leverage the multiple benefits of the incretin hormone, GLP-1. Expert Opin. Drug Discov. 8, 219–244 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Boden, W. E. et al. Nitrates as an integral part of optimal medical therapy and cardiac rehabilitation for stable angina: review of current concepts and therapeutics. Clin. Cardiol. 35, 263–271 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Eindhoven, J. A., van den Bosch, A. E., Jansen, P. R., Boersma, E. & Roos-Hesselink, J. W. The usefulness of brain natriuretic peptide in complex congenital heart disease: a systematic review. J. Am. Coll. Cardiol. 60, 2140–2149 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Rall, T. & Sutherland, E. Formation of a cyclic adenine ribonucleotide by tissue particles. J. Biol. Chem. 232, 1065–1076 (1958).

    CAS  PubMed  Google Scholar 

  12. Rall, T. & West, T. The potentiation of cardiac inotropic responses to norepinephrine by theophylline. J. Pharmacol. Exp. Ther. 139, 269–274 (1963).

    CAS  PubMed  Google Scholar 

  13. Houslay, M. D., Baillie, G. S. & Maurice, D. H. cAMP-Specific phosphodiesterase-4 enzymes in the cardiovascular system: a molecular toolbox for generating compartmentalized cAMP signaling. Circ. Res. 100, 950–966 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Kritzer, M. D., Li, J., Dodge-Kafka, K. & Kapiloff, M. S. AKAPs: the architectural underpinnings of local cAMP signaling. J. Mol. Cell. Cardiol. 52, 351–358 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Ke, H. & Wang, H. Crystal structures of phosphodiesterases and implications on substrate specificity and inhibitor selectivity. Curr. Top. Med. Chem. 7, 391–403 (2007). This report is an extensive summary of the three-dimensional structures of PDE families.

    Article  CAS  PubMed  Google Scholar 

  16. Card, G. G. L. et al. Structural basis for the activity of drugs that inhibit phosphodiesterases. Structure 12, 2233–2247 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Manallack, D. T., Hughes, R. A. & Thompson, P. E. The next generation of phosphodiesterase inhibitors: structural clues to ligand and substrate selectivity of phosphodiesterases. J. Med. Chem. 48, 3449–3462 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Pandit, J., Forman, M. D., Fennell, K. F., Dillman, K. S. & Menniti, F. S. Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct. Proc. Natl Acad. Sci. USA 106, 18225–18230 (2009). This article reports the first structure, of near-full-length PDE2A, among the PDE families.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee, L. C. Y., Maurice, D. H. & Baillie, G. S. Targeting protein-protein interactions within the cyclic AMP signaling system as a therapeutic strategy for cardiovascular disease. Future Med. Chem. 5, 451–464 (2013). This report describes novel concepts and approaches regarding the use of signalosome disruptors to therapeutically target cardiovascular disease.

    Article  CAS  PubMed  Google Scholar 

  20. Schudt, C., Hatzelmann, A., Beume, R. & Tenor, H. Phosphodiesterase inhibitors: history of pharmacology. Handb. Exp. Pharmacol. 204, 1–46 (2011).

    Article  CAS  Google Scholar 

  21. Barnes, P. J. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 131, 636–645 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Thompson, W. & Appleman, M. Cyclic nucleotide phosphodiesterase & cyclic AMP. Ann. NY Acad. Sci. 185, 36–41 (1971).

    Article  CAS  PubMed  Google Scholar 

  23. Thompson, W., Terasaki, W., Epstein, P. & Strada, S. Assay of cyclic nucleotide phosphodiesterase and resolution of multiple molecular forms of the enzyme. Adv. Cycl. Nucleotide Res. 10, 69–92 (1979).

    CAS  Google Scholar 

  24. Keravis, T., Wells, J. & Hardman, J. Cyclic nucleotide phosphodiesterase activities from pig coronary arteries. Lack of interconvertibility of major forms. Biochim. Biophys. Acta 613, 116–129 (1980).

    Article  CAS  PubMed  Google Scholar 

  25. Weishaar, R., Cain, M. & Bristol, J. A new generation of phosphodiesterase inhibitors: multiple molecular forms of phosphodiesterase and the potential for drug selectivity. J. Med. Chem. 28, 537–545 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Lugnier, C., Schoeffter, P., Le Bec, A., Strouthou, E. & Stoclet, J. Selective inhibition of cyclic nucleotide phosphodiesterases of human, bovine and rat aorta. Biochem. Pharmacol. 35, 1743–1751 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. Yamamoto, T. et al. Selective inhibition of two cAMP PDEs partially purified from calf liver. Biochem. 258, 14173–14177 (1983).

    CAS  Google Scholar 

  28. Movsesian, M., Wever-Pinzon, O. & Vandeput, F. PDE3 inhibition in dilated cardiomyopathy. Curr. Opin. Pharmacol. 11, 707–713 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Torphy, T. Phosphodiesterase isozymes: molecular targets for novel antiasthma agents. Am. J. Resp. Crit. Care Med. 157, 351–370 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Rabe, K. F. Update on roflumilast, a phosphodiesterase 4 inhibitor for the treatment of chronic obstructive pulmonary disease. Br. J. Pharmacol. 163, 53–67 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tenor, H. et al. Pharmacology, clinical efficacy, and tolerability of PDE4 inhibitors: impact of human pharmacokinetics. Handb. Exp. Pharmacol. 204, 86–119 (2011).

    Google Scholar 

  32. Fabbri, L. M. et al. Roflumilast in moderate-to-severe chronic obstructive pulmonary disease treated with longacting bronchodilators: two randomised clinical trials. Lancet 374, 695–703 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Francis, S. H. & Corbin, J. D. PDE5 inhibitors: targeting erectile dysfunction in diabetics. Curr. Opin. Pharmacol. 11, 683–688 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Ghofrani, H. A., Osterloh, I. H. & Grimminger, F. Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nature Rev. Drug Disc. 5, 689–702 (2006).

    Article  CAS  Google Scholar 

  35. Burgin, A. B. et al. Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nature Biotech. 28, 63–70 (2010). This paper provides evidence that novel allosteric PDE4 inhibitors — that is, inhibitors whose affinity for the active site is regulated by their interaction with a helical peptide from the UCR2 of PDE4 — may decrease the toxicity of PDE4 inhibition without affecting efficacy.

    Article  CAS  Google Scholar 

  36. Ke, H., Wang, H. & Ye, M. Structural insight into the substrate specificity of phosphodiesterases. Handb. Exp. Pharmacol. 204, 121–132 (2011).

    Article  CAS  Google Scholar 

  37. Huai, Q., Colicelli, J. & Ke, H. The crystal structure of AMP-bound PDE4 suggests a mechanism for phosphodiesterase hydrolysis. Biochem. 42, 15559–15564 (2003).

    Article  CAS  Google Scholar 

  38. Wang, H. et al. Structures of the four subfamilies of phosphodiesterase-4 provide insight into the selectivity of their inhibitors. Biochem. J. 408, 193–201 (2007). This paper reveals conformational differences among four PDE4 subfamilies, and this information has been especially useful for the design of PDE4-subfamily-selective inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, K., Card, G., Suzuki, Y. & Artis, D. A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases. Mol. Cell 15, 279–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Card, G. L. et al. A family of phosphodiesterase inhibitors discovered by cocrystallography and scaffold-based drug design. Nature Biotech. 28, 38–41 (2010).

    Article  CAS  Google Scholar 

  41. Ho, G. D. et al. The SAR development of dihydroimidazoisoquinoline derivatives as phosphodiesterase 10A inhibitors for the treatment of schizophrenia. Bioorg. Med. Chem. Lett. 22, 2585–2589 (2012). This paper discusses the development of PDE4 inhibitors using co-crystallography and scaffold-based drug design through the synthesis and screening of a relatively small number of compounds.

    Article  CAS  PubMed  Google Scholar 

  42. Malamas, M., Ni, Y. & Erdei, J. Highly potent, selective, and orally active phosphodiesterase 10A inhibitors. J. Med. Chem. 54, 7621–7638 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Meng, F. et al. Structure-based discovery of highly selective phosphodiesterase-9A inhibitors and implications for inhibitor design. J. Med. Chem. 55, 8549–8558 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Claffey, M. M. et al. Application of structure-based drug design and parallel chemistry to identify selective, brain-penetrant, in vivo active PDE 9A inhibitors. J. Med. Chem. 55, 9055–9068 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Verhoest, P. R. et al. Discovery of a novel class of phosphodiesterase 10A inhibitors and identification of clinical candidate 2-[4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl)-phenoxymethyl]-quinoline (PF-2545920) for the treatment of schizophrenia. J. Med. Chem. 52, 5188–5196 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Bender, A. & Beavo, J. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol. Rev. 58, 488–520 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Kranz, M. et al. Identification of PDE4B over 4D subtype-selective inhibitors revealing an unprecedented binding mode. Bioorg. Med. Chem. 17, 5336–5341 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Huai, Q. et al. Enantiomer discrimination illustrated by high resolution crystal structures of type 4 phosphodiesterase. J. Med. Chem. 49, 1867–1873 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, H. et al. Multiple conformations of phosphodiesterase-5: implications for enzyme function and drug development. J. Biol. Chem. 281, 21469–21479 (2006). This paper reports multiple conformations of the H-loop in the PDE5 catalytic domain, which were induced by the binding of various PDE5 inhibitors.

    Article  CAS  PubMed  Google Scholar 

  50. Wang, H., Ye, M., Robinson, H., Francis, S. & Ke, H. Conformational variations of both PDE5 and inhibitors provide the structural basis for the physiological effects of vardenafil and sildenafil. Mol. Pharmacol. 73, 104–110 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Brunton, L., Hayes, J. & Mayer, S. Functional compartmentation of cyclic AMP and protein kinase in heart. Adv. Cycl. Nucleotide Res. 14, 391–397 (1981).

    CAS  Google Scholar 

  52. Buxton, I. & Brunton, L. Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J. Biol. Chem. 258, 10233–10239 (1983). This paper shows, for the first time, how cAMP-mediated activation of PKA is compartmentalized and describes an important physiological response associated with this compartmentalization.

    CAS  PubMed  Google Scholar 

  53. Bregman, D., Bhattacharyya, N. & Rubin, C. High affinity binding protein for the regulatory subunit of cAMP-dependent protein kinase II-B. Cloning, characterization, and expression of cDNAs for rat brain P150. J. Biol. Chem. 264, 4648–4656 (1989). This is the first report regarding the isolation and characterization of an AKAP.

    CAS  PubMed  Google Scholar 

  54. Bregman, D., Hirsch, A. & Rubin, C. Molecular characterization of bovine brain P75, a high affinity binding protein for the regulatory subunit of cAMP-dependent protein kinase II beta. J. Biol. Chem. 266, 7207–7213 (1991).

    CAS  PubMed  Google Scholar 

  55. Jurevicius, J. & Fischmeister, R. cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by β-adrenergic agonists. Proc. Natl Acad. Sci. USA 93, 295–299 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zaccolo, M. et al. A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nature Cell Biol. 2, 25–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Maurice, D. H. Subcellular signaling in the endothelium: cyclic nucleotides take their place. Curr. Opin. Pharmacol. 11, 656–664 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Stangherlin, A. et al. cGMP signals modulate cAMP levels in a compartment-specific manner to regulate catecholamine-dependent signaling in cardiac myocytes. Circ. Res. 108, 929–939 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mongillo, M. et al. Compartmentalized phosphodiesterase-2 activity blunts β-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ. Res. 98, 226–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Stangherlin, A. & Zaccolo, M. cGMP-cAMP interplay in cardiac myocytes: a local affair with far-reaching consequences for heart function. Biochem. Soc. Trans. 40, 11–14 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Dodge-Kafka, K. L. et al. The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 437, 574–578 (2005). This paper effectively brings together the importance of AKAPs in coordinating specific subcellular signalling pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wilson, L. S. et al. A phosphodiesterase 3B-based signaling complex integrates exchange protein activated by cAMP 1 (EPAC1) and phosphatidylinositol 3-kinase signals in human arterial endothelial cells. J. Biol. Chem. 286, 16285–16296 (2011). This is the first report of a PDE3B-based, EPAC1-containing signalosome and the demonstration that a peptide disruptor leads to constitutive activation of EPAC1 in human cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rampersad, S. N. et al. Cyclic AMP phosphodiesterase 4D (PDE4D) Tethers EPAC1 in a vascular endothelial cadherin (VE-Cad)-based signaling complex and controls cAMP-mediated vascular permeability. J. Biol. Chem. 285, 33614–33622 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Terrin, A. et al. PKA and PDE4D3 anchoring to AKAP9 provides distinct regulation of cAMP signals at the centrosome. J. Cell Biol. 198, 607–621 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brown, K. M. et al. Phosphodiesterase-8A binds to and regulates Raf-1 kinase. Proc. Natl Acad. Sci. USA 110, E1533–E1542 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Conti, M. Phosphodiesterases and regulation of female reproductive function. Curr. Opin. Pharmacol. 11, 665–669 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Masciarelli, S. et al. Cyclic nucleotide phosphodiesterase 3A-deficient mice as a model of female infertility. J. Clin. Invest. 114, 196–205 (2004). This study shows that Pde3a−/− mice are infertile because increased cAMP–PKA signalling inhibits oocyte maturation in these mice, as well as their capacity for fertilization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cote, R. H. In Cyclic Nucleotide Phosphodiesterases in Health and Disease (eds Beavo, J., Francis, S. & Houslay, M.) 165–194 (CRC Press, 2007).

    Google Scholar 

  69. Hartong, D. T., Berson, E. L. & Dryja, T. P. Retinitis pigmentosa. Lancet 368, 1795–1809 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Ramamurthy, V., Niemi, G. A., Reh, T. A. & Hurley, J. B. Leber congenital amaurosis linked to AIPL1: a mouse model reveals destabilization of cGMP phosphodiesterase. Proc. Natl Acad. Sci. USA 101, 13897–13902 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Davis, R. J. et al. Functional rescue of degenerating photoreceptors in mice homozygous for a hypomorphic cGMP phosphodiesterase6 b allele (Pde6bH620Q). Investig. Ophthalmol. Vis. Sci. 49, 5067–5076 (2008).

    Article  Google Scholar 

  72. Azzouni, F. & Abu samra, K. Are phosphodiesterase type 5 inhibitors associated with vision-threatening adverse events? A critical analysis and review of the literature. J. Sex. Med. 8, 2894–2903 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Gretarsdottir, S. et al. The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nature Genet. 35, 131–138 (2003).

    Article  PubMed  Google Scholar 

  74. Labuda, M. et al. Phosphodiesterase type 4D gene polymorphism: association with the response to short-acting bronchodilators in paediatric asthma patients. Mediators Inflamm. 2011, 301695 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fatemi, S. H. et al. PDE4B polymorphisms and decreased PDE4B expression are associated with schizophrenia. Schizophr. Res. 101, 36–49 (2008).

    Article  PubMed  Google Scholar 

  76. Tsai, L. L. & Beavo, J. A. The roles of cyclic nucleotide phosphodiesterases (PDEs) in steroidogenesis. Curr. Opin. Pharmacol. 11, 670–675 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shimizu-albergine, M., Tsai, L. L., Patrucco, E. & Beavo, J. A. cAMP-specific phosphodieterases 8A and 8B, essential regulators of Leydig cell steroidogenesis. Mol. Pharmacol. 81, 556–566 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Horvath, A., Mericq, V. & Stratakis, C. A. Mutation in PDE8B, a cyclic AMP-specific phosphodiesterase, in adrenal hyperplasia. N. Engl. J. Med. 358, 750–752 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Rothenbuhler, A. et al. Identification of novel genetic variants in phosphodiesterase 8B (PDE8B), a cAMP-specific phosphodiesterase highly expressed in the adrenal cortex, in a cohort of patients with adrenal tumours. Clin. Endocrinol. 77, 195–199 (2012).

    Article  CAS  Google Scholar 

  80. Horvath, A. et al. A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nature Genet. 38, 794–800 (2006). This paper reports that inactivating mutations in PDE11A increase cAMP levels of affected individuals, leading to aberrant cAMP signalling, which can be associated with the development of adrenocortical hyperplasia.

    Article  CAS  PubMed  Google Scholar 

  81. Levy, I., Horvath, A., Azevedo, M., de Alexandre, R. B. & Stratakis, C. A. Phosphodiesterase function and endocrine cells: links to human disease and roles in tumor development and treatment. Curr. Opin. Pharmacol. 11, 689–697 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Libé, R. et al. Frequent phosphodiesterase 11A gene (PDE11A) defects in patients with Carney complex (CNC) caused by PRKAR1A mutations: PDE11A may contribute to adrenal and testicular tumors in CNC as a modifier of the phenotype. J. Clin. Endocrinol. Metab. 96, E208–E214 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Savai, R. et al. Targeting cancer with phosphodiesterase inhibitors. Expert Opin. Investig. Drugs 19, 117–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, L. et al. Cyclic nucleotide phosphodiesterase 7B mRNA: an unfavorable characteristic in chronic lymphocytic leukemia. Int. J. Cancer 129, 1162–1169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, L. et al. Cyclic nucleotide phosphodiesterase profiling reveals increased expression of phosphodiesterase 7B in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 105, 19532–19537 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lin, D. et al. Genomic and functional characterizations of phosphodiesterase subtype 4D in human cancers. Proc. Natl Acad. Sci. USA 110, 6109–6114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pullamsetti, S. S. et al. Phosphodiesterase-4 promotes proliferation and angiogenesis of lung cancer by crosstalk with HIF. Oncogene 32, 1121–1134 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Almeida, M. Q. & Stratakis, C. A. How does cAMP/protein kinase A signaling lead to tumors in the adrenal cortex and other tissues? Mol. Cell. Endocrinol. 336, 162–168 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Yamanaka, D. et al. Phosphatidylinositol 3-kinase-binding protein, PI3KAP/XB130, is required for cAMP-induced amplification of IGF mitogenic activity in FRTL-5 thyroid cells. Mol. Endocrinol. 26, 1043–1055 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Black, K. L. et al. PDE5 inhibitors enhance tumor permeability and efficacy of chemotherapy in a rat brain tumor model. Brain Res. 1230, 290–302 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wachtel, H. Potential antidepressant effects of rolipram and other selective PDE inhibitors. Neuropharmacol. 22, 267–272 (1983).

    Article  CAS  Google Scholar 

  92. Houslay, M. D., Schafer, P. & Zhang, K. Y. J. Phosphodiesterase-4 as a therapeutic target: preclinical and clinical pharmacology. Drug Discov. Today 10, 1503–1519 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Kelly, M. & Brandon, N. Differential function of phosphodiesterase families in the brain: gaining insights through the use of genetically modified animals. Prog. Brain Res. 179, 67–73 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Clapcote, S. J. et al. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54, 387–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Millar, J. K. et al. Disrupted in schizophrenia 1 and phosphodiesterase 4B: towards an understanding of psychiatric illness. J. Physiol. 584, 401–405 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. DeMarch, Z. et al. Beneficial effects of rolipram in the R6/2 mouse model of Huntington's disease. Neurobiol. Dis. 30, 375–387 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Giampà, C. et al. Inhibition of the striatal specific phosphodiesterase PDE10A ameliorates striatal and cortical pathology in R6/2 mouse model of Huntington's disease. PloS ONE 5, e13417 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Movsesian, M. A. & Kukreja, R. C. PDE inhibition in heart failure. Handb. Exp. Pharmacol. 204, 237–250 (2011).

    Article  CAS  Google Scholar 

  99. Packer, M. et al. Effects of oral milrinone on mortality in severe chronic heart failure. N. Engl. J. Med. 325, 1468–1475 (1991).

    Article  CAS  PubMed  Google Scholar 

  100. Kambayashi, J., Shakur, Y. & Liu, Y. In Cyclic Nucleotide Phosphodiesterases in Health and Disease (eds Beavo, J., Francis, S. & Houslay, M.) 627–648 (CRC Press, 2007).

    Google Scholar 

  101. Kanlop, N., Chattipakorn, S. & Chattipakorn, N. Effects of cilostazol in the heart. J. Cardiovasc. Med. 12, 88–95 (2011).

    Article  Google Scholar 

  102. Kukreja, R. C. et al. Emerging new uses of phosphodiesterase-5 inhibitors in cardiovascular diseases. Exp. Clin. Cardiol. 16, e30–e35 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Archer, S. L. & Michelakis, E. D. Phosphodiesterase type 5 inhibitors for pulmonary arterial hypertension. N. Engl. J. Med. 361, 1864–1871 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Schaper, W. Dipyridamole, an underestimated vascular protective drug. Cardiovasc. Drugs Ther. 19, 357–363 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Chan, S. & Yan, C. PDE1 isozymes, key regulators of pathological vascular remodeling. Curr. Opin. Pharmaco. 11, 720–724 (2011).

    Article  CAS  Google Scholar 

  106. Miller, C. L. et al. Role of Ca2+/calmodulin-stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy. Circ. Res. 105, 956–964 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shakur, Y. et al. Comparison of the effects of cilostazol and milrinone on cAMP-PDE activity, intracellular cAMP and calcium in the heart. Cardiovasc. Drugs Ther. 16, 417–427 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Toque, H. A. et al. Vardenafil, but not sildenafil or tadalafil, has calcium-channel blocking activity in rabbit isolated pulmonary artery and human washed platelets. Br. J. Pharmacol. 154, 787–796 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shi, Z. et al. Sildenafil reverses ABCB1- and ABCG2-mediated chemotherapeutic drug resistance. Cancer Res. 71, 3029–3041 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shi, Z., Tiwari, A. K., Patel, A. S., Fu, L. & Chen, Z. Roles of sildenafil in enhancing drug sensitivity in cancer. Cancer Res. 71, 3735–3738 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Barnes, P. J. Biochemical basis of asthma therapy. J. Biol. Chem. 286, 32899–32905 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yougbaré, I. et al. NCS 613 exhibits anti-inflammatory effects on PBMCs from lupus patients by inhibiting p38 MAPK and NFκ-B signalling pathways while reducing proinflammatory cytokine production. Can. J. Physiol. Pharmacol. 91, 353–361 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Minguet, S. et al. Adenosine and cAMP are potent inhibitors of the NF-κB pathway downstream of immunoreceptors. Eur. J. Immunol. 35, 31–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Saito, T. et al. Phosphodiesterase inhibitors suppress Lactobacillus casei cell-wall-induced NF-κB and MAPK activations and cell proliferation through protein kinase A-or exchange protein activated by cAMP-dependent signal pathways. Scientific World Journal 2012, 748572 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. To, Y. et al. Targeting phosphoinositide-3-kinase-δ with theophylline reverses corticosteroid insensitivity in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 182, 897–904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Douglas, J. J. et al. Coronary stent restenosis in patients treated with cilostazol. Circulation 112, 2826–2832 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Tamhane, U. et al. Efficacy of cilostazol in reducing restenosis in patients undergoing contemporary stent based PCI: a meta-analysis of randomised controlled trials. EuroIntervention 5, 384–393 (2009).

    Article  PubMed  Google Scholar 

  118. Geng, D. et al. Cilostazol-based triple antiplatelet therapy compared to dual antiplatelet therapy in patients with coronary stent implantation: a meta-analysis of 5,821 patients. Cardiology 122, 148–157 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Geng, D., Deng, J., Jin, D., Wu, W. & Wang, J. Effect of cilostazol on the progression of carotid intima-media thickness: a meta-analysis of randomized controlled trials. Atherosclerosis 220, 177–183 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Katakami, N., Kim, Y., Kawamori, R. & Yamasaki, Y. The phosphodiesterase inhibitor cilostazol induces regression of carotid atherosclerosis in subjects with type 2 diabetes mellitus: principal results of the Diabetic Atherosclerosis Prevention by Cilostazol (DAPC) study: a randomized trial. Circulation 121, 2584–2591 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Begum, N., Hockman, S. & Manganiello, V. C. Phosphodiesterase 3A (PDE3A) deletion suppresses proliferation of cultured murine vascular smooth muscle cells (VSMCs) via inhibition of mitogen-activated protein kinase (MAPK) signaling and alterations in critical cell cycle regulatory proteins. J. Biol. Chem. 286, 26238–26249 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Keravis, T. et al. Disease progression in MRL/lpr lupus-prone mice is reduced by NCS 613, a specific cyclic nucleotide phosphodiesterase type 4 (PDE4) inhibitor. PLoS ONE 7, e28899 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wittmann, M. & Helliwell, P. S. Phosphodiesterase 4 inhibition in the treatment of psoriasis, psoriatic arthritis and other chronic inflammatory diseases. Dermatol. Ther. 3, 1–15 (2013).

    Article  Google Scholar 

  124. Jin, S. & Conti, M. Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-α responses. Proc. Natl Acad. Sci. USA 99, 7628–7633 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ariga, M. et al. Nonredundant function of Phosphodiesterases 4D and 4B in neutrophil recruitment to the site of inflammation. J. Immunol. 173, 7531–7538 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Hansen, G., Jin, S., Umetsu, D. T. & Conti, M. Absence of muscarinic cholinergic airway responses in mice deficient in the cyclic nucleotide phosphodiesterase PDE4D. Proc. Natl Acad. Sci. USA 97, 6751–6756 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Robichaud, A. et al. Deletion of phosphodiesterase 4D in mice shortens α2-adrenoceptor-mediated anesthesia, a behavioral correlate of emesis. J. Clin. Invest. 110, 1045–1052 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chung, J. H., Manganiello, V. & Dyck, J. R. B. Resveratrol as a calorie restriction mimetic: therapeutic implications. Trends Cell Biol. 22, 546–554 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Park, S. et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148, 421–433 (2012). This paper demonstrates that the metabolic effects of resveratrol may be mediated by PDE4 inhibition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang, R., Maratos-Flier, E. & Flier, J. S. Reduced adiposity and high-fat diet-induced adipose inflammation in mice deficient for phosphodiesterase 4B. Endocrinology. 150, 3076–3082 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wouters, E. et al. Effect of the phosphodiesterase 4 inhibitor roflumilast on glucose metabolism in patients with treatment-naive, newly diagnosed type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 97, E1720–E1725 (2012). This paper demonstrates that the PDE4 inhibitor roflumilast has an antidiabetic effect.

    Article  CAS  PubMed  Google Scholar 

  132. Lugnier, C. PDE inhibitors: a new approach to treat metabolic syndrome? Curr. Opin. Pharmacol. 11, 698–706 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Adamo, C. M. et al. Sildenafil reverses cardiac dysfunction in the mdx mouse model of Duchenne muscular dystrophy. Proc. Natl Acad. Sci. USA 107, 19079–19083 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Kass, D. A. Cardiac role of cyclic-GMP hydrolyzing phosphodiesterase type 5: from experimental models to clinical trials. Curr. Heart Fail. Rep. 9, 192–199 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Blanton, R. et al. Protein kinase 1Gα inhibits pressure overload-induced cardiac remodeling and is required for the cardioprotective effect of sildenafil in vivo. J. Am. Heart Assoc. 1, e003731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Blokland, A., Menniti, F. & Prikaerts, J. PDE inhibition and cognition enhancement. Exp. Opin. Ther. Pat. 22, 349–354 (2012).

    Article  CAS  Google Scholar 

  138. Kehler, J. & Nielsen, J. PDE10A Inhibitors: novel therapeutic drugs for schizophrenia. Curr. Pharm. Des. 17, 137–150 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Grauer, S. et al. Phosphodiesterase 10A inhibitor activity in preclinical models of the positive, cognitive, and negative symptoms of schizophrenia. J. Pharmacol. Exp. Ther. 331, 574–590 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. [No authors listed.] IntraCellular Therapies and Takeda to develop PDE1 inhibitors for schizophrenia. Nature Rev. Drug Discov. 10, 329 (2011).

  141. Kleiman, R. et al. Chronic suppression of phosphodiesterase 10A alters striatal expression of genes responsible for neurotransmitter synthesis, neurotransmission, and signaling pathways implicated in Huntington's disease. J. Pharmacol. Exp. Ther. 336, 64–76 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Loukides, S., Bartziokas, K., Vestbo, J. R. & Singh, D. Novel anti-inflammatory agents in COPD: targeting lung and systemic inflammation. Curr. Drug Targets 14, 235–245 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Giembycz, M. A. & Newton, R. Harnessing the clinical efficacy of phosphodiesterase 4 inhibitors in inflammatory lung diseases: dual-selective PDE inhibitors and novel combination therapies. Handb. Exp. Pharmacol. 204, 415–446 (2011).

    Article  CAS  Google Scholar 

  144. Smith, S. J. et al. Discovery of BRL 50481 [3-(N,N-dimethylsulfonamido)-4-methyl-nitrobenzene], a selective inhibitor of phosphodiesterase 7: in vitro studies in human monocytes, lung macrophages, and CD8+ T-lymphocytes. Mol. Pharmacol. 66, 1679–1689 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Page, C. P. & Spina, D. Selective PDE inhibitors as novel treatments for respiratory diseases. Curr. Opin. Pharmacol. 12, 275–286 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Fan, C. Phosphodiesterase inhibitors in airway disease. Eur. J. Pharmacol. 533, 110–117 (2006).

    Article  CAS  Google Scholar 

  147. Thompson, P., Manganiello, V. & Degerman, E. Re-discovering PDE3 Inhibitors: new opportunities for a long neglected target. Curr. Top. Med. Chem. 7, 421–436 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Mak, G. & Hanania, N. A. New bronchodilators. Curr. Opin. Pharmacol. 12, 238–245 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Banner, K. & Press, N. Dual PDE3/PDE4 inhibitors as therapeutic agents for chronic obstructive pulmonary disease. Br. J. Pharmacol. 157, 892–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Foster, R. W., Rakshi, K., Carpenter, J. R. & Small, R. C. Trials of the bronchodilator activity of the isoenzyme-selective phosphodiesterase inhibitor AH 21-132 in healthy volunteers during a methacholine challenge test. Br. J. Clin. Pharmacol. 34, 527–534 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Calzetta, L. et al. The effect of the mixed Phosphodiesterase 3/4 inhibitor RPL554 on human isolated bronchial smooth muscle tone. J. Pharmacol. Exp. Ther. 346, 414–423 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Singh, D., Petavy, F., Macdonald, A. J., Lazaar, A. L. & O'Connor, B. J. The inhaled phosphodiesterase 4 inhibitor GSK256066 reduces allergen challenge responses in asthma. Resp. Res. 11, 26 (2010).

    Article  CAS  Google Scholar 

  153. Pawson, C. T. & Scott, J. D. Signal integration through blending, bolstering, and bifurcating of intracellular information. Nature Struct. Mol. Biol. 17, 653–658 (2010).

    Article  CAS  Google Scholar 

  154. Wells, J. & McClendon, C. Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 450, 1001–1009 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Christian, F. et al. Small molecule AKAP-protein kinase A (PKA) interaction disruptors that activate PKA interfere with compartmentalized cAMP signaling in cardiac myocytes. J. Biol. Chem. 286, 9079–9096 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Keravis, T. & Lugnier, C. Cyclic nucleotide phosphodiesterases (PDEs) and peptide motifs. Curr. Pharm. Des. 16, 1114–1125 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Serrels, B. et al. A complex between FAK, RACK1, and PDE4D5 controls spreading initiation and cancer cell polarity. Curr. Biol. 20, 1086–1092 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Perry, S. et al. Targeting of cyclic AMP degradation to β2-adrenergic receptors by β-arrestins. Science 298, 834–836 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Yarwood, S. J., Steele, M. R., Scotland, G., Houslay, M. D. & Bolger, G. B. The RACK1 signaling scaffold protein selectively interacts with the cAMP-specific phosphodiesterase PDE4D5 isoform. J. Biol. Chem. 274, 14909–14917 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. Craik, D., Fairlie, D., Liras, S. & Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des. 81, 136–147 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Sin, Y. Y. et al. Disruption of the cyclic AMP phosphodiesterase-4 (PDE4)-HSP20 complex attenuates the β-agonist induced hypertrophic response in cardiac myocytes. J. Mol. Cell. Cardiol. 50, 872–883 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Jin, S. C. et al. Phosphodiesterase 4B is essential for TH2-cell function and development of airway hyperresponsiveness in allergic asthma. J. Allergy Clin. Immunol. 126, 1252–1259 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Houslay, M. D. & Adams, D. R. Putting the lid on phosphodiesterase 4. Nature Biotech. 28, 38–40 (2010).

    Article  CAS  Google Scholar 

  164. Wang, H., Robinson, H. & Ke, H. Conformation changes, N-terminal involvement, and cGMP signal relay in the phosphodiesterase-5 GAF domain. J. Biol. Chem. 285, 38149–38156 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Schultz, J. E. et al. The GAF-tandem domain of PDE5 as a potential drug target. Handb. Exp. Pharmacol. 204, 151–167 (2011).

    Article  CAS  Google Scholar 

  166. Bers, D. Cardiac excitation–contraction coupling. Nature 415, 195–205 (2002).

    Article  Google Scholar 

  167. Leroy, J., Richter, W. & Mika, D. Phosphodiesterase 4B in the cardiac L-type Ca2+ channel complex regulates Ca2+ current and protects against ventricular arrhythmias in mice. J. Clin. Investig. 121, 2651–2661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lehnart, S. E. et al. Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 123, 25–35 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Beca, S. et al. Phosphodiesterase type 3A regulates basal myocardial contractility through interacting with sarcoplasmic reticulum calcium ATPase type 2a signaling complexes in mouse heart. Circ. Res. 112, 289–297 (2013). This study shows that PDE3A, and not PDE3B, is the primary PDE3 isozyme that modulates basal contractility and calcium content of the sarcoplasmic reticulum by regulating cAMP concentrations in microdomains containing macromolecular complexes (signalosomes) composed of AKAP18, sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2), phospholamban and PDE3A.

    Article  CAS  PubMed  Google Scholar 

  170. Kerfant, B. et al. PI3Kγ is required for PDE4, not PDE3, activity in subcellular microdomains containing the sarcoplasmic reticular calcium ATPase in cardiomyocytes. Circ. Res. 101, 400–408 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Ghigo, A. et al. Phosphoinositide 3-kinase γ protects against catecholamine-induced ventricular arrhythmia through protein kinase A-mediated regulation of distinct phosphodiesterases. Circulation 126, 2073–2083 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Molina, C. E. et al. Cyclic adenosine monophosphate phosphodiesterase type 4 protects against atrial arrhythmias. J. Am. Coll. Cardiol. 59, 2182–2190 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Molenaar, P. et al. PDE3, but not PDE4, reduces β1- and β2-adrenoceptor-mediated inotropic and lusitropic effects in failing ventricle from metoprolol-treated patients. Br. J. Pharmacol. 169, 528–538 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Siuciak, J. A. et al. Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-1B (PDE1B) enzyme. Neuropharmacology 53, 113–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Cygnar, K. & Zhao, H. Phosphodiesterase 1C is dispensable for rapid response termination of olfactory sensory neurons. Nature Neurosci. 12, 454–462 (2009).

    Article  CAS  PubMed  Google Scholar 

  176. Guirguis, E. et al. A Role for phosphodiesterase 3B in acquisition of brown fat characteristics by white adipose tissue in male mice. Endocrinology 154, 1–18 (2013).

    Article  CAS  Google Scholar 

  177. Jin, S., Lan, L., Zoudilova, M. & Conti, M. Specific role of phosphodiesterase 4B in lipopolysaccharide-induced signaling in mouse macrophages. J. Immunol. 175, 1523–1531 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Yang, G. et al. Phosphodiesterase 7A-deficient mice have functional T cells. J. Immunol. 171, 6414–6420 (2003).

    Article  CAS  PubMed  Google Scholar 

  179. Patrucco, E., Albergine, M. S., Santana, L. F. & Beavo, J. A. Phosphodiesterase 8A (PDE8A) regulates excitation contraction coupling in ventricular myocytes. J. Mol. Cell. Cardiol. 49, 330–333 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Tsai, L. L. et al. Inactivation of Pde8b enhances memory, motor performance, and protects against age-induced motor coordination decay. Genes Brain Behav. 11, 837–847 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Deninno, M. P. et al. The discovery of potent, selective, and orally bioavailable PDE9 inhibitors as potential hypoglycemic agents. Bioorg. Med. Chem. Lett. 19, 2537–2541 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Menniti, F., Kleiman, R. & Schmidt, C. PDE9A-mediated regulation of cGMP: Impact on synaptic plasticity. Schizophrenia Research 102, (Suppl. 2), 38–39 (2008).

    Article  Google Scholar 

  183. Seeger, T. F. et al. Immunohistochemical localization of PDE10A in the rat brain. Brain Res. 985, 113–126 (2003).

    Article  CAS  PubMed  Google Scholar 

  184. Piccart, E. et al. Impaired appetitively as well as aversively motivated behaviors and learning in PDE10A-deficient mice suggest a role for striatal signaling in evaluative salience attribution. Neurobiol. Learn. Mem. 95, 260–269 (2011).

    Article  CAS  PubMed  Google Scholar 

  185. Loughney, K., Taylor, J. & Florio, V. A. 3′,5′-cyclic nucleotide phosphodiesterase 11A: localization in human tissues. Int. J. Impot. Res. 17, 320–325 (2005).

    Article  CAS  PubMed  Google Scholar 

  186. Kelly, M. P. et al. Phosphodiesterase 11A in brain is enriched in ventral hippocampus and deletion causes psychiatric disease-related phenotypes. Proc. Natl Acad. Sci. USA 107, 8457–8462 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Johnson, W. B., Katugampola, S., Able, S., Napier, C. & Harding, S. E. Profiling of cAMP and cGMP phosphodiesterases in isolated ventricular cardiomyocytes from human hearts: comparison with rat and guinea pig. Life Sci. 90, 328–336 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Nagel, D. D. J. et al. Role of nuclear Ca2+/calmodulin-stimulated phosphodiesterase 1A in vascular smooth muscle cell growth and survival. Circulation 98, 777–784 (2006).

    Article  CAS  Google Scholar 

  189. Jiang, X., Li, J., Paskind, M. & Epstein, P. M. Inhibition of calmodulin-dependent phosphodiesterase induces apoptosis in human leukemic cells. Proc. Natl Acad. Sci. USA 93, 11236–11241 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Fisch, J. D., Behr, B. & Conti, M. Enhancement of motility and acrosome reaction in human spermatozoa: differential activation by type-specific phosphodiesterase inhibitors. Hum. Reprod. 13, 1248–1254 (1998).

    Article  CAS  PubMed  Google Scholar 

  191. Laddha, S. S. & Bhatnagar, S. P. A new therapeutic approach in Parkinson's disease: some novel quinazoline derivatives as dual selective phosphodiesterase 1 inhibitors and anti-inflammatory agents. Bioorg. Med. Chem. 17, 6796–6802 (2009).

    Article  CAS  PubMed  Google Scholar 

  192. MacFarland, R. T., Zelus, B. D. & Beavo, J. High concentrations of a cGMP-stimulated phosphodiesterase mediate ANP-induced decreases in cAMP and steroidogenesis in adrenal glomerulosa cells. J. Biol. Chem. 266, 136–142 (1991).

    CAS  PubMed  Google Scholar 

  193. Favot, L., Keravis, T., Holl, V., Le Bec, A. & Lugnier, C. VEGF-induced HUVEC migration and proliferation are decreased by PDE2 and PDE4 inhibitors. Thromb. Haemost. 90, 334–343 (2003).

    Article  CAS  PubMed  Google Scholar 

  194. Surapisitchat, J., Jeon, K., Yan, C. & Beavo, J. Differential regulation of endothelial cell permeability by cGMP via phosphodiesterases 2 and 3. Circ. Res. 101, 811–818 (2007).

    Article  CAS  PubMed  Google Scholar 

  195. Dickinson, N., Jang, E. & Haslam, R. cAMP accumulation in human platelets: effects on platelet aggregation. Biochem. J. 377, 371–377 (1997).

    Article  Google Scholar 

  196. Reneerkens, O. et al. Selective phosphodiesterase inhibitors: a promising target for cognition enhancement. Psychopharmacology 202, 419–443 (2009).

    Article  CAS  PubMed  Google Scholar 

  197. Hambleton, R. et al. Isoforms of cyclic nucleotide phosphodiesterase PDE3 and their contribution to cAMP hydrolytic activity in subcellular fractions of human myocardium. J. Biol. Chem. 280, 39168–39174 (2005).

    Article  CAS  PubMed  Google Scholar 

  198. Oikawa, M. et al. Cyclic nucleotide phosphodiesterase 3A1 protects the heart against ischemia-reperfusion injury. J. Mol. Cell. Cardiol. 64, 11–19 (2013).

    Article  CAS  PubMed  Google Scholar 

  199. Maurice, D. & Haslam, R. Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP. Mol. Pharmacol. 37, 671–681 (1990).

    CAS  PubMed  Google Scholar 

  200. Zhao, A., Huan, J., Gupta, S., Pal, R. & Sahu, A. A phosphatidylinositol 3-kinase phosphodiesterase 3B-cyclic AMP pathway in hypothalamic action of leptin on feeding. Nature Neurosci. 5, 727–728 (2002). This report identifies PDE3B as a crucial regulator of feeding behaviour in animals.

    Article  CAS  PubMed  Google Scholar 

  201. Cheng, Y. et al. Inhibition of phosphodiesterase-4 reverses memory deficits produced by Aβ25–35 or Aβ1–40 peptide in rats. Psychopharmacology 212, 181–191 (2010).

    Article  CAS  PubMed  Google Scholar 

  202. Tralau-Stewart, C. & Williamson, R. GSK256066, an exceptionally high-affinity and selective inhibitor of phosphodiesterase 4 suitable for administration by inhalation: in vitro, kinetic, and in vivo characterization. J. Pharmacol. Exp. Ther. 337, 145–154 (2011).

    Article  CAS  PubMed  Google Scholar 

  203. Bäumer, W. et al. AWD 12–281, a highly selective phosphodiesterase 4 inhibitor, is effective in the prevention and treatment of inflammatory reactions in a model of allergic dermatitis. J. Pharm. Pharmacol. 55, 1107–1114 (2003).

    Article  CAS  PubMed  Google Scholar 

  204. Marko, D. et al. Induction of apoptosis by an inhibitor of cAMP-specific PDE in malignant murine carcinoma cells overexpressing PDE activity in comparison to their nonmalignant counterparts. Cell Biochem. Biophys. 28, 75–101 (1998).

    Article  CAS  PubMed  Google Scholar 

  205. Reid, D. & Pham, N. Roflumilast: a novel treatment for chronic obstructive pulmonary disease. Ann. Pharmacother. 46, 521–529 (2012).

    Article  CAS  PubMed  Google Scholar 

  206. Barnette, M. S. et al. SB 207499 (Ariflo), a potent and selective second-generation phosphodiesterase 4 inhibitor: in vitro anti-inflammatory actions. J. Pharmacol. Exp. Ther. 284, 420–426 (1998).

    CAS  PubMed  Google Scholar 

  207. Zhu, J., Mix, E. & Winblad, B. The antidepressant and antiinflammatory effects of rolipram in the central nervous system. CNS Drug Rev. 7, 387–398 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Bickston, S. J., Snider, K. R. & Kappus, M. R. Tetomilast: new promise for phosphodiesterase-4 inhibitors? Expert Opin. Investig. Drugs 21, 1845–1849 (2012).

    Article  CAS  PubMed  Google Scholar 

  209. Man, H. et al. Discovery of (S)-N-{2-[1-(3-ethoxy-4-methoxyphenyl)-2-methanesulfonylethyl]-1,3-dioxo-2,3-dihydro-1H-isoindol-4-yl}acetamide (apremilast), a potent and orally active phosphodiesterase 4 and tumor necrosis factor-α inhibitor. J. Med. Chem. 52, 1522–1524 (2009).

    Article  CAS  PubMed  Google Scholar 

  210. Kuang, R. et al. Discovery of oxazole-based PDE4 inhibitors with picomolar potency. Bioorg. Med. Chem. Lett. 22, 2594–2597 (2012).

    Article  CAS  PubMed  Google Scholar 

  211. Kotera, J. et al. Avanafil, a potent and highly selective phosphodiesterase-5 inhibitor for erectile dysfunction. J. Urol. 188, 668–674 (2012).

    Article  CAS  PubMed  Google Scholar 

  212. Andersson, K. & de Groat, W. Tadalafil for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia: pathophysiology and mechanism (s) of action. Neurourol. Urodyn. 30, 292–301 (2011).

    Article  CAS  PubMed  Google Scholar 

  213. Oh, T., Kang, K., Ahn, B., Yoo, M. & Kim, W. Erectogenic effect of the selective phosphodiesterase type 5 inhibitor, DA-8159. Arch. Pharmacol. Res. 23, 471–476 (2000).

    Article  CAS  Google Scholar 

  214. Jung, J. et al. The penile erection efficacy of a new phosphodiesterase type 5 inhibitor, mirodenafil (SK3530), in rabbits with acute spinal cord injury. J. Vet. Med. Sci. 70, 1199–1204 (2008).

    Article  CAS  PubMed  Google Scholar 

  215. Galie, N. et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N. Engl. J. Med. 353, 2148–2157 (2005).

    Article  CAS  PubMed  Google Scholar 

  216. Kadoshima-Yamaoka, K. et al. ASB16165, a novel inhibitor for phosphodiesterase 7A (PDE7A), suppresses IL-12-induced IFN-γ production by mouse activated T lymphocytes. Immunol. Lett. 122, 193–197 (2009).

    Article  CAS  PubMed  Google Scholar 

  217. Banerjee, A. et al. Imidazopyridazinones as novel PDE7 inhibitors: SAR and in vivo studies in Parkinson's disease model. Bioorg. Med. Chem. Lett. 22, 6286–6291 (2012).

    Article  CAS  PubMed  Google Scholar 

  218. Dong, H., Osmanova, V., Epstein, P. M. & Brocke, S. Phosphodiesterase 8 (PDE8) regulates chemotaxis of activated lymphocytes. Biochem. Biophys. Res. Commun. 345, 713–719 (2006).

    Article  CAS  PubMed  Google Scholar 

  219. Liddie, S., Anderson, K. L., Paz, A. & Itzhak, Y. The effect of phosphodiesterase inhibitors on the extinction of cocaine-induced conditioned place preference in mice. J. Psychopharmacol. 26, 1375–1382 (2012).

    Article  CAS  PubMed  Google Scholar 

  220. Saravani, R., Karami-Tehrani, F., Hashemi, M., Aghaei, M. & Edalat, R. Inhibition of phosphodiestrase 9 induces cGMP accumulation and apoptosis in human breast cancer cell lines, MCF-7 and MDA-MB-468. Cell Prolif. 45, 199–206 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wunder, F., Tersteegen, A. & Rebmann, A. Characterization of the first potent and selective PDE9 inhibitor using a cGMP reporter cell line. Mol. Pharmacol. 68, 1775–1781 (2005).

    Article  CAS  PubMed  Google Scholar 

  222. Hutson, P. H. et al. The selective phosphodiesterase 9 (PDE9) inhibitor PF-04447943 (6-[(3S,4S)-4-methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-pyran-4-yl)-1,5-dihydro-4H-pyrazolo [3,4-d]pyrimidin-4-one) enhances synaptic plasticity and cognitive function in rodents. Neuropharmacology 61, 665–676 (2011).

    Article  CAS  PubMed  Google Scholar 

  223. Tian, X. et al. Phosphodiesterase 10A upregulation contributes to pulmonary vascular remodeling. PLoS ONE 6, e18136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Helal, C. J. et al. Use of structure-based design to discover a potent, selective, in vivo active phosphodiesterase 10A inhibitor lead series for the treatment of schizophrenia. J. Med. Chem. 54, 4536–4547 (2011).

    Article  CAS  PubMed  Google Scholar 

  225. Hu, E., Ma, J. & Biorn, C. Rapid identification of a novel small molecule phosphodiesterase 10A (PDE10A) tracer. J. Med. Chem. 55, 4776–4787 (2012).

    Article  CAS  PubMed  Google Scholar 

  226. Rzasa, R. M. et al. Discovery of selective biaryl ethers as PDE10A inhibitors: improvement in potency and mitigation of Pgp-mediated efflux. Bioorg. Med. Chem. Lett. 22, 7371–7375 (2012).

    Article  CAS  PubMed  Google Scholar 

  227. Bauer, U. et al. Discovery of 4-hydroxy-1,6-naphthyridine-3-carbonitrile derivatives as novel PDE10A inhibitors. Bioorg. Med. Chem. Lett. 22, 1944–1948 (2012).

    Article  CAS  PubMed  Google Scholar 

  228. Hofgen, N. et al. Discovery of imidazo[1,5-a]pyrido[3,2-e]pyrazines as a new class of phosphodiesterase 10A inhibitiors. J. Med. Chem. 53, 4399–4411 (2010).

    Article  CAS  PubMed  Google Scholar 

  229. Cutshall, N. S. et al. Novel 2-methoxyacylhydrazones as potent, selective PDE10A inhibitors with activity in animal models of schizophrenia. Bioorg. Med. Chem. Lett. 22, 5595–5599 (2012).

    Article  CAS  PubMed  Google Scholar 

  230. Francis, S. H. Phosphodiesterase 11 (PDE11): is it a player in human testicular function? Int. J. Impot. Res. 17, 467–468 (2005).

    Article  CAS  PubMed  Google Scholar 

  231. Wong, M. et al. Phosphodiesterase genes are associated with susceptibility to major depression and antidepressant treatment response. Proc. Natl Acad. Sci. USA 103, 15124–15129 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Miller, C. L. et al. Cyclic nucleotide phosphodiesterase 1A: a key regulator of cardiac fibroblast activation and extracellular matrix remodeling in the heart. Bas. Res. Cardiol. 106, 1023–1039 (2011).

    Article  CAS  Google Scholar 

  233. Cai, Y. et al. Cyclic nucleotide phosphodiesterase 1 regulates lysosome-dependent type I collagen protein degradation in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 31, 616–623 (2011).

    Article  CAS  PubMed  Google Scholar 

  234. Acin-Perez, R. et al. A phosphodiesterase 2A isoform localized to mitochondria regulates respiration. J. Biol. Chem. 286, 30423–30432 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Russwurm, C., Zoidl, G., Koesling, D. & Russwurm, M. Dual acylation of PDE2A splice variant 3: targeting to synaptic membranes. J. Biol. Chem. 284, 25782–25790 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Mohamed, T. M. A. et al. Plasma membrane calcium pump (PMCA4)-neuronal nitric-oxide synthase complex regulates cardiac contractility through modulation of a compartmentalized cyclic nucleotide microdomain. J. Biol. Chem. 286, 41520–41529 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Castro, L. R. V., Schittl, J. & Fischmeister, R. Feedback control through cGMP-dependent protein kinase contributes to differential regulation and compartmentation of cGMP in rat cardiac myocytes. Circ. Res. 107, 1232–1240 (2010).

    Article  CAS  PubMed  Google Scholar 

  238. Nishioka, K. et al. Cilostazol suppresses angiotensin II-induced vasoconstriction via protein kinase A-mediated phosphorylation of the transient receptor potential canonical 6 channel. Arterioscler. Thromb. Vasc. Biol. 31, 2278–2286 (2011).

    Article  CAS  PubMed  Google Scholar 

  239. Puxeddu, E. et al. Interaction of phosphodiesterase 3A with brefeldin A-inhibited guanine nucleotide-exchange proteins BIG1 and BIG2 and effect on ARF1 activity. Proc. Natl Acad. Sci. USA 106, 6158–6163 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Penmatsa, H. et al. Compartmentalized cAMP at the plasma membrane clusters PDE3A and cystic fibrosis transmembrane conductance regulator into microdomains. Mol. Biol. Cell 21, 1097–1110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Pozuelo Rubio, M., Campbell, D. G., Morrice, N. A. & Mackintosh, C. Phosphodiesterase 3A binds to 14-3-3 proteins in response to PMA-induced phosphorylation of Ser428. Biochem. J. 392, 163–172 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Palmer, D. et al. Protein kinase A phosphorylation of human phosphodiesterase 3B promotes 14-3-3 protein binding and inhibits phosphatase-catalyzed inactivation. J. Biol. Chem. 282, 9411–9419 (2007).

    Article  CAS  PubMed  Google Scholar 

  243. Ahmad, F. et al. Insulin-induced formation of macromolecular complexes involved in activation of cyclic nucleotide phosphodiesterase 3B (PDE3B) and its interaction with PKB. Biochem. J. 404, 257–268 (2007). This study demonstrates that, in 3T3-L1 adipocytes, insulin-induced phosphorylation and activation of membrane-associated PDE3B is co-ordinated with its incorporation into a signalosome containing components of the insulin signalling pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Perino, A. et al. Integrating cardiac PIP3 and cAMP signaling through a PKA anchoring function of p110γ. Mol. Cell 42, 84–95 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Sachs, B. D. et al. p75 neurotrophin receptor regulates tissue fibrosis through inhibition of plasminogen activation via a PDE4/cAMP/PKA pathway. J. Cell Biol. 177, 1119–1132 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Christian, F. et al. p62 (SQSTM1) and cyclic AMP phosphodiesterase-4A4 (PDE4A4) locate to a novel, reversible protein aggregate with links to autophagy and proteasome degradation pathways. Cell Signal. 22, 1576–1596 (2010).

    Article  CAS  PubMed  Google Scholar 

  247. Huston, E., Gall, I., Houslay, T. M. & Houslay, M. D. Helix-1 of the cAMP-specific phosphodiesterase PDE4A1 regulates its phospholipase-D-dependent redistribution in response to release of Ca2+. J. Cell Sci. 119, 3799–3810 (2006).

    Article  CAS  PubMed  Google Scholar 

  248. Bajpai, M. et al. AKAP3 selectively binds PDE4A isoforms in bovine spermatozoa. Biol. Reprod. 74, 109–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  249. Asirvatham, A. L. et al. A-kinase anchoring proteins interact with phosphodiesterases in T lymphocyte cell lines. J. Immunol. 173, 4806–4814 (2004).

    Article  CAS  PubMed  Google Scholar 

  250. Mcphee, I. et al. Association with the SRC family tyrosyl kinase LYN triggers a conformational change in the catalytic region of human cAMP-specific PDE HSPDE4A4B: consequences for rolipram inhibition. J. Biol. Chem. 274, 11796–11810 (1999).

    Article  CAS  PubMed  Google Scholar 

  251. Bolger, G. B. et al. Attenuation of the activity of the cAMP-specific phosphodiesterase PDE4A5 by interaction with the immunophilin XAP2. J. Biol. Chem. 278, 33351–33363 (2003).

    Article  CAS  PubMed  Google Scholar 

  252. Millar, J. K. et al. DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 310, 1187–1191 (2005).

    Article  CAS  PubMed  Google Scholar 

  253. Bradshaw, N. J. et al. DISC1, PDE4B, and NDE1 at the centrosome and synapse. Biochem. Biophys. Res. Commun. 377, 1091–1096 (2008).

    Article  CAS  PubMed  Google Scholar 

  254. Choi, Y.-H. et al. Polycystin-2 and phosphodiesterase 4C are components of a ciliary A-kinase anchoring protein complex that is disrupted in cystic kidney diseases. Proc. Natl Acad. Sci. USA 108, 10679–10684 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Baillie, G. S. et al. β-arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates β-adrenoceptor switching from Gs to Gi . Proc. Natl Acad. Sci. USA 100, 940–945 (2003). This is the first demonstration that a direct interaction between PDE4 and β-arrestin controls β-adrenergic receptor-mediated signalling in cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Kim, H. W. et al. Cyclic AMP controls mTOR through regulation of the dynamic interaction between Rheb and phosphodiesterase 4D. Mol. Cell. Biol. 30, 5406–5420 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Verde, I. et al. Myomegalin is a novel protein of the Golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase. J. Biol. Chem. 276, 11189–11198 (2001).

    Article  CAS  PubMed  Google Scholar 

  258. Beca, S. et al. Phosphodiesterase 4D regulates baseline sarcoplasmic reticulum Ca2+ release and cardiac contractility, independently of L-type Ca2+ current. Circ. Res. 109, 1024–1030 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Huo, Z. et al. Prolyl hydroxylase domain protein 2 regulates the intracellular cyclic AMP level in cardiomyocytes through its interaction with phosphodiesterase 4D. Biochem. Biophys. Res. Commun. 427, 73–79 (2012).

    Article  CAS  PubMed  Google Scholar 

  260. Stefan, E. et al. Compartmentalization of cAMP-dependent signaling by phosphodiesterase-4D is involved in the regulation of vasopressin-mediated water reabsorption in renal principal cells. J. Am. Soc. Nephrol. 18, 199–212 (2007).

    Article  CAS  PubMed  Google Scholar 

  261. Dodge-Kafka, K. L. et al. cAMP-stimulated protein phosphatase 2A activity associated with muscle A kinase-anchoring protein (mAKAP) signaling complexes inhibits the phosphorylation and activity of the cAMP-specific phosphodiesterase PDE4D3. J. Biol. Chem. 285, 11078–11086 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Halls, M. L. & Cooper, D. M. F. Sub-picomolar relaxin signalling by a pre-assembled RXFP1, AKAP79, AC2, β-arrestin 2, PDE4D3 complex. EMBO J. 29, 2772–2787 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Terrenoire, C., Houslay, M. D., Baillie, G. S. & Kass, R. S. The cardiac IKs potassium channel macromolecular complex includes the phosphodiesterase PDE4D3. J. Biol. Chem. 284, 9140–9146 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Raymond, D. R., Carter, R. L., Ward, C. A. & Maurice, D. H. Distinct phosphodiesterase-4D variants integrate into protein kinase A-based signaling complexes in cardiac and vascular myocytes. Am. J. Physiol. Heart Circ. Physiol. 296, H263–H271 (2009).

    Article  CAS  PubMed  Google Scholar 

  265. Creighton, J., Zhu, B., Alexeyev, M. & Stevens, T. Spectrin-anchored phosphodiesterase 4D4 restricts cAMP from disrupting microtubules and inducing endothelial cell gap formation. J. Cell Sci. 121, 110–119 (2008).

    Article  CAS  PubMed  Google Scholar 

  266. Beard, M. B., O'Connell, J. C., Bolger, G. B. & Houslay, M. D. The unique N-terminal domain of the cAMP phosphodiesterase PDE4D4 allows for interaction with specific SH3 domains. FEBS Lett. 460, 173–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  267. De Arcangelis, V., Liu, R., Soto, D. & Xiang, Y. Differential association of phosphodiesterase 4D isoforms with β2-adrenoceptor in cardiac myocytes. J. Biol. Chem. 284, 33824–33832 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Richter, W. et al. Signaling from β1- and β2-adrenergic receptors is defined by differential interactions with PDE4. EMBO J. 27, 384–393 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Zhang, M. et al. Pathological cardiac hypertrophy alters intracellular targeting of phosphodiesterase type 5 from nitric oxide synthase-3 to natriuretic peptide signaling. Circulation 126, 942–951 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Wilson, L., Elbatarny, H., Crawley, S., Bennett, B. & Maurice, D. H. Compartmentation and compartment-specific regulation of PDE5 by protein kinase G allows selective cGMP-mediated regulation of platelet functions. Proc. Natl Acad. Sci. USA 105, 13650–13655 (2008). This is the first report to show that compartmentalization of a PDE — PDE5 — occurs in a cell type (human platelets) in which PDE5 is the sole cGMP–PDE activity present.

    Article  PubMed  PubMed Central  Google Scholar 

  271. Han, P., Sonati, P., Rubin, C. & Michaeli, T. PDE7A1, a cAMP-specific phosphodiesterase, inhibits cAMP-dependent protein kinase by a direct interaction with C. J. Biol. Chem. 281, 15050–15057 (2006).

    Article  CAS  PubMed  Google Scholar 

  272. Wu, P. & Wang, P. Per-Arnt-Sim domain-dependent association of cAMP-phosphodiesterase 8A1 with IκB proteins. Proc. Natl Acad. Sci. USA 101, 17634–17639 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

V.M., J.C. and F.A. were supported by the National Heart, Lung and Blood Institute (NHLBI) Intramural research Program at the US National Institutes of Health (NIH) in Bethesda, Maryland, USA. Research funding for D.H.M. is from the Canadian Institutes of Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent C. Manganiello.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (figure)

(A,B) Binding of PDE4 inhibitors to the catalytic domain. (PDF 2715 kb)

Supplementary information S2 (figure)

Application of structure-based drug design to generate selective PDE 9A (A, B) and PDE10A inhibitors. (PDF 2816 kb)

Supplementary information S3 (table)

Compartmented PDE signaling in mammalian cells. (PDF 182 kb)

Glossary

Cyclic nucleotide phosphodiesterase

(PDE). A large gene superfamily of isozymes that catalyse the hydrolysis of the important intracellular messengers cAMP and cGMP.

Signalosomes

Localized macromolecular complexes, formed via protein–protein interactions, that contain cyclic nucleotide effectors and regulate the subcellular compartmentalization of specific cyclic nucleotide signalling pathways. The incorporation of specific phosphodiesterases (PDEs) into signalosomes has established the crucial roles of individual PDEs in regulating specific cyclic nucleotide signalling pathways. This knowledge has spurred the development of more sophisticated strategies to target individual PDE variants and their interacting partners.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurice, D., Ke, H., Ahmad, F. et al. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 13, 290–314 (2014). https://doi.org/10.1038/nrd4228

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4228

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research