Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

SCF ubiquitin ligase-targeted therapies

Key Points

  • The ubiquitin–proteasome system (UPS) has links to numerous diseases, and the clinical success of proteasome inhibitors suggests the potential to develop drugs targeting other components of the UPS. In certain cases, the specific inhibition of individual components of the UPS may provide better therapeutic outcomes than does broad inhibition of the proteasome.

  • F-box proteins are the targeting subunits of the SKP1-CUL1-F-box protein (SCF) ubiquitin ligase complexes, the best characterized of the mammalian cullin–RING ligase family of E3 ubiquitin ligases. In mammals, there are approximately 70 F-box proteins, each thought to be able to target multiple substrates, facilitating the regulation of diverse cellular pathways.

  • SCF complexes are dysregulated in several diseases by overexpression of the F-box protein, by mutation (genetic deletion or point mutations) of the F-box protein, or by disrupting the pathways that control F-box protein–substrate targeting.

  • In cases in which an SCF complex is overactive, the inhibition of SCF-mediated degradation can be achieved via competitive inhibition between substrate and F-box protein, allosteric inhibition that disrupts the interaction between substrate and F-box protein, or via the inhibition of SCF complex assembly.

  • In cases in which SCF activity is defective in disease, SCF activity can by reconstituted through bivalent small molecules that re-target the substrate and/or 'molecular glue'-like molecules that restore substrate–F-box protein binding.

  • Although an underdeveloped area, SCF complexes are promising drug targets, and as the substrates and functions of orphan F-box proteins are discovered, further drug targets will become apparent. Several compounds targeting E3 ligases have been developed, hinting that effective drugs targeting other SCF ubiquitin ligase activities may also be developed.

Abstract

The clinical successes of proteasome inhibitors for the treatment of cancer have highlighted the therapeutic potential of targeting this protein degradation system. However, proteasome inhibitors prevent the degradation of numerous proteins, which may cause adverse effects. Increased specificity could be achieved by inhibiting the components of the ubiquitin–proteasome system that target specific subsets of proteins for degradation. F-box proteins are the substrate-targeting subunits of SKP1–CUL1–F-box protein (SCF) ubiquitin ligase complexes. Through the degradation of a plethora of diverse substrates, SCF ubiquitin ligases control a multitude of processes at the cellular and organismal levels, and their dysregulation is implicated in many pathologies. SCF ubiquitin ligases are characterized by their high specificity for substrates, and these ligases therefore represent promising drug targets. However, the potential for therapeutic manipulation of SCF complexes remains an underdeveloped area. This Review explores and discusses potential strategies to target SCF-mediated biological processes to treat human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ubiquitin-mediated degradation.
Figure 2: The modular structure of SCF ubiquitin ligases and points of potential therapeutic intervention.
Figure 3: Strategies to manipulate SCF ubiquitin ligase activity.

Similar content being viewed by others

References

  1. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    CAS  PubMed  Google Scholar 

  2. Rieser, E., Cordier, S. M. & Walczak, H. Linear ubiquitination: a newly discovered regulator of cell signalling. Trends Biochem. Sci. 38, 94–102 (2013).

    CAS  PubMed  Google Scholar 

  3. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

    CAS  PubMed  Google Scholar 

  4. Nijman, S. M. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786 (2005).

    CAS  PubMed  Google Scholar 

  5. Frescas, D. & Pagano, M. Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer. Nature Rev. Cancer 8, 438–449 (2008).

    CAS  Google Scholar 

  6. Skaar, J. R., Pagan, J. K. & Pagano, M. Mechanisms and function of substrate recruitment by F-box proteins. Nature Rev. Mol. Cell Biol. 14, 369–381 (2013).

    CAS  Google Scholar 

  7. Schmidt, M. & Finley, D. Regulation of proteasome activity in health and disease. Biochim. Biophys. Acta 1843, 13–25 (2014).

    CAS  PubMed  Google Scholar 

  8. Suzuki, E. et al. Molecular mechanisms of bortezomib resistant adenocarcinoma cells. PLoS ONE 6, e27996 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ruschak, A. M., Slassi, M., Kay, L. E. & Schimmer, A. D. Novel proteasome inhibitors to overcome bortezomib resistance. J. Natl Cancer Inst. 103, 1007–1017 (2011).

    CAS  PubMed  Google Scholar 

  10. Kubiczkova, L., Pour, L., Sedlarikova, L., Hajek, R. & Sevcikova, S. Proteasome inhibitors — molecular basis and current perspectives in multiple myeloma. J. Cell. Mol. Med. 18, 947–961 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mattern, M. R., Wu, J. & Nicholson, B. Ubiquitin-based anticancer therapy: carpet bombing with proteasome inhibitors versus surgical strikes with E1, E2, E3, or DUB inhibitors. Biochim. Biophys. Acta 1823, 2014–2021 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schulman, B. A. & Harper, J. W. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nature Rev. Mol. Cell Biol. 10, 319–331 (2009).

    CAS  Google Scholar 

  13. Berndsen, C. E. & Wolberger, C. New insights into ubiquitin E3 ligase mechanism. Nature Struct. Mol. Biol. 21, 301–307 (2014).

    CAS  Google Scholar 

  14. Metzger, M. B., Hristova, V. A. & Weissman, A. M. HECT and RING finger families of E3 ubiquitin ligases at a glance. J. Cell Sci. 125, 531–537 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Deshaies, R. J. & Joazeiro, C. A. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399–434 (2009).

    CAS  PubMed  Google Scholar 

  16. Lydeard, J. R., Schulman, B. A. & Harper, J. W. Building and remodelling Cullin-RING E3 ubiquitin ligases. EMBO Rep. 14, 1050–1061 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wei, N., Serino, G. & Deng, X. W. The COP9 signalosome: more than a protease. Trends Biochem. Sci. 33, 592–600 (2008).

    CAS  PubMed  Google Scholar 

  18. Jin, J. et al. Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 18, 2573–2580 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Skaar, J. R., D'Angiolella, V., Pagan, J. K. & Pagano, M. SnapShot: F box proteins II. Cell 137, 1358.e1–1358.e2 (2009).

    Google Scholar 

  20. Sutterluty, H. et al. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nature Cell Biol. 1, 207–214 (1999).

    CAS  PubMed  Google Scholar 

  21. Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol. 1, 193–199 (1999).

    CAS  PubMed  Google Scholar 

  22. Ganoth, D. et al. The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nature Cell Biol. 3, 321–324 (2001).

    CAS  PubMed  Google Scholar 

  23. Spruck, C. et al. A CDK-independent function of mammalian Cks1: targeting of SCF(Skp2) to the CDK inhibitor p27Kip1. Mol. Cell 7, 639–650 (2001).

    CAS  PubMed  Google Scholar 

  24. Abbas, T. et al. CRL1-FBXO11 promotes Cdt2 ubiquitylation and degradation and regulates Pr-Set7/Set8-mediated cellular migration. Mol. Cell 49, 1147–1158 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rossi, M. et al. Regulation of the CRL4(Cdt2) ubiquitin ligase and cell-cycle exit by the SCF(Fbxo11) ubiquitin ligase. Mol. Cell 49, 1159–1166 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuchay, S. et al. FBXL2- and PTPL1-mediated degradation of p110-free p85β regulatory subunit controls the PI(3)K signalling cascade. Nature Cell Biol. 15, 472–480 (2013).

    CAS  PubMed  Google Scholar 

  27. Pitts, T. M., Davis, S. L., Eckhardt, S. G. & Bradshaw-Pierce, E. L. Targeting nuclear kinases in cancer: development of cell cycle kinase inhibitors. Pharmacol. Ther. 142, 258–269 (2014).

    CAS  PubMed  Google Scholar 

  28. Zhang, J., Yang, P. L. & Gray, N. S. Targeting cancer with small molecule kinase inhibitors. Nature Rev. Cancer 9, 28–39 (2009).

    Google Scholar 

  29. Davies, S. P., Reddy, H., Caivano, M. & Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95–105 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wilhelm, S. et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature Rev. Drug Discov. 5, 835–844 (2006).

    CAS  Google Scholar 

  31. Cardozo, T. & Pagano, M. The SCF ubiquitin ligase: insights into a molecular machine. Nature Rev. Mol. Cell Biol. 5, 739–751 (2004).

    CAS  Google Scholar 

  32. Vassilev, L. T. MDM2 inhibitors for cancer therapy. Trends Mol. Med. 13, 23–31 (2007).

    CAS  PubMed  Google Scholar 

  33. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    CAS  PubMed  Google Scholar 

  34. Van Maerken, T. et al. Pharmacologic activation of wild-type p53 by nutlin therapy in childhood cancer. Cancer Lett. 344, 157–165 (2014).

    CAS  PubMed  Google Scholar 

  35. Soucy, T. A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458, 732–736 (2009).

    CAS  PubMed  Google Scholar 

  36. Li, L. et al. Overactivated neddylation pathway as a therapeutic target in lung cancer. J. Natl Cancer Inst. 106, dju083 (2014).

    PubMed  Google Scholar 

  37. Li, H. et al. Inactivation of SAG/RBX2 E3 ubiquitin ligase suppresses KrasG12D-driven lung tumorigenesis. J. Clin. Invest. 124, 835–846 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gu, Y. et al. MLN4924, an NAE inhibitor, suppresses AKT and mTOR signaling via upregulation of REDD1 in human myeloma cells. Blood 123, 3269–3276 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Milhollen, M. A. et al. MLN4924, a NEDD8-activating enzyme inhibitor, is active in diffuse large B-cell lymphoma models: rationale for treatment of NF-κB-dependent lymphoma. Blood 116, 1515–1523 (2010).

    CAS  PubMed  Google Scholar 

  40. Pan, W. W. et al. Ubiquitin E3 ligase CRL4(CDT2/DCAF2) as a potential chemotherapeutic target for ovarian surface epithelial cancer. J. Biol. Chem. 288, 29680–29691 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mackintosh, C. et al. WEE1 accumulation and deregulation of S-phase proteins mediate MLN4924 potent inhibitory effect on Ewing sarcoma cells. Oncogene 32, 1441–1451 (2013).

    CAS  PubMed  Google Scholar 

  42. Wei, D. et al. Radiosensitization of human pancreatic cancer cells by MLN4924, an investigational NEDD8-activating enzyme inhibitor. Cancer Res. 72, 282–293 (2012).

    CAS  PubMed  Google Scholar 

  43. Smith, M. A. et al. Initial testing of the investigational NEDD8-activating enzyme inhibitor MLN4924 by the pediatric preclinical testing program. Pediatr. Blood Cancer 59, 246–253 (2012).

    PubMed  Google Scholar 

  44. Xu, G. W. et al. Mutations in UBA3 confer resistance to the NEDD8-activating enzyme inhibitor MLN4924 in human leukemic cells. PLoS ONE 9, e93530 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Blank, J. L. et al. Novel DNA damage checkpoints mediating cell death induced by the NEDD8-activating enzyme inhibitor MLN4924. Cancer Res. 73, 225–234 (2013).

    CAS  PubMed  Google Scholar 

  46. Lin, J. J., Milhollen, M. A., Smith, P. G., Narayanan, U. & Dutta, A. NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells. Cancer Res. 70, 10310–10320 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Soucy, T. A., Dick, L. R., Smith, P. G., Milhollen, M. A. & Brownell, J. E. The NEDD8 conjugation pathway and its relevance in cancer biology and therapy. Genes Cancer 1, 708–716 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wiley, D. J. et al. Yeast Augmented Network Analysis (YANA): a new systems approach to identify therapeutic targets for human genetic diseases. F1000Res 3, 121 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Watson, I. R., Irwin, M. S. & Ohh, M. NEDD8 pathways in cancer, Sine Quibus Non. Cancer Cell 19, 168–176 (2011).

    CAS  PubMed  Google Scholar 

  50. Toth, J. I., Yang, L., Dahl, R. & Petroski, M. D. A gatekeeper residue for NEDD8-activating enzyme inhibition by MLN4924. Cell Rep. 1, 309–316 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Milhollen, M. A. et al. Treatment-emergent mutations in NAEbeta confer resistance to the NEDD8-activating enzyme inhibitor MLN4924. Cancer Cell 21, 388–401 (2012).

    CAS  PubMed  Google Scholar 

  52. Wang, C. et al. Identification of FBL2 as a geranylgeranylated cellular protein required for hepatitis C virus RNA replication. Mol. Cell 18, 425–434 (2005).

    CAS  PubMed  Google Scholar 

  53. Sandberg, J. K., Andersson, S. K., Bachle, S. M., Nixon, D. F. & Moll, M. HIV-1 Vpu interference with innate cell-mediated immune mechanisms. Curr. HIV Res. 10, 327–333 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, E. E. et al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nature Med. 16, 1152–1156 (2010).

    CAS  PubMed  Google Scholar 

  55. Price, C. T. et al. Molecular mimicry by an F-box effector of Legionella pneumophila hijacks a conserved polyubiquitination machinery within macrophages and protozoa. PLoS Pathog. 5, e1000704 (2009).

    PubMed  PubMed Central  Google Scholar 

  56. Zhang, L., Villa, N. Y. & McFadden, G. Interplay between poxviruses and the cellular ubiquitin/ubiquitin-like pathways. FEBS Lett. 583, 607–614 (2009).

    CAS  PubMed  Google Scholar 

  57. Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nature Genet. 42, 105–116 (2010).

    CAS  PubMed  Google Scholar 

  58. Di Fonzo, A. et al. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 72, 240–245 (2009).

    CAS  PubMed  Google Scholar 

  59. Toh, K. L. et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040–1043 (2001).

    CAS  PubMed  Google Scholar 

  60. Welcker, M. & Clurman, B. E. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nature Rev. Cancer 8, 83–93 (2008).

    CAS  Google Scholar 

  61. Wang, Z., Liu, P., Inuzuka, H. & Wei, W. Roles of F-box proteins in cancer. Nature Rev. Cancer 14, 233–247 (2014).

    CAS  Google Scholar 

  62. Kossatz, U. et al. Skp2-dependent degradation of p27kip1 is essential for cell cycle progression. Genes Dev. 18, 2602–2607 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nakayama, K. et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J. 19, 2069–2081 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nakayama, K. et al. Skp2-mediated degradation of p27 regulates progression into mitosis. Dev. Cell 6, 661–672 (2004).

    CAS  PubMed  Google Scholar 

  65. Tsvetkov, L. M., Yeh, K. H. & Lee, S. J., Sun, H. & Zhang, H. p27Kip1 ubiquitination and degradation is regulated by the SCFSkp2 complex through phosphorylated Thr187 in p27. Curr. Biol. 9, 661–664 (1999).

    CAS  PubMed  Google Scholar 

  66. Hao, B. et al. Structural basis of the Cks1-dependent recognition of p27Kip1 by the SCFSkp2 ubiquitin ligase. Mol. Cell 20, 9–19 (2005).

    CAS  PubMed  Google Scholar 

  67. Wu, L. et al. Specific small molecule inhibitors of Skp2-mediated p27 degradation. Chem. Biol. 19, 1515–1524 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Pavlides, S. C. et al. Inhibitors of SCF-Skp2/Cks1 E3 ligase block estrogen-induced growth stimulation and degradation of nuclear p27kip1: therapeutic potential for endometrial cancer. Endocrinology 154, 4030–4045 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Chan, C. H. et al. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 154, 556–568 (2013).

    CAS  PubMed  Google Scholar 

  70. Aghajan, M. et al. Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase. Nature Biotech. 28, 738–742 (2010).

    CAS  Google Scholar 

  71. Orlicky, S. et al. An allosteric inhibitor of substrate recognition by the SCFCdc4 ubiquitin ligase. Nature Biotech. 28, 733–737 (2010).

    CAS  Google Scholar 

  72. Chen, Q. et al. Targeting the p27 E3 ligase SCFSkp2 results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood 111, 4690–4699 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Huang, K. S. & Vassilev, L. T. High-throughput screening for inhibitors of the Cks1-Skp2 interaction. Methods Enzymol. 399, 717–728 (2005).

    CAS  PubMed  Google Scholar 

  74. Rico-Bautista, E., Yang, C. C., Lu, L., Roth, G. P. & Wolf, D. A. Chemical genetics approach to restoring p27Kip1 reveals novel compounds with antiproliferative activity in prostate cancer cells. BMC Biol. 8, 153 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, G. J. et al. Bioluminescent imaging of Cdk2 inhibition in vivo. Nature Med. 10, 643–648 (2004).

    CAS  PubMed  Google Scholar 

  76. Busino, L. et al. Fbxw7α- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nature Cell Biol. 14, 375–385 (2012).

    CAS  PubMed  Google Scholar 

  77. Busino, L. et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316, 900–904 (2007).

    CAS  PubMed  Google Scholar 

  78. Godinho, S. I. et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316, 897–900 (2007).

    CAS  PubMed  Google Scholar 

  79. Siepka, S. M. et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129, 1011–1023 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Xing, W. et al. SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 496, 64–68 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hirota, T. et al. Identification of small molecule activators of cryptochrome. Science 337, 1094–1097 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nangle, S., Xing, W. & Zheng, N. Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase. Cell Res. 23, 1417–1419 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ye, J. et al. Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation. Proc. Natl Acad. Sci. USA 100, 15865–15870 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Feeney, E. R. & Chung, R. T. Antiviral treatment of hepatitis C. BMJ 349, g3308 (2014).

    PubMed Central  Google Scholar 

  85. Pawlotsky, J. M. New hepatitis C therapies: the toolbox, strategies, and challenges. Gastroenterology 146, 1176–1192 (2014).

    CAS  PubMed  Google Scholar 

  86. Chen, B. B., Coon, T. A., Glasser, J. R. & Mallampalli, R. K. Calmodulin antagonizes a calcium-activated SCF ubiquitin E3 ligase subunit, FBXL2, to regulate surfactant homeostasis. Mol. Cell. Biol. 31, 1905–1920 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen, B. B. et al. A combinatorial F box protein directed pathway controls TRAF adaptor stability to regulate inflammation. Nature Immunol. 14, 470–479 (2013).

    CAS  Google Scholar 

  88. Chen, B. B., Glasser, J. R., Coon, T. A. & Mallampalli, R. K. Skp-cullin-F box E3 ligase component FBXL2 ubiquitinates Aurora B to inhibit tumorigenesis. Cell Death Dis. 4, e759 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen, B. B., Glasser, J. R., Coon, T. A. & Mallampalli, R. K. F-box protein FBXL2 exerts human lung tumor suppressor-like activity by ubiquitin-mediated degradation of cyclin D3 resulting in cell cycle arrest. Oncogene 31, 2566–2579 (2012).

    CAS  PubMed  Google Scholar 

  90. Chen, B. B. et al. F-box protein FBXL2 targets cyclin D2 for ubiquitination and degradation to inhibit leukemic cell proliferation. Blood 119, 3132–3141 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Matsuoka, S. et al. Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev. 22, 986–991 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Onoyama, I. et al. Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. J. Exp. Med. 204, 2875–2888 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Thompson, B. J. et al. Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7. J. Exp. Med. 205, 1395–1408 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Crusio, K. M., King, B., Reavie, L. B. & Aifantis, I. The ubiquitous nature of cancer: the role of the SCFFbw7 complex in development and transformation. Oncogene 29, 4865–4873 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Akhoondi, S. et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 67, 9006–9012 (2007).

    CAS  PubMed  Google Scholar 

  96. Maser, R. S. et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447, 966–971 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Annunziata, C. M. et al. Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12, 115–130 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Gregory, M. A. & Hann, S. R. c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells. Mol. Cell. Biol. 20, 2423–2435 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bahram, F., von der Lehr, N., Cetinkaya, C. & Larsson, L. G. c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood 95, 2104–2110 (2000).

    CAS  PubMed  Google Scholar 

  101. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    CAS  PubMed  Google Scholar 

  102. Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Sakamoto, K. M. et al. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol. Cell Proteom. 2, 1350–1358 (2003).

    CAS  Google Scholar 

  104. Bouchie, A., Allison, M., Webb, S. & Defrancesco, L. Nature Biotechnology's academic spinouts of 2013. Nature Biotech. 32, 229–238 (2014).

    CAS  Google Scholar 

  105. Schneekloth, A. R., Pucheault, M., Tae, H. S. & Crews, C. M. Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg. Med. Chem. Lett. 18, 5904–5908 (2008).

    CAS  PubMed  Google Scholar 

  106. Kronke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

    PubMed  Google Scholar 

  107. Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014).

    CAS  PubMed  Google Scholar 

  108. Fischer, E. S. et al. Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512, 49–53 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ito, T., Ando, H. & Handa, H. Teratogenic effects of thalidomide: molecular mechanisms. Cell. Mol. Life Sci. 68, 1569–1579 (2011).

    CAS  PubMed  Google Scholar 

  110. Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010).

    CAS  PubMed  Google Scholar 

  111. Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007).

    CAS  PubMed  Google Scholar 

  112. Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nature Methods 6, 917–922 (2009).

    CAS  PubMed  Google Scholar 

  113. Basse, N. et al. Toward the rational design of p53-stabilizing drugs: probing the surface of the oncogenic Y220C mutant. Chem. Biol. 17, 46–56 (2010).

    CAS  PubMed  Google Scholar 

  114. Boeckler, F. M. et al. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc. Natl Acad. Sci. USA 105, 10360–10365 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Duan, S. et al. FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature 481, 90–93 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lohr, J. G. et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc. Natl Acad. Sci. USA 109, 3879–3884 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).

    CAS  PubMed  Google Scholar 

  118. Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 333, 1157–1160 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kan, Z. et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466, 869–873 (2010).

    CAS  PubMed  Google Scholar 

  120. Richter, J. et al. Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nature Genet. 44, 1316–1320 (2012).

    CAS  PubMed  Google Scholar 

  121. Baraniskin, A. et al. MiR-30a-5p suppresses tumor growth in colon carcinoma by targeting DTL. Carcinogenesis 33, 732–739 (2012).

    CAS  PubMed  Google Scholar 

  122. Pan, H. W. et al. Role of L2DTL, cell cycle-regulated nuclear and centrosome protein, in aggressive hepatocellular carcinoma. Cell Cycle 5, 2676–2687 (2006).

    CAS  PubMed  Google Scholar 

  123. Ueki, T. et al. Involvement of elevated expression of multiple cell-cycle regulator, DTL/RAMP (denticleless/RA-regulated nuclear matrix associated protein), in the growth of breast cancer cells. Oncogene 27, 5672–5683 (2008).

    CAS  PubMed  Google Scholar 

  124. Mackintosh, C. et al. 1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma. Oncogene 31, 1287–1298 (2012).

    CAS  PubMed  Google Scholar 

  125. Li, J. et al. Identification of retinoic acid-regulated nuclear matrix-associated protein as a novel regulator of gastric cancer. Br. J. Cancer 101, 691–698 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Mir, A. et al. Truncation of the E3 ubiquitin ligase component FBXO31 causes non-syndromic autosomal recessive intellectual disability in a Pakistani family. Hum. Genet. 133, 975–984 (2014).

    CAS  PubMed  Google Scholar 

  127. Seeley, A. H. et al. Macrocerebellum, epilepsy, intellectual disability, and gut malrotation in a child with a 16q24.1-q24.2 contiguous gene deletion. Am. J. Med. Genet. A 164, 2062–2068 (2014).

    CAS  Google Scholar 

  128. Bonnen, P. E. et al. Mutations in FBXL4 cause mitochondrial encephalopathy and a disorder of mitochondrial DNA maintenance. Am. J. Hum. Genet. 93, 471–481 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Gai, X. et al. Mutations in FBXL4, encoding a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy. Am. J. Hum. Genet. 93, 482–495 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Staudt, L. M. Oncogenic activation of NF-κB. Cold Spring Harb. Perspect. Biol. 2, a000109 (2010).

    PubMed  PubMed Central  Google Scholar 

  131. Yaron, A. et al. Identification of the receptor component of the IκBα-ubiquitin ligase. Nature 396, 590–594 (1998).

    CAS  PubMed  Google Scholar 

  132. Dehan, E. et al. βTrCP- and Rsk1/2-mediated degradation of BimEL inhibits apoptosis. Mol. Cell 33, 109–116 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Soldatenkov, V. A., Dritschilo, A., Ronai, Z. & Fuchs, S. Y. Inhibition of homologue of Slimb (HOS) function sensitizes human melanoma cells for apoptosis. Cancer Res. 59, 5085–5088 (1999).

    CAS  PubMed  Google Scholar 

  134. Takeishi, S. & Nakayama, K. I. Role of Fbxw7 in the maintenance of normal stem cells and cancer-initiating cells. Br. J. Cancer 111, 1054–1059 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Takeishi, S. et al. Ablation of Fbxw7 eliminates leukemia-initiating cells by preventing quiescence. Cancer Cell 23, 347–361 (2013).

    CAS  PubMed  Google Scholar 

  136. King, B. et al. The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell 153, 1552–1566 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Reavie, L. et al. Regulation of c-Myc ubiquitination controls chronic myelogenous leukemia initiation and progression. Cancer Cell 23, 362–375 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Navon, A. & Ciechanover, A. The 26 S proteasome: from basic mechanisms to drug targeting. J. Biol. Chem. 284, 33713–33718 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Buckley, D. L. & Crews, C. M. Small-molecule control of intracellular protein levels through modulation of the ubiquitin proteasome system. Angew. Chem. Int. Ed Engl. 53, 2312–2330 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Ye, Y. Diverse functions with a common regulator: ubiquitin takes command of an AAA ATPase. J. Struct. Biol. 156, 29–40 (2006).

    CAS  PubMed  Google Scholar 

  141. Fessart, D., Marza, E., Taouji, S., Delom, F. & Chevet, E. P97/CDC-48: proteostasis control in tumor cell biology. Cancer Lett. 337, 26–34 (2013).

    CAS  PubMed  Google Scholar 

  142. Yen, J. L. et al. Signal-induced disassembly of the SCF ubiquitin ligase complex by Cdc48/p97. Mol. Cell 48, 288–297 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. den Besten, W., Verma, R., Kleiger, G., Oania, R. S. & Deshaies, R. J. NEDD8 links cullin-RING ubiquitin ligase function to the p97 pathway. Nature Struct. Mol. Biol. 19, 511–516 (2012).

    CAS  Google Scholar 

  144. Chou, T. F., Li, K., Frankowski, K. J., Schoenen, F. J. & Deshaies, R. J. Structure-activity relationship study reveals ML240 and ML241 as potent and selective inhibitors of p97 ATPase. ChemMedChem. 8, 297–312 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Magnaghi, P. et al. Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nature Chem. Biol. 9, 548–556 (2013).

    CAS  Google Scholar 

  146. Groettrup, M., Pelzer, C., Schmidtke, G. & Hofmann, K. Activating the ubiquitin family: UBA6 challenges the field. Trends Biochem. Sci. 33, 230–237 (2008).

    CAS  PubMed  Google Scholar 

  147. Yang, Y. et al. Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res. 67, 9472–9481 (2007).

    CAS  PubMed  Google Scholar 

  148. Chen, J. J. et al. Mechanistic studies of substrate-assisted inhibition of ubiquitin-activating enzyme by adenosine sulfamate analogues. J. Biol. Chem. 286, 40867–40877 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Ceccarelli, D. F. et al. An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell 145, 1075–1087 (2011).

    CAS  PubMed  Google Scholar 

  150. Huang, H. et al. E2 enzyme inhibition by stabilization of a low-affinity interface with ubiquitin. Nature Chem. Biol. 10, 156–163 (2014).

    CAS  Google Scholar 

  151. Nicholson, B. & Suresh Kumar, K. G. The multifaceted roles of USP7: new therapeutic opportunities. Cell Biochem. Biophys. 60, 61–68 (2011).

    CAS  PubMed  Google Scholar 

  152. Colland, F. et al. Small-molecule inhibitor of USP7/HAUSP ubiquitin protease stabilizes and activates p53 in cells. Mol. Cancer Ther. 8, 2286–2295 (2009).

    CAS  PubMed  Google Scholar 

  153. Lee, B. H., Finley, D. & King, R. W. A. High-throughput screening method for identification of inhibitors of the deubiquitinating enzyme USP14. Curr. Protoc. Chem. Biol. 4, 311–330 (2012).

    PubMed  PubMed Central  Google Scholar 

  154. Lee, B. H. et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467, 179–184 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Tian, Z. et al. A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance. Blood 123, 706–716 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Chauhan, D. et al. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell 22, 345–358 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Weinstock, J. et al. Selective dual inhibitors of the cancer-related deubiquitylating proteases USP7 and USP47. ACS Med. Chem. Lett. 3, 789–792 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Kapuria, V. et al. Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res. 70, 9265–9276 (2010).

    CAS  PubMed  Google Scholar 

  159. Chen, J. et al. Selective and cell-active inhibitors of the USP1/ UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells. Chem. Biol. 18, 1390–1400 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Faesen, A. C. et al. Mechanism of USP7/HAUSP activation by its C-terminal ubiquitin-like domain and allosteric regulation by GMP-synthetase. Mol. Cell 44, 147–159 (2011).

    CAS  PubMed  Google Scholar 

  161. Cohn, M. A. et al. A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. Mol. Cell 28, 786–797 (2007).

    CAS  PubMed  Google Scholar 

  162. Villamil, M. A. et al. Serine phosphorylation is critical for the activation of ubiquitin-specific protease 1 and its interaction with WD40-repeat protein UAF1. Biochemistry 51, 9112–9123 (2012).

    CAS  PubMed  Google Scholar 

  163. Villamil, M. A., Chen, J., Liang, Q. & Zhuang, Z. A noncanonical cysteine protease USP1 is activated through active site modulation by USP1-associated factor 1. Biochemistry 51, 2829–2839 (2012).

    CAS  PubMed  Google Scholar 

  164. Cohen, P. & Tcherpakov, M. Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 143, 686–693 (2010).

    CAS  PubMed  Google Scholar 

  165. Knight, Z. A., Lin, H. & Shokat, K. M. Targeting the cancer kinome through polypharmacology. Nature Rev. Cancer 10, 130–137 (2010).

    CAS  Google Scholar 

  166. Schwartz, G. K. et al. Phase I study of PD 0332991, a cyclin-dependent kinase inhibitor, administered in 3-week cycles (Schedule 2/1). Br. J. Cancer 104, 1862–1868 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Rocca, A., Farolfi, A., Bravaccini, S., Schirone, A. & Amadori, D. Palbociclib (PD 0332991): targeting the cell cycle machinery in breast cancer. Expert Opin. Pharmacother. 15, 407–420 (2014).

    CAS  PubMed  Google Scholar 

  168. Fry, D. W. et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol. Cancer Ther. 3, 1427–1438 (2004).

    CAS  PubMed  Google Scholar 

  169. Macias-Perez, I. M. & Flinn, I. W. GS-1101: a delta-specific PI3K inhibitor in chronic lymphocytic leukemia. Curr. Hematol. Malig Rep. 8, 22–27 (2013).

    PubMed  Google Scholar 

  170. Fruman, D. A. & Rommel, C. PI3Kδ inhibitors in cancer: rationale and serendipity merge in the clinic. Cancer Discov. 1, 562–572 (2011).

    CAS  PubMed  Google Scholar 

  171. Blagosklonny, M. V. Flavopiridol, an inhibitor of transcription: implications, problems and solutions. Cell Cycle 3, 1537–1542 (2004).

    CAS  PubMed  Google Scholar 

  172. Mallampalli, R. K. et al. Targeting F box protein Fbxo3 to control cytokine-driven inflammation. J. Immunol. 191, 5247–5255 (2013).

    CAS  PubMed  Google Scholar 

  173. Nakajima, H., Fujiwara, H., Furuichi, Y., Tanaka, K. & Shimbara, N. A novel small-molecule inhibitor of NF-κB signaling. Biochem. Biophys. Res. Commun. 368, 1007–1013 (2008).

    CAS  PubMed  Google Scholar 

  174. Blees, J. S. et al. Erioflorin stabilizes the tumor suppressor Pdcd4 by inhibiting its interaction with the E3-ligase β-TrCP1. PLoS ONE 7, e46567 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank T. Cardozo, C. Crewes, R. Deshaies, R. Kumar, R. Mallampalli, K. Nakayama, N. Wilkie and N. Zheng for critically reading the manuscript and apologise for the omission of many colleagues' work owing to space constraints. J.R.S. is a Special Fellow of The Leukemia & Lymphoma Society. J.K.P. is supported by a fellowship from the Lymphoma Research Foundation. Work in the Pagano laboratory is supported by grants (R37CA076584 and R01GM057587) from the US National Institutes of Health. M.P. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Pagano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

UB Pharma website

PowerPoint slides

Glossary

Ubiquitin

A 76-amino acid protein that can be covalently conjugated to other proteins through amine groups at the amino terminus or on internal lysine residues. Proteins can be monoubiquitylated or polyubiquitylated. Chains assembled via K48 (in most cases) and K11 linkages target substrate proteins to the proteasome for degradation.

Ubiquitylation

The process of covalently attaching ubiquitin to another protein. Ubiquitylation is accomplished via an enzymatic cascade of an E1 ubiquitin activating enzyme, an E2 ubiquitin conjugating enzyme, and an E3 ubiquitin ligase.

Proteasome

A large protein complex that catalyses the proteolytic destruction of proteins.

Ubiquitin–proteasome system

The ubiquitin–proteasome system (UPS) collectively refers to the proteins regulating ubiquitin-dependent protein degradation by the proteasome.

RING domains

Really interesting new gene (RING) domains coordinate zinc ions and often mediate binding of E2 ubiquitin conjugating enzymes.

HECT domain

Homologous to E6 carboxy-terminus (HECT) domains define a sub-family of E3 ubiquitin ligases. HECT domains recruit the E2 ubiquitin conjugating enzyme and participate directly in substrate ubiquitylation by forming a thioester bond with ubiquitin.

Cullin (CUL)–RING-ligases

(CRLs). A family of multisubunit E3 ubiquitin ligases that share a common architecture. The eight CRLs are each based on a different cullin scaffold protein, and each complex recruits a small RING protein and a unique set of substrate adaptor proteins.

SCF complexes

(SKP1–CUL1–F-box protein complexes; also known as CRL1). A family of multi-subunit E3 ubiquitin ligases. As listed in the name, SCF complexes contain a cullin 1 (CUL1) scaffold, and an S-phase kinase-associated protein 1 (SKP1) that bridges CUL1 to a variable F-box- containing protein, of which there are ~70 in mammals. These complexes also contain the small RING protein RBX1.

NEDD8

A small, ubiquitin-like protein that can be conjugated to other proteins to alter their function. The best-defined and most abundant substrates for neddylation are the cullin family of proteins, which require neddylation for their activity.

Degrons

A small region of a substrate protein that is recognized by the E3 ubiquitin ligase and is required for substrate binding and ubiquitylation. Minimal degrons are often short peptide sequences. A variety of mechanisms, including post-translational modification of residues within the degron, can regulate access and binding of the degron to the E3 ubiquitin ligase.

Pharmacophores

The features of a small-molecule ligand that dictate the interactions with macromolecular targets that are responsible for its biological activities.

Cryptochrome proteins

The two mammalian cryptochrome proteins (cryptochrome 1 (CRY1) and CRY2) function in the circadian clock machinery as transcriptional repressors.

Hepatitis C virus (HCV) NS5A

A multifunctional protein generated from the cleavage of a polyprotein precursor during HCV infection and required for productive HCV infection.

Proteolysis targeting chimeras

(PROTACs). Bi-functional compounds, molecules or proteins that bind an E3 ubiquitin ligase on one end and another protein that is not the normal E3 substrate on the other end. PROTACs retarget the E3 ligase activity to new substrates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skaar, J., Pagan, J. & Pagano, M. SCF ubiquitin ligase-targeted therapies. Nat Rev Drug Discov 13, 889–903 (2014). https://doi.org/10.1038/nrd4432

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4432

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer