Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

The role of ligand efficiency metrics in drug discovery

Subjects

Key Points

  • Ligand efficiency measures quantify the molecular properties, particularly size and lipophilicity, of small molecules that are required to gain binding affinity to a drug target. There are additional efficiency measures for groups in a molecule, and for combinations of size and lipophilicity.

  • The application of ligand efficiency metrics has been widely reported in the selection and optimization of fragments, hits and leads. In particular, optimization of lipophilic ligand efficiency shows that it is possible to increase affinity and reduce lipophilicity at the same time, even with challenging 'lipophile-preferring' targets.

  • Mean ligand efficiency measures of molecules acting at a specific target, when combined with their drug-like physicochemical properties, are a practical means of estimating target 'druggability'. This is exemplified with 480 target–assay pairs from the primary literature. Across these targets, correlations between biological activity in vitro and physicochemical properties are generally weak, which shows that increasing activity by increasing physicochemical properties is not always necessary.

  • An analysis of 46 recently marketed oral drugs shows that they frequently have highly optimized ligand efficiency values and lipophilic ligand efficiency values for their target. Compared with 'only-in-class' oral drugs, only 1.5% of all molecules per target — on average — possess superior combined ligand efficiency and lipophilic ligand efficiency values.

  • Optimizing ligand efficiencies based on both molecular size and lipophilicity, when set in the context of the specific target, has the potential to ameliorate the molecular inflation that pervades current practice in medicinal chemistry, and to increase the ability to develop drug candidates.

Abstract

The judicious application of ligand or binding efficiency metrics, which quantify the molecular properties required to obtain binding affinity for a drug target, is gaining traction in the selection and optimization of fragments, hits and leads. Retrospective analysis of recently marketed oral drugs shows that they frequently have highly optimized ligand efficiency values for their targets. Optimizing ligand efficiency metrics based on both molecular mass and lipophilicity, when set in the context of the specific target, has the potential to ameliorate the inflation of these properties that has been observed in current medicinal chemistry practice, and to increase the quality of drug candidates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maintaining acceptable ligand efficiencies during optimization of binding affinity.
Figure 2: Examples from the literature in which lipophilic ligand efficiency was explicitly used in the optimization process on 47 different targets.
Figure 3: HSP90 inhibitors as an example of the application of ligand efficiency metrics in fragment-based drug discovery.
Figure 4: Druggability analyses.
Figure 5: Relative ligand efficiencies of 46 oral drugs acting at 25 targets.
Figure 6: Examples of target ligand efficiency analyses.
Figure 7: Explicit use of lipophilic ligand efficiency in optimizing compounds acting at the cannabinoid receptor CB1.

Similar content being viewed by others

References

  1. Leeson, P. D. & Oprea, T. I. in Drug Design Strategies: Quantitative Approaches Ch. 2 (eds Livingstone, D. J. & Davis, A. M.) (Royal Society of Chemistry, 2012).

    Google Scholar 

  2. Gleeson, M. P., Hersey, A., Montanari, D. & Overington, J. Probing the links between in vitro potency, ADMET and physicochemical parameters. Nature Rev. Drug Discov. 10, 197–208 (2011).

    Article  CAS  Google Scholar 

  3. Young, R. J., Green, D. V., Luscombe, C. N. & Hill, A. P. Getting physical in drug discovery II: the impact of chromatographic hydrophobicity measurements and aromaticity. Drug Discov. Today 16, 822–830 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Waring, M. Defining optimum lipophilicity and molecular weight ranges for drug candidates —molecular weight dependent lower logD limits based on permeability. Bioorg. Med. Chem. Lett. 19, 2844–2851 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Johnson, T. W. et al. Using the golden triangle to optimize clearance and oral absorption. Bioorg. Med. Chem. Lett. 19, 5560–5564 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Gleeson, M. P. Generation of a set of simple, interpretable ADMET rules of thumb. J. Med. Chem. 51, 817–834 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Leeson, P. D. & Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nature Rev. Drug Discov. 6, 881–890 (2007). In this paper, LLE is proposed as a measure of specificity.

    Article  CAS  Google Scholar 

  8. Hughes, J. D. et al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg. Med. Chem. Lett. 18, 4872–4875 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Luker, T. et al. Strategies to improve in vivo toxicology outcomes for basic candidate drug molecules. Bioorg. Med. Chem. Lett. 21, 5673–5679 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Wenlock, M. C., Austin, R. P., Barton, P., Davis, A. M. & Leeson, P. D. A comparison of physiochemical property profiles of development and marketed oral drugs. J. Med. Chem. 46, 1250–1256 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Leeson, P. D. & Empfield, J. R. Reducing the risk of drug attrition associated with physicochemical properties. Ann. Rep. Med. Chem. 45, 393–407 (2010).

    CAS  Google Scholar 

  12. Leeson, P. D. & Davis, A. M. Time-related differences in the physical property profiles of oral drugs. J. Med. Chem. 47, 6338–6348 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Proudfoot, J. R. The evolution of synthetic oral drug properties. Bioorg. Med. Chem. Lett. 15, 1087–1090 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Leeson, P. D., St-Gallay, S. A. & Wenlock, M. C. Impact of ion class and time on oral drug molecular properties. Med. Chem. Commun. 2, 91–105 (2011).

    Article  CAS  Google Scholar 

  15. Walters, W. P., Green, J., Weiss, J. R. & Murcko, M. A. What do medicinal chemists actually make? A 50-year retrospective. J. Med. Chem. 54, 6405–6416 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S. & Hopkins, A. L. Quantifying the chemical beauty of drugs. Nature Chem. 4, 90–98 (2012).

    Article  CAS  Google Scholar 

  17. Leeson, P. D. & St-Gallay, S. A. The influence of the 'organizational factor' on compound quality in drug discovery. Nature Rev. Drug Discov. 10, 749–765 (2011).

    Article  CAS  Google Scholar 

  18. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Blake, J. F. Examination of the computed molecular properties of compounds selected for clinical development. Biotechniques Suppl. 16–20 (2003).

  20. Paolini, G. V., Shapland, R. H., van Hoorn, W. P., Mason, J. S. & Hopkins, A. L. Global mapping of pharmacological space. Nature Biotech. 24, 805–815 (2006).

    Article  CAS  Google Scholar 

  21. Keserü, G. M. 5th Drug Design Lead Discovery Conference 2009: lead finding strategies and optimization case studies. Drugs Fut. 35, 143–153 (2010).

    Article  Google Scholar 

  22. Hann, M. M. Molecular obesity, potency and other addictions in drug discovery. Med. Chem. Comm. 2, 349–355 (2011).

    Article  CAS  Google Scholar 

  23. Keserü, G. M. & Makara, G. M. The influence of lead discovery strategies on the properties of drug candidates. Nature Rev. Drug Discov. 8, 203–212 (2009).

    Article  Google Scholar 

  24. Oprea, T. I., Davis, A. M., Teague, S. J. & Leeson, P. D. Is there a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comput. Sci. 41, 1308–1315 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Hann, M. M., Leach, A. R. & Harper, G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 41, 856–864 (2001). This paper explains why small compounds such as fragments have a higher probability than larger compounds (for example, those in a typical HTS library) of binding to protein targets.

    Article  CAS  PubMed  Google Scholar 

  26. Hopkins, A. L., Groom, C. R. & Alex, A. Ligand efficiency: a useful metric for lead selection. Drug Discov. Today 9, 430–431 (2004). This paper defines the LE concept and proposes it as a measure to help prioritize screening hits.

    Article  PubMed  Google Scholar 

  27. Kuntz, I. D., Chen, K., Sharp, K. A. & Kollman, P. A. The maximal affinity of ligands. Proc. Natl Acad. Sci. USA 96, 9997–10002 (1999). This seminal article lays the foundations for the derivation of LE metrics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Andrews, P. R., Craik, D. J. & Martin, J. L. Functional group contributions to drug–receptor interactions. J. Med. Chem. 27, 1648–1657 (1984).

    Article  CAS  PubMed  Google Scholar 

  29. Shultz, M. D. Setting expectations in molecular optimizations: strengths and limitations of commonly used composite parameters. Bioorg. Med. Chem. Lett. 23, 5980–5991 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Freire, E. Do enthalpy and entropy distinguish first in class from best in class? Drug Discov. Today 13, 869–874 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ferenczy, G. G., Keserü, G. M. in Physico-Chemical and Computational Approaches to Drug Discovery Ch. 2 (eds Luque, J. & Barril, X.) (Royal Society of Chemistry, 2012).

    Google Scholar 

  32. Olsson, T. S. G., Williams, M. A., Pitt, W. R. & Ladbury, J. E. The thermodynamics of protein–ligand interaction and solvation: insights for ligand design. J. Mol. Biol. 384, 1002–1017 (2008).

    CAS  PubMed  Google Scholar 

  33. Freire, E. A thermodynamic approach to the affinity optimization of drug candidates. Chem. Biol. Drug Des. 74, 468–472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ferenczy, G. G. & Keserü, G. M. Thermodynamics guided lead discovery and optimization. Drug Discov. Today 15, 919–932 (2010).

    CAS  PubMed  Google Scholar 

  35. Ladbury, J. E., Klebe, G. & Freire, E. Adding calorimetric data to decision making in lead discovery: a hot tip. Nature Rev. Drug Discov. 9, 23–27 (2010).

    Article  CAS  Google Scholar 

  36. Ferenczy, G. G. & Keserü, G. M. Enthalpic efficiency of ligand binding. J. Chem. Inf. Mod. 50, 1536–1541 (2010).

    Article  CAS  Google Scholar 

  37. Hann, M. M. & Keserü, G. M. Finding the sweet spot — the role of nature and nurture in medicinal chemistry. Nature Rev. Drug Discov. 11, 355–365 (2012).

    Article  CAS  Google Scholar 

  38. Reynolds, C. H., Bembenek, S. D. & Tounge, B. A. The role of molecular size in ligand efficiency. Bioorg. Med. Chem. Lett. 17, 4258–4261 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Reynolds, C. H., Tounge, B. A. & Bembenek, S. D. Ligand binding efficiency: trends, physical basis, and implications. J. Med. Chem. 51, 2432–2438 (2008). This paper demonstrates that LE has a significant size-dependence that can be explained in terms of simple molecular principles.

    Article  CAS  PubMed  Google Scholar 

  40. Loving, K., Alberts, I. & Sherman, W. Computational approaches for fragment-based and de novo design. Curr. Top. Med. Chem. 10, 14–32 (2012).

    Article  Google Scholar 

  41. Liu, T., Lin, Y., Wen, X., Jorissen, R. N. & Gilson, M. K. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucl. Ac. Res. 35, D198–D201 (2007).

    Article  CAS  Google Scholar 

  42. Reynolds, C. H. & Holloway, M. K. Thermodynamics of ligand binding and efficiency. ACS Med. Chem. Lett. 2, 433–437 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shultz, M. D. The thermodynamic basis for the use of lipophilic efficiency (LipE) in enthalpic optimizations, Bioorg. Med. Chem. Lett. 23, 5992–6000 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Tarcsay, A., Nyiri, K. & Keserü, G. M. Impact of lipophilic efficiency on compound quality. J. Med. Chem. 55, 1252–1260 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Hansch, C., Bjoerkroth, J. P. & Leo, A. Hydrophobicity and central nervous system agents: on the principle of minimal hydrophobicity in drug design. J. Pharm. Sci. 76, 663–687 (1987).

    Article  CAS  PubMed  Google Scholar 

  46. Waring, M. Lipophilicity in drug discovery. Exp. Opin. Drug Discov. 5, 235–248 (2010).

    Article  CAS  Google Scholar 

  47. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).

    Article  CAS  Google Scholar 

  48. Mortenson, P. N. & Murray, C. W. Assessing the lipophilicity of fragments and early hits. J. Comput. Aided Mol. Des. 663–667 (2011).

  49. Wager, T. T. et al. Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes. ACS Chem. Neurosci. 1, 420–434 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Perola, E. An analysis of the binding efficiencies of drugs and their leads in successful drug discovery programs. J. Med. Chem. 53, 2986–2997 (2010). This analysis of leads of 60 recently launched drugs shows that mean potency and LLE increased in optimization, whereas mean lipophilicity did not.

    Article  CAS  PubMed  Google Scholar 

  51. Morphy, R. The influence of target family and functional activity on the physicochemical properties of pre-clinical compounds. J. Med. Chem. 49, 2969–2978 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Baker, M. Fragment-based lead discovery grows up. Nature Rev. Drug Discov. 12, 5–7 (2013).

    Article  CAS  Google Scholar 

  53. Tsai, J. et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl Acad. Sci. USA 105, 3041–3046 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Verdonk, M. L. & Rees, D. C. Group efficiency: a guideline for hits-to-leads chemistry. ChemMedChem 3, 1179–1180 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Drysdale, M. J. & Brough, P. A. Medicinal chemistry of Hsp90 inhibitors. Curr. Top. Med. Chem. 8, 859–868 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Murray, C. W. et al. Fragment-based drug discovery applied to Hsp90. Discovery of two lead series with high ligand efficiency. J. Med. Chem. 53, 5942–5955 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Woodhead, A. J. et al. Discovery of (2,4-dihydroxy- 5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3-dihydrois oindol-2-yl]methanone (AT13387), a novel inhibitor of the molecular chaperone Hsp90 by fragment based drug design. J. Med. Chem. 53, 5956–5969 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Ferenczy, G. G. & Keserü, G. M. How are fragments optimized? A retrospective analysis of 145 fragment optimizations. J. Med. Chem. 56, 2478–2486 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Jhoti, H., Williams, G., Rees, D. C. & Murray, C. W. The 'rule of three' for fragment-based drug discovery: where are we now? Nature Rev. Drug Discov. 12, 644–645 (2013).

    Article  CAS  Google Scholar 

  60. Vieth, M. & Sutherland, J. J. Dependence of molecular properties on proteomic family for marketed oral drugs. J. Med. Chem. 49, 3451–3453 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Kwong, A. D., Kauffman, R. S., Hurter, P. & Mueller, P. Discovery and development of telaprevir: an NS3-4A protease inhibitor for treating genotype 1 chronic hepatitis C virus. Nature Biotech. 29, 993–1003 (2011).

    Article  CAS  Google Scholar 

  62. McTigue, M. et al. Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors. Proc. Natl Acad. Sci. USA 109, 18281–18289 (2012). This paper shows that LLE values of VEGFR inhibitors correlate with clinical efficacy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Davis, M. I. et al. Comprehensive analysis of kinase inhibitor selectivity. Nature Biotech. 29, 1046–1051 (2011).

    Article  CAS  Google Scholar 

  64. Soth, M. et al. 3-amido pyrrolopyrazine JAK kinase inhibitors: development of a JAK3 versus JAK1 selective inhibitor and evaluation in cellular and in vivo models. J. Med. Chem. 56, 345–356 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Young, R. J. The successful quest for oral factor Xa inhibitors; learnings for all of medicinal chemistry? Bioorg. Med. Chem. Lett. 21, 6228–6235 (2011). This article proposes a general approach for assessing compound quality, exemplified by clinically available factor Xa inhibitors, which have a lower hydrophobicity and higher LLE AT values than other published inhibitors.

    Article  CAS  PubMed  Google Scholar 

  66. Lemoine, R. C. & Wanner, J. Small molecule antagonists of the chemokine receptor CCR5. Curr. Top. Med. Chem. 10, 1299–1338 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Cumming, J. et al. Balancing hERG affinity and absorption in the discovery of AZD5672, an orally active CCR5 antagonist for the treatment of rheumatoid arthritis. Bioorg. Med. Chem. Lett. 22, 1655–1659 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Charles, M. A. & Kane, J. P. New molecular insights into CETP structure and function: a review. J. Lipid Res. 53, 1451–1458 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mantlo, N. B. & Escribano, A. Update on the discovery and development of cholesteryl ester transfer protein inhibitors for reducing residual cardiovascular risk. J. Med. Chem. 57, 1–17 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Hunt, J. A. et al. 2-arylbenzoxazoles as CETP inhibitors: substitution and modification of the α-alkoxyamide moiety. Bioorg. Med. Chem. Lett. 20, 1019–1022 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Sweis, R. F. et al. 2-(4-carbonylphenyl)benzoxazole inhibitors of CETP: attenuation of hERG binding and improved HDLc-raising efficacy. Bioorg. Med. Chem. Lett. 21, 2597–2600 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Kallashi, F. et al. 2-arylbenzoxazoles as CETP inhibitors: raising HDL-C in cynoCETP transgenic mice. Bioorg. Med. Chem. Lett. 21, 558–561 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Harikrishnan, L. S. et al. 2-arylbenzoxazoles as novel cholesteryl ester transfer protein inhibitors: optimization via array synthesis. Bioorg. Med. Chem. Lett. 18, 2640–2644 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Fernanadez, M.-C. et al. Design, synthesis and structure-activity-relationship of 1,5-tetrahydronaphthyridines as CETP inhibitors. Bioorg. Med. Chem. Lett. 22, 3056–3062 (2012).

    Article  Google Scholar 

  75. Harikrishnan, L. S. et al. Diphenylpyridylethanamine (DPPE) derivatives as cholesteryl ester transfer protein (CETP) inhibitors. J. Med. Chem. 55, 6162–6175 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Griffith, D. A. et al. Discovery of 1-[9-(4-chlorophenyl)-8-(2-chlorophenyl)-9H-purin-6-yl]-4 ethylaminopiperidine-4-carboxylic acid amide hydrochloride (CP-945,598), a novel, potent, and selective cannabinoid type 1 receptor antagonist. J. Med. Chem. 52, 234–237 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Plowright, A. T. et al. Discovery of agonists of cannabinoid receptor 1 with restricted central nervous system penetration aimed for treatment of gastroesophageal reflux disease. J. Med. Chem. 56, 220–240 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Darout, E. et al. Design and synthesis of diazatricyclodecane agonists of the G-protein-coupled receptor 119. J. Med. Chem. 56, 301–319 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Higueruelo, A. P., Schreyer, A., Bickerton, G. R. J., Blundell, T. L. & Pitt, W. R. What can we learn from the evolution of protein–ligand interactions to aid the design of new therapeutics? PLoS ONE 7, e51742 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Valko, K., Chiarparin, E., Nunhuck, S. & Montanari, D. In vitro measurement of drug efficiency index to aid early lead optimization. J. Pharm. Sci. 101, 4155–4169 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Freeman-Cook, K. D., Hoffman, R. L. & Johnson, T. W. Lipophilic efficiency: the most important efficiency metric in medicinal chemistry. Future Med. Chem. 5, 113–115 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Abad-Zapatero, C. Ligand efficiency indices for effective drug discovery. Exp. Opin. Drug Discov. 2, 469–488 (2007).

    Article  CAS  Google Scholar 

  83. Mannhold, R., Poda, G. I., Ostermann, C. & Tetko, I. V. Calculation of molecular lipophilicity: state-of-the-art and comparison of logP methods on more than 96,000 compounds. J. Pharm. Sci. 98, 861–893 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Nissink, J. W. M. Simple size-independent measure of ligand efficiency. J. Chem. Inf. Model. 49, 1617–1622 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Southan, C., Boppana, K., Jagarlapudi, S. A. & Muresan, S. Analysis of in vitro bioactivity data extracted from drug discovery literature and patents: ranking 1654 human protein targets by assayed compounds and molecular scaffolds. J. Cheminform. 3, 14 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Klibanov, O. M., Williams, S. H. & Iler, C. A. Cenicriviroc, an orally active CCR5 antagonist for the potential treatment of HIV infection. Curr. Opin. Investigat. Drugs 11, 940–950 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank N. Richmond (GlaxoSmithKline) for discussions on the derivation of efficiency metrics; G. Williams (Astex) for fruitful discussion on binding thermodynamics; R. Young (GlaxoSmithKline) for discussions on aromaticity and drug efficiency metrics; and AstraZeneca for providing access to the GVK BIO database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D. Leeson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

DATABASES

ChEMBL

PowerPoint slides

Supplementary information

Supplementary information S1 (figure)

Ligand efficiencies versus corresponding physical properties. (PDF 1260 kb)

Supplementary information S2 (figure)

Enthalpy and entropy ligand efficiencies versus properties. (PDF 2345 kb)

Supplementary information S3 (table)

Mean, median and standard deviations of potencies, LE, LLE and LELP values for collections of oral drugs, Phase II compounds, hits and leads (PDF 361 kb)

Supplementary information S4 (table) (XLSX 669 kb)

Glossary

Spline fit

A statistical, numerical method for fitting a curve through a set of data points using a cubic polynomial.

p(Activity)

The negative logarithm of activity in vitro in published papers: for example, half-maximal inhibitory concentration (IC50), inhibition constant (Ki) or effector concentration for half-maximum response (EC50) values.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hopkins, A., Keserü, G., Leeson, P. et al. The role of ligand efficiency metrics in drug discovery. Nat Rev Drug Discov 13, 105–121 (2014). https://doi.org/10.1038/nrd4163

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4163

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing