Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

G protein-coupled receptors for energy metabolites as new therapeutic targets

Key Points

  • In recent years, several G protein-coupled receptors (GPCRs) have been identified that are activated by energy substrates such as fatty acids and sucrose, or by metabolic intermediates such as acetate, lactate or ketone bodies.

  • These carbohydrate or lipid metabolites, by activating specific GPCRs, function in a hormone-like fashion in addition to their role as carriers of energy.

  • Metabolite receptors sense metabolic activity or levels of energy substrates and control the secretion of metabolic hormones or regulate the metabolic activity of particular cells.

  • Synthetic ligands of the heterodimeric sweet receptor taste receptor type 1 member 2 (TAS1R2)–TAS1R3, which is a receptor for mono- and disaccharides, are used as artificial sweeteners but may have additional metabolic functions, as TAS1R2–TAS1R3 appears to be also involved in non-gustatory metabolic functions.

  • The long-chain fatty acid receptors free fatty acid receptor 1 (FFA1; (also known as GPR40) and GPR120 (also known as omega-3 fatty acid receptor 1) mediate beneficial effects by promoting glucose-induced insulin secretion and by inhibiting inflammatory signalling in immune cells, respectively.

  • The short-chain fatty acid receptors FFA2 (also known as GPR43) and FFA3 (also known as GPR41) appear to link the gut microbiota to metabolic and immune functions. Whether these receptors can be exploited therapeutically is currently not clear.

  • Succinate receptor 1 (SUCNR1; also known as GPR91), which is activated by the citric acid cycle intermediate succinate (released by cells following cellular stress or hypoxia), is involved in the regulation of blood pressure, retinal angiogenesis and immune functions.

  • Of the hydroxycarboxylic acid receptors, which are activated by ketone bodies or lactate, hydroxycarboxylic acid receptor 2 (HCA2) — which is also activated by nicotinic acid — in particular is of pharmacological interest as it mediates some anti-dyslipidaemic effects as well as anti-inflammatory effects, which can be used to reduce the progression of atherosclerosis and potentially other diseases.

  • Several of these receptors have been tested as targets for drugs to treat particular metabolic diseases, and various synthetic ligands have been developed in recent years. Agonists of FFA1 and HCA2 are currently being tested in clinical trials.

Abstract

Several G protein-coupled receptors (GPCRs) that are activated by intermediates of energy metabolism — such as fatty acids, saccharides, lactate and ketone bodies — have recently been discovered. These receptors are able to sense metabolic activity or levels of energy substrates and use this information to control the secretion of metabolic hormones or to regulate the metabolic activity of particular cells. Moreover, most of these receptors appear to be involved in the pathophysiology of metabolic diseases such as diabetes, dyslipidaemia and obesity. This Review summarizes the functions of these metabolite-sensing GPCRs in physiology and disease, and discusses the emerging pharmacological agents that are being developed to target these GPCRs for the treatment of metabolic disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic catabolic pathways of carbohydrate and lipid energy metabolism.
Figure 2: Structures of synthetic ligands of the taste receptor TAS1R2–TAS1R3.
Figure 3: Simplified schematic diagram of the regulation of enteroendocrine cell function through GPCRs.
Figure 4: Simplified schematic diagram of the regulation of insulin secretion from pancreatic β-cells by metabolites and hormones acting through GPCRs.
Figure 5: Structures of synthetic ligands of long-chain fatty acid receptors.
Figure 6: Structures of synthetic ligands of the short-chain fatty acid receptor FFA2.
Figure 7: Model of the regulation of adipocyte function through GPCRs.
Figure 8: Structures of synthetic ligands of hydroxycarboxylic acid receptors and the succinate receptor.

Similar content being viewed by others

References

  1. Rask-Andersen, M., Almen, M. S. & Schioth, H. B. Trends in the exploitation of novel drug targets. Nature Rev. Drug. Discov. 10, 579–590 (2011).

    CAS  Google Scholar 

  2. Lefkowitz, R. J. Seven transmembrane receptors: something old, something new. Acta Physiol. (Oxf.) 190, 9–19 (2007).

    CAS  Google Scholar 

  3. Oldham, W. M. & Hamm, H. E. How do receptors activate G proteins? Adv. Protein Chem. 74, 67–93 (2007).

    CAS  PubMed  Google Scholar 

  4. Wettschureck, N. & Offermanns, S. Mammalian G proteins and their cell type specific functions. Physiol. Rev. 85, 1159–1204 (2005).

    CAS  PubMed  Google Scholar 

  5. Ahmadian, M., Duncan, R. E. & Sul, H. S. The skinny on fat: lipolysis and fatty acid utilization in adipocytes. Trends Endocrinol. Metab. 20, 424–428 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bezaire, V. & Langin, D. Regulation of adipose tissue lipolysis revisited. Proc. Nutr. Soc. 68, 350–360 (2009).

    CAS  PubMed  Google Scholar 

  7. Ahren, B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nature Rev. Drug. Discov. 8, 369–385 (2009). This is an excellent review on the role of GPCRs in the regulation of pancreatic β -cells and their established or potential roles as targets for antidiabetic drugs.

    CAS  Google Scholar 

  8. Engelstoft, M. S., Egerod, K. L., Holst, B. & Schwartz, T. W. A gut feeling for obesity: 7TM sensors on enteroendocrine cells. Cell. Metab. 8, 447–449 (2008).

    CAS  PubMed  Google Scholar 

  9. Reimann, F., Tolhurst, G. & Gribble, F. M. G-protein-coupled receptors in intestinal chemosensation. Cell. Metab. 15, 421–431 (2012). This is an excellent review on the role of GPCRs in enteric cells and their function in the regulation of metabolic processes.

    CAS  PubMed  Google Scholar 

  10. Rocha, V. Z. & Libby, P. Obesity, inflammation, and atherosclerosis. Nature Rev. Cardiol. 6, 399–409 (2009).

    CAS  Google Scholar 

  11. Lumeng, C. N. & Saltiel, A. R. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121, 2111–2117 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Olefsky, J. M. & Glass, C. K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219–246 (2010).

    CAS  PubMed  Google Scholar 

  13. Osborn, O. & Olefsky, J. M. The cellular and signaling networks linking the immune system and metabolism in disease. Nature Med. 18, 363–374 (2012).

    CAS  PubMed  Google Scholar 

  14. Zhao, G. Q. et al. The receptors for mammalian sweet and umami taste. Cell 115, 255–266 (2003).

    CAS  PubMed  Google Scholar 

  15. Urwyler, S. Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol. Rev. 63, 59–126 (2011).

    CAS  PubMed  Google Scholar 

  16. Nelson, G. et al. Mammalian sweet taste receptors. Cell 106, 381–390 (2001).

    CAS  Google Scholar 

  17. Li, X. et al. Human receptors for sweet and umami taste. Proc. Natl Acad. Sci. USA 99, 4692–4696 (2002).

    CAS  Google Scholar 

  18. Servant, G., Tachdjian, C., Li, X. & Karanewsky, D. S. The sweet taste of true synergy: positive allosteric modulation of the human sweet taste receptor. Trends Pharmacol. Sci. 32, 631–636 (2011). This is an excellent review on the development and properties of positive allosteric modulators of the sweet receptor.

    CAS  PubMed  Google Scholar 

  19. Nie, Y., Vigues, S., Hobbs, J. R., Conn, G. L. & Munger, S. D. Distinct contributions of T1R2 and T1R3 taste receptor subunits to the detection of sweet stimuli. Curr. Biol. 15, 1948–1952 (2005).

    CAS  PubMed  Google Scholar 

  20. Xu, H. et al. Different functional roles of T1R subunits in the heteromeric taste receptors. Proc. Natl Acad. Sci. USA 101, 14258–14263 (2004).

    CAS  Google Scholar 

  21. Jiang, P. et al. Identification of the cyclamate interaction site within the transmembrane domain of the human sweet taste receptor subunit T1R3. J. Biol. Chem. 280, 34296–34305 (2005).

    CAS  Google Scholar 

  22. Liu, B. et al. Molecular mechanism of species-dependent sweet taste toward artificial sweeteners. J. Neurosci. 31, 11070–11076 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, F. et al. Molecular mechanism for the umami taste synergism. Proc. Natl Acad. Sci. USA 105, 20930–20934 (2008).

    CAS  PubMed  Google Scholar 

  24. Zhang, Y. et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112, 293–301 (2003).

    CAS  PubMed  Google Scholar 

  25. Jang, H. J. et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc. Natl Acad. Sci. USA 104, 15069–15074 (2007).

    CAS  PubMed  Google Scholar 

  26. Kokrashvili, Z., Mosinger, B. & Margolskee, R. F. T1r3 and alpha-gustducin in gut regulate secretion of glucagon-like peptide-1. Ann. NY Acad. Sci. 1170, 91–94 (2009).

    CAS  PubMed  Google Scholar 

  27. Gerspach, A. C., Steinert, R. E., Schonenberger, L., Graber-Maier, A. & Beglinger, C. The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans. Am. J. Physiol. Endocrinol. Metab. 301, E317–E325 (2011).

    CAS  PubMed  Google Scholar 

  28. Margolskee, R. F. et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc. Natl Acad. Sci. USA 104, 15075–15080 (2007).

    CAS  PubMed  Google Scholar 

  29. Reimann, F. et al. Glucose sensing in L-cells: a primary cell study. Cell. Metab. 8, 532–539 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bezencon, C., le Coutre, J. & Damak, S. Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem. Senses 32, 41–49 (2007).

    CAS  PubMed  Google Scholar 

  31. Parker, H. E., Reimann, F. & Gribble, F. M. Molecular mechanisms underlying nutrient-stimulated incretin secretion. Expert. Rev. Mol. Med. 12, e1 (2010).

    PubMed  Google Scholar 

  32. Kyriazis, G. A., Soundarapandian, M. M. & Tyrberg, B. Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proc. Natl Acad. Sci. USA 109, E524–E532 (2012).

    CAS  PubMed  Google Scholar 

  33. Shigemura, R. et al. Compositions comprising sweetness enhancers and methods of making them. WO Patent 2010/014813 (A2) (2010).

  34. Servant, G. et al. Positive allosteric modulators of the human sweet taste receptor enhance sweet taste. Proc. Natl Acad. Sci. USA 107, 4746–4751 (2010).

    CAS  PubMed  Google Scholar 

  35. Zhang, F. et al. Molecular mechanism of the sweet taste enhancers. Proc. Natl Acad. Sci. USA 107, 4752–4757 (2010).

    CAS  PubMed  Google Scholar 

  36. Jiang, P. et al. Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. J. Biol. Chem. 280, 15238–15246 (2005).

    CAS  Google Scholar 

  37. Unger, R. H. The physiology of cellular liporegulation. Annu. Rev. Physiol. 65, 333–347 (2003).

    CAS  PubMed  Google Scholar 

  38. Hara, T., Hirasawa, A., Ichimura, A., Kimura, I. & Tsujimoto, G. Free fatty acid receptors FFAR1 and GPR120 as novel therapeutic targets for metabolic disorders. J. Pharm. Sci. 100, 3594–3601 (2011).

    CAS  PubMed  Google Scholar 

  39. Briscoe, C. P. et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J. Biol. Chem. 278, 11303–11311 (2003).

    CAS  PubMed  Google Scholar 

  40. Itoh, Y. et al. Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40. Nature 422, 173–176 (2003).

    CAS  PubMed  Google Scholar 

  41. Kotarsky, K., Nilsson, N. E., Flodgren, E., Owman, C. & Olde, B. A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem. Biophys. Res. Commun. 301, 406–410 (2003).

    CAS  PubMed  Google Scholar 

  42. Edfalk, S., Steneberg, P. & Edlund, H. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 57, 2280–2287 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hirasawa, A. et al. Production and characterization of a monoclonal antibody against GPR40 (FFAR1; free fatty acid receptor 1). Biochem. Biophys. Res. Commun. 365, 22–28 (2008).

    CAS  PubMed  Google Scholar 

  44. Cartoni, C. et al. Taste preference for fatty acids is mediated by GPR40 and GPR120. J. Neurosci. 30, 8376–8382 (2010). This paper provides the first description that FFA1 (GPR40) and GPR120 are involved in taste perception and mediate the taste of fatty acids.

    CAS  PubMed  Google Scholar 

  45. Ma, D. et al. Expression of free fatty acid receptor GPR40 in the central nervous system of adult monkeys. Neurosci. Res. 58, 394–401 (2007).

    CAS  PubMed  Google Scholar 

  46. Tomita, T. et al. Expression of the gene for a membrane-bound fatty acid receptor in the pancreas and islet cell tumours in humans: evidence for GPR40 expression in pancreatic beta cells and implications for insulin secretion. Diabetologia 49, 962–968 (2006).

    CAS  PubMed  Google Scholar 

  47. Steneberg, P., Rubins, N., Bartoov-Shifman, R., Walker, M. D. & Edlund, H. The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell. Metab. 1, 245–258 (2005).

    CAS  PubMed  Google Scholar 

  48. Kebede, M. et al. The fatty acid receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding. Diabetes 57, 2432–2437 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tan, C. P. et al. Selective small-molecule agonists of G protein-coupled receptor 40 promote glucose-dependent insulin secretion and reduce blood glucose in mice. Diabetes 57, 2211–2219 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Latour, M. G. et al. GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo. Diabetes 56, 1087–1094 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Briscoe, C. P. et al. Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br. J. Pharmacol. 148, 619–628 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Song, F. et al. Synthesis and biological evaluation of 3-aryl-3-(4-phenoxy)-propionic acid as a novel series of G protein-coupled receptor 40 agonists. J. Med. Chem. 50, 2807–2817 (2007).

    CAS  PubMed  Google Scholar 

  53. Nagasumi, K. et al. Overexpression of GPR40 in pancreatic β-cells augments glucose stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice. Diabetes 58, 1067–1076 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kebede, M. et al. Glucose activates free fatty acid receptor 1 gene transcription via phosphatidylinositol-3-kinase-dependent O-GlcNAcylation of pancreas-duodenum homeobox-1. Proc. Natl Acad. Sci. USA 109, 2376–2381 (2012).

    CAS  PubMed  Google Scholar 

  55. Garrido, D. M. et al. Synthesis and activity of small molecule GPR40 agonists. Bioorg. Med. Chem. Lett. 16, 1840–1845 (2006).

    CAS  PubMed  Google Scholar 

  56. Christiansen, E. et al. Structure–activity study of dihydrocinnamic acids and discovery of the potent FFA1 (GPR40) agonist TUG-469. ACS Med. Chem. Lett. 1, 345–349 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Christiansen, E. et al. Identification of a potent and selective free fatty acid receptor 1 (FFA1/GPR40) agonist with favorable physicochemical and in vitro ADME properties. J. Med. Chem. 54, 6691–6703 (2011).

    CAS  PubMed  Google Scholar 

  58. Walsh, S. P. et al. 3-substituted 3-(4-aryloxyaryl)-propanoic acids as GPR40 agonists. Bioorg. Med. Chem. Lett. 21, 3390–3394 (2011).

    CAS  PubMed  Google Scholar 

  59. Lin, D. C. et al. AMG 837: a novel GPR40/FFA1 agonist that enhances insulin secretion and lowers glucose levels in rodents. PLoS ONE 6, e27270 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Houze, J. B. et al. AMG 837: a potent, orally bioavailable GPR40 agonist. Bioorg. Med. Chem. Lett. 22, 1267–1270 (2012).

    CAS  Google Scholar 

  61. Tsujihata, Y. et al. TAK-875, an orally available G protein-coupled receptor 40/free fatty acid. receptor 1 agonist, enhances glucose-dependent insulin secretion and improves both postprandial and fasting hyperglycemia in type 2 diabetic rats. J. Pharmacol. Exp. Ther. 339, 228–237 (2011).

    CAS  PubMed  Google Scholar 

  62. Sasaki, S. et al. Design, synthesis, and biological activity of potent and orally available G protein-coupled receptor 40 agonists. J. Med. Chem. 54, 1365–1378 (2011).

    CAS  PubMed  Google Scholar 

  63. Negoro, N. et al. Identification of fused-ring alkanoic acids with improved pharmacokinetic profiles that act as G protein-coupled receptor 40/free fatty acid receptor 1 agonists. J. Med. Chem. 55, 1538–1552 (2012).

    CAS  PubMed  Google Scholar 

  64. Negoro, N. et al. Optimization of (2,3-dihydro-1-benzofuran-3-yl)acetic acids: discovery of a non-free fatty acid-like, highly bioavailable G protein-coupled receptor 40/free fatty acid receptor 1 agonist as a glucose-dependent insulinotropic agent. J. Med. Chem. 55, 3960–3974 (2012).

    CAS  PubMed  Google Scholar 

  65. Mikami, S. et al. Discovery of phenylpropanoic acid derivatives containing polar functionalities as potent and orally bioavailable G protein-coupled receptor 40 agonists for the treatment of type 2 diabetes. J. Med. Chem. 55, 3756–3776 (2012).

    CAS  PubMed  Google Scholar 

  66. Burant, C. F. et al. TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: a Phase 2, randomised, double-blind, placebo-controlled trial. Lancet 379, 1403–1411 (2012). This is the first report on a Phase II clinical trial of a synthetic FFA1 agonist showing glucose-lowering effects that were comparable to those of a sulphonylurea but with less tendency to produce hypoglycaemia.

    CAS  PubMed  Google Scholar 

  67. Stoddart, L. A., Brown, A. J. & Milligan, G. Uncovering the pharmacology of the G protein-coupled receptor GPR40: high apparent constitutive activity in guanosine 5′-O-(3-[35S]thio)triphosphate binding studies reflects binding of an endogenous agonist. Mol. Pharmacol. 71, 994–1005 (2007).

    CAS  PubMed  Google Scholar 

  68. Smith, N. J., Stoddart, L. A., Devine, N. M., Jenkins, L. & Milligan, G. The action and mode of binding of thiazolidinedione ligands at free fatty acid receptor 1. J. Biol. Chem. 284, 17527–17539 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhou, C. et al. Discovery of 5-aryloxy-2,4-thiazolidinediones as potent GPR40 agonists. Bioorg. Med. Chem. Lett. 20, 1298–1301 (2010).

    CAS  PubMed  Google Scholar 

  70. Hu, H. et al. A novel class of antagonists for the FFAs receptor GPR40. Biochem. Biophys. Res. Commun. 390, 557–563 (2009).

    CAS  PubMed  Google Scholar 

  71. Tikhonova, I. G. et al. Discovery of novel agonists and antagonists of the free fatty acid receptor 1 (FFAR1) using virtual screening. J. Med. Chem. 51, 625–633 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Humphries, P. S. et al. Synthesis and SAR of 1,2,3,4-tetrahydroisoquinolin-1-ones as novel G-protein-coupled receptor 40 (GPR40) antagonists. Bioorg. Med. Chem. Lett. 19, 2400–2403 (2009).

    CAS  PubMed  Google Scholar 

  73. Hirasawa, A. et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nature Med. 11, 90–94 (2005).

    CAS  Google Scholar 

  74. Moore, K., Zhang, Q., Murgolo, N., Hosted, T. & Duffy, R. Cloning, expression, and pharmacological characterization of the GPR120 free fatty acid receptor from cynomolgus monkey: comparison with human GPR120 splice variants. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 154, 419–426 (2009).

    PubMed  Google Scholar 

  75. Galindo, M. M. et al. G protein-coupled receptors in human fat taste perception. Chem. Senses 37, 123–139 (2012).

    CAS  PubMed  Google Scholar 

  76. Watson, S. J., Brown, A. J. & Holliday, N. Differential signalling by splice variants of the human free fatty acid receptor, GPR120. Mol. Pharmacol. 81, 631–642 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gotoh, C. et al. The regulation of adipogenesis through GPR120. Biochem. Biophys. Res. Commun. 354, 591–597 (2007).

    CAS  PubMed  Google Scholar 

  78. Oh Da, Y. et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687–698 (2010). This is the first description of GPR120 as a receptor for omega-3 fatty acids that mediates anti-inflammatory and insulin-sensitizing effects.

    PubMed  Google Scholar 

  79. Miyauchi, S. et al. Distribution and regulation of protein expression of the free fatty acid receptor GPR120. Naunyn Schmiedebergs Arch. Pharmacol. 379, 427–434 (2009).

    CAS  PubMed  Google Scholar 

  80. Talukdar, S., Olefsky, J. M. & Osborn, O. Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and inflammatory diseases. Trends Pharmacol. Sci. 32, 543–550 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ichimura, A. et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483, 350–354 (2012). This is the first report showing that dysfunction of GPR120 promotes insulin resistance and obesity in mice and humans. This study also reports on a missense mutation in the human receptor, which interferes with GPR120-mediated signalling and is strongly correlated with an increased risk of developing obesity.

    CAS  PubMed  Google Scholar 

  82. Sun, Q. et al. Structure–activity relationships of GPR120 agonists based on a docking simulation. Mol. Pharmacol. 78, 804–810 (2010).

    CAS  PubMed  Google Scholar 

  83. Shimpukade, B., Hudson, B. D., Hovgaard, C. K., Milligan, G. & Ulven, T. Discovery of a potent and selective GPR120 agonist. J. Med. Chem. 55, 4511–4515 (2012).

    CAS  PubMed  Google Scholar 

  84. Shi, D. F. et al. GPR120 receptor agonists and uses thereof. US Patent 2010/190831 (A1) (2010).

  85. Shi, D. F. et al. GPR120 receptor agonists and uses thereof. WO Patent 2011/159297 (A1) (2011).

  86. Shi, D. F. et al. GPR120 receptor agonists and uses thereof. US Patent 2011/313003 (A1) (2011).

  87. Epple, R. et al. Thiazole derivatives as modulators of G protein-coupled receptors. WO Patent 2008103500 (A1) (2008).

  88. Hashimoto, N. et al. Novel phenyl-isoxazol-3-ol derivative. US Patent 2010/130559 (2010).

  89. Ishikawa, M. et al. Novel isoxazole derivative. EP Patent 2298750(A1) (2011).

  90. Wang, J., Wu, X., Simonavicius, N., Tian, H. & Ling, L. Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J. Biol. Chem. 281, 34457–34464 (2006).

    CAS  PubMed  Google Scholar 

  91. Bouchard, C., Page, J., Bedard, A., Tremblay, P. & Vallieres, L. G protein-coupled receptor 84, a microglia-associated protein expressed in neuroinflammatory conditions. Glia 55, 790–800 (2007).

    PubMed  Google Scholar 

  92. Venkataraman, C. & Kuo, F. The G-protein coupled receptor, GPR84 regulates IL-4 production by T lymphocytes in response to CD3 crosslinking. Immunol. Lett. 101, 144–153 (2005).

    CAS  PubMed  Google Scholar 

  93. Nagasaki, H. et al. Inflammatory changes in adipose tissue enhance expression of GPR84, a medium-chain fatty acid receptor: TNFα enhances GPR84 expression in adipocytes. FEBS Lett. 586, 368–372 (2012).

    CAS  PubMed  Google Scholar 

  94. Hakak, Y. Unett, D.J., Gatlin, J., Liaw, C.W. & Inc, A.P. Human G protein-coupled receptor and modulators thereof for the treatment of atherosclerosis and atherosclerotic disease and for the treatment of conditions related to MCP-1 expression. WO Patent 2007/027661 (A2) (2007).

  95. Topping, D. L. & Clifton, P. M. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81, 1031–1064 (2001).

    CAS  PubMed  Google Scholar 

  96. Brown, A. J. et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2003).

    CAS  PubMed  Google Scholar 

  97. Le Poul, E. et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489 (2003).

    CAS  PubMed  Google Scholar 

  98. Nilsson, N. E., Kotarsky, K., Owman, C. & Olde, B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun. 303, 1047–1052 (2003).

    CAS  PubMed  Google Scholar 

  99. Hong, Y. H. et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146, 5092–5099 (2005).

    CAS  PubMed  Google Scholar 

  100. Xiong, Y. et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc. Natl Acad. Sci. USA 101, 1045–1050 (2004).

    CAS  PubMed  Google Scholar 

  101. Zaibi, M. S. et al. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett. 584, 2381–2386 (2010).

    CAS  PubMed  Google Scholar 

  102. Kimura, I. et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl Acad. Sci. USA 108, 8030–8035 (2011).

    CAS  PubMed  Google Scholar 

  103. Bjursell, M. et al. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 300, E211–E220 (2011).

    CAS  PubMed  Google Scholar 

  104. Karaki, S. et al. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res. 324, 353–360 (2006).

    CAS  PubMed  Google Scholar 

  105. Tazoe, H. et al. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed. Res. 30, 149–156 (2009).

    CAS  PubMed  Google Scholar 

  106. Tazoe, H. et al. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J. Physiol. Pharmacol. 59 (Suppl. 2), 251–262 (2008).

    PubMed  Google Scholar 

  107. Samuel, B. S. et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl Acad. Sci. USA 105, 16767–16772 (2008).

    CAS  PubMed  Google Scholar 

  108. Karaki, S. et al. Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J. Mol. Histol. 39, 135–142 (2008).

    CAS  PubMed  Google Scholar 

  109. Kaji, I., Karaki, S., Tanaka, R. & Kuwahara, A. Density distribution of free fatty acid receptor 2 (FFA2)-expressing and GLP-1-producing enteroendocrine L cells in human and rat lower intestine, and increased cell numbers after ingestion of fructo-oligosaccharide. J. Mol. Histol. 42, 27–38 (2011).

    CAS  PubMed  Google Scholar 

  110. Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Lin, H. V. et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 7, e35240 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009). This is the first report showing that FFA2 activation by short-chain fatty acids links diet and gastrointestinal bacterial metabolism with immune and inflammatory responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Senga, T. et al. LSSIG is a novel murine leukocyte-specific GPCR that is induced by the activation of STAT3. Blood 101, 1185–1187 (2003).

    CAS  PubMed  Google Scholar 

  114. Vinolo, M. A. et al. SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS ONE 6, e21205 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Sina, C. et al. G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J. Immunol. 183, 7514–7522 (2009).

    CAS  PubMed  Google Scholar 

  116. Ge, H. et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149, 4519–4526 (2008).

    CAS  PubMed  Google Scholar 

  117. Wang, Y. et al. The first synthetic agonists of FFA2: discovery and SAR of phenylacetamides as allosteric modulators. Bioorg. Med. Chem. Lett. 20, 493–498 (2010).

    PubMed  Google Scholar 

  118. Lee, T. et al. Identification and functional characterization of allosteric agonists for the G protein-coupled receptor FFA2. Mol. Pharmacol. 74, 1599–1609 (2008).

    CAS  PubMed  Google Scholar 

  119. Schmidt, J. et al. Selective orthosteric free fatty acid receptor 2 (FFA2) agonists: identification of the structural and chemical requirements for selective activation of FFA2 versus FFA3. J. Biol. Chem. 286, 10628–10640 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Hoveyda, H., Zoute, L. & Lenoir, F. Novel compounds, method for use them and pharmaceutical composition containing them. WO Patent 2011/151436(A2) (2011).

  121. Brantis, C. E., Ooms, F. & Bernard, J. Novel amino acid derivatives and their use as GPR43 receptor modulators. WO Patent 2011/092284(A1) (2011).

  122. Cai, T. Q. et al. Role of GPR81 in lactate-mediated reduction of adipose lipolysis. Biochem. Biophys. Res. Commun. 377, 987–991 (2008).

    CAS  PubMed  Google Scholar 

  123. Liu, C. et al. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J. Biol. Chem. 284, 2811–2822 (2009).

    CAS  PubMed  Google Scholar 

  124. Taggart, A. K. et al. (d)-β-hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J. Biol. Chem. 280, 26649–26652 (2005).

    CAS  PubMed  Google Scholar 

  125. Ahmed, K. et al. Deorphanization of GPR109B as a receptor for the beta-oxidation intermediate 3-OH-octanoic acid and its role in the regulation of lipolysis. J. Biol. Chem. 284, 21928–21933 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Offermanns, S. et al. International Union of Basic and Clinical Pharmacology. LXXXII: nomenclature and classification of hydroxy-carboxylic acid receptors (GPR81, GPR109A, and GPR109B). Pharmacol. Rev. 63, 269–290 (2011).

    CAS  PubMed  Google Scholar 

  127. Ahmed, K. et al. An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell. Metab. 11, 311–319 (2010). This is the first report on the physiological role of GPR81 as a receptor for lactate in insulin-induced anti-lipolysis.

    CAS  PubMed  Google Scholar 

  128. Tunaru, S. et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nature Med. 9, 352–355 (2003).

    CAS  PubMed  Google Scholar 

  129. Kostylina, G., Simon, D., Fey, M. F., Yousefi, S. & Simon, H. U. Neutrophil apoptosis mediated by nicotinic acid receptors (GPR109A). Cell Death Differ. 15, 134–142 (2008).

    CAS  PubMed  Google Scholar 

  130. Tang, Y. et al. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A. Biochem. Biophys. Res. Commun. 345, 29–37 (2006).

    CAS  PubMed  Google Scholar 

  131. Ge, H. et al. Elucidation of signaling and functional activities of an orphan GPCR, GPR81. J. Lipid Res. 49, 797–803 (2008).

    CAS  PubMed  Google Scholar 

  132. Irukayama-Tomobe, Y. et al. Aromatic d-amino acids act as chemoattractant factors for human leukocytes through a G protein-coupled receptor, GPR109B. Proc. Natl Acad. Sci. USA 106, 3930–3934 (2009).

    CAS  PubMed  Google Scholar 

  133. Soga, T. et al. Molecular identification of nicotinic acid receptor. Biochem. Biophys. Res. Commun. 303, 364–369 (2003).

    CAS  PubMed  Google Scholar 

  134. Wise, A. et al. Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem. 278, 9869–9874 (2003).

    CAS  PubMed  Google Scholar 

  135. Richman, J. G. et al. Nicotinic acid receptor agonists differentially activate downstream effectors. J. Biol. Chem. 282, 18028–18036 (2007).

    CAS  PubMed  Google Scholar 

  136. Benyó, Z., Gille, A., Bennett, C. L., Clausen, B. E. & Offermanns, S. Nicotinic acid-induced flushing is mediated by activation of epidermal Langerhans cells. Mol. Pharmacol. 70, 1844–1849 (2006).

    PubMed  Google Scholar 

  137. Exton, J. H. Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Annu. Rev. Pharmacol. Toxicol. 36, 481–509 (1996).

    CAS  PubMed  Google Scholar 

  138. Jeninga, E. H. et al. Peroxisome proliferator-activated receptor γ regulates expression of the anti-lipolytic G-protein-coupled receptor 81 (GPR81/Gpr81). J. Biol. Chem. 284, 26385–26393 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Feingold, K. R., Moser, A., Shigenaga, J. K. & Grunfeld, C. Inflammation inhibits GPR81 expression in adipose tissue. Inflamm. Res. 60, 991–995 (2011).

    CAS  PubMed  Google Scholar 

  140. Jansson, P. A., Larsson, A., Smith, U. & Lonnroth, P. Lactate release from the subcutaneous tissue in lean and obese men. J. Clin. Invest. 93, 240–246 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Qvisth, V., Hagstrom-Toft, E., Moberg, E., Sjoberg, S. & Bolinder, J. Lactate release from adipose tissue and skeletal muscle in vivo: defective insulin regulation in insulin-resistant obese women. Am. J. Physiol. Endocrinol. Metab. 292, E709–E714 (2007).

    CAS  PubMed  Google Scholar 

  142. DiGirolamo, M., Newby, F. D. & Lovejoy, J. Lactate production in adipose tissue: a regulated function with extra-adipose implications. FASEB J. 6, 2405–2412 (1992).

    CAS  PubMed  Google Scholar 

  143. Liu, C. et al. 3,5-dihydroxybenzoic acid, a specific agonist for HCA1, inhibits lipolysis in adipocytes. J. Pharmacol. Exp. Ther. 341, 794–801 (2012).

    CAS  PubMed  Google Scholar 

  144. Marklund, M., Landberg, R., Anderson, A., Aman, P. & Kamal-Eldin, A. Alkylresorcinol metabolites in urine correlate with the intake of whole grains and cereal fibre in free-living Swedish adults. Br. J. Nutr. 3, 1–8 (2012).

    Google Scholar 

  145. Liu, C., Lovenberg, T. W. & Wu, J. GPR81-ligand complexes and their preparation and use. WO Patent 2008/063321 (A2) (2008).

  146. Boatman, P. D. et al. 3H-imidazo[4,5-b]pyridin-5-ol derivatives useful in the treatment of GPR81 receptor disorders. WO Patent 2010/030360(A1) (2010).

  147. Benyo, Z. et al. GPR109A (PUMA-G/HM74A) mediates nicotinic acid-induced flushing. J. Clin. Invest. 115, 3634–3640 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Maciejewski-Lenoir, D. et al. Langerhans cells release prostaglandin D2 in response to nicotinic acid. J. Invest. Dermatol. 126, 2637–2646 (2006).

    CAS  PubMed  Google Scholar 

  149. Schaub, A., Futterer, A. & Pfeffer, K. PUMA-G, an IFN-γ-inducible gene in macrophages is a novel member of the seven transmembrane spanning receptor superfamily. Eur. J. Immunol. 31, 3714–3725 (2001).

  150. Hanson, J. et al. Nicotinic acid- and monomethyl fumarate-induced flushing involves GPR109A expressed by keratinocytes and COX-2-dependent prostanoid formation in mice. J. Clin. Invest. 120, 2910–2919 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Thangaraju, M. et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 69, 2826–2832 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Cresci, G. A., Thangaraju, M., Mellinger, J. D., Liu, K. & Ganapathy, V. Colonic gene expression in conventional and germ-free mice with a focus on the butyrate receptor GPR109A and the butyrate transporter SLC5A8. J. Gastrointest. Surg. 14, 449–461 (2010).

    PubMed  Google Scholar 

  153. Martin, P. M. et al. Expression and localization of GPR109A (PUMA-G/HM74A) mRNA and protein in mammalian retinal pigment epithelium. Mol. Vis. 15, 362–372 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Gambhir, D. et al. GPR109A as an anti-inflammatory receptor in retinal pigment epithelial cells and its relevance to diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 53, 2208–2217 (2012).

    PubMed  PubMed Central  Google Scholar 

  155. Owen, O. E., Felig, P., Morgan, A. P., Wahren, J. & Cahill, G. F. Jr. Liver and kidney metabolism during prolonged starvation. J. Clin. Invest. 48, 574–583 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Senior, B. & Loridan, L. Direct regulatory effect of ketones on lipolysis and on glucose concentrations in man. Nature 219, 83–84 (1968).

    CAS  PubMed  Google Scholar 

  157. Gille, A., Bodor, E. T., Ahmed, K. & Offermanns, S. Nicotinic acid: pharmacological effects and mechanisms of action. Annu. Rev. Pharmacol. Toxicol. 48, 79–106 (2008).

    CAS  PubMed  Google Scholar 

  158. Brown, G. et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N. Engl. J. Med. 323, 1289–1298 (1990).

    CAS  PubMed  Google Scholar 

  159. Brown, B. G. et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N. Engl. J. Med. 345, 1583–1592 (2001).

    CAS  PubMed  Google Scholar 

  160. Taylor, A. J. et al. Extended-release niacin or ezetimibe and carotid intima-media thickness. N. Engl. J. Med. 361, 2113–2122 (2009).

    CAS  PubMed  Google Scholar 

  161. Canner, P. L. et al. Fifteen year mortality in coronary drug project patients: long-term benefit with niacin. J. Am. Coll. Cardiol. 8, 1245–1255 (1986).

    CAS  PubMed  Google Scholar 

  162. Carlson, L. A. & Rosenhamer, G. Reduction of mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by combined treatment with clofibrate and nicotinic acid. Acta Med. Scand. 223, 405–418 (1988).

    CAS  PubMed  Google Scholar 

  163. The Coronary Drug Project Research Group. Clofibrate and niacin in coronary heart disease. JAMA 231, 360–381 (1975).

  164. Blankenhorn, D. H. et al. Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. JAMA 257, 3233–3240 (1987).

    CAS  PubMed  Google Scholar 

  165. Digby, J. E. et al. Anti-inflammatory effects of nicotinic acid in human monocytes are mediated by GPR109A dependent mechanisms. Arterioscler. Thromb. Vasc. Biol. 32, 669–676 (2012).

    CAS  Google Scholar 

  166. Blankenhorn, D. H. et al. Effects of colestipol-niacin therapy on human femoral atherosclerosis. Circulation 83, 438–447 (1991).

    CAS  PubMed  Google Scholar 

  167. Lee, J. M. et al. Effects of high-dose modified-release nicotinic acid on atherosclerosis and vascular function: a randomized, placebo-controlled, magnetic resonance imaging study. J. Am. Coll. Cardiol. 54, 1787–1794 (2009).

    CAS  PubMed  Google Scholar 

  168. Whitney, E. J. et al. A randomized trial of a strategy for increasing high-density lipoprotein cholesterol levels: effects on progression of coronary heart disease and clinical events. Ann. Intern. Med. 142, 95–104 (2005).

    PubMed  Google Scholar 

  169. Boden, W. E. et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365, 2255–2267 (2011).

    PubMed  Google Scholar 

  170. Nicholls, S. J. Is niacin ineffective? Or did AIM-HIGH miss its target? Cleve. Clin. J. Med. 79, 38–43 (2012).

    PubMed  Google Scholar 

  171. Bloomgarden, Z. & Handelsman, Y. Did AIM-HIGH aim too low? J. Diabetes 3, 1–2 (2011).

    PubMed  Google Scholar 

  172. Carlson, L. A. Studies on the effect of nicotinic acid on catecholamine stimulated lipolysis in adipose tissue in vitro. Acta Med. Scand. 173, 719–722 (1963).

    CAS  PubMed  Google Scholar 

  173. Joy, T. & Hegele, R. A. Is raising HDL a futile strategy for atheroprotection? Nature Rev. Drug. Discov. 7, 143–155 (2008).

    CAS  Google Scholar 

  174. Hernandez, M., Wright, S. D. & Cai, T. Q. Critical role of cholesterol ester transfer protein in nicotinic acid-mediated HDL elevation in mice. Biochem. Biophys. Res. Commun. 355, 1075–1080 (2007).

    CAS  PubMed  Google Scholar 

  175. van der Hoorn, J. W. et al. Niacin increases HDL by reducing hepatic expression and plasma levels of cholesteryl ester transfer protein in APOE*3Leiden.CETP mice. Arterioscler. Thromb. Vasc. Biol. 28, 2016–2022 (2008).

    CAS  PubMed  Google Scholar 

  176. Kontush, A. & Chapman, M. J. Antiatherogenic small, dense HDL — guardian angel of the arterial wall? Nature Clin. Pract. Cardiovasc. Med. 3, 144–153 (2006).

    CAS  Google Scholar 

  177. Offermanns, S. The nicotinic acid receptor GPR109A (HM74A or PUMA-G) as a new therapeutic target. Trends Pharmacol. Sci. 27, 384–390 (2006).

    CAS  PubMed  Google Scholar 

  178. Bodor, E. T. & Offermanns, S. Nicotinic acid: an old drug with a promising future. Br. J. Pharmacol. 153 (Suppl. 1), S68–S75 (2008).

    CAS  PubMed  Google Scholar 

  179. Li, X., Millar, J. S., Brownell, N., Briand, F. & Rader, D. J. Modulation of HDL metabolism by the niacin receptor GPR109A in mouse hepatocytes. Biochem. Pharmacol. 80, 1450–1457 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Kamanna, V. S. & Kashyap, M. L. Mechanism of action of niacin. Am. J. Cardiol. 101, 20B–26B (2008).

    CAS  PubMed  Google Scholar 

  181. Lai, E. et al. Effects of a niacin receptor partial agonist, MK-0354, on plasma free fatty acids, lipids, and cutaneous flushing in humans. J. Clin. Lipidol. 2, 375–383 (2008).

    PubMed  Google Scholar 

  182. Boatman, P. D. et al. (1aR,5aR)1a, 3,5,5a-tetrahydro-1H-2,3-diaza-cyclopropa[a]pentalene-4-carboxylic acid: a potent GPR109a agonist that lowers free fatty acids in humans. J. Med. Chem. 55, 3644–3666 (2012). This is the first report on a Phase II clinical study of a full HCA 2 (GPR109A) agonist showing anti-lipolytic effects but no increase in HDL cholesterol plasma levels.

    CAS  PubMed  Google Scholar 

  183. Lukasova, M., Hanson, J., Tunaru, S. & Offermanns, S. Nicotinic acid (niacin): new lipid-independent mechanisms of action and therapeutic potentials. Trends Pharmacol. Sci. 32, 700–707 (2011).

    CAS  PubMed  Google Scholar 

  184. Lukasova, M., Malaval, C., Gille, A., Kero, J. & Offermanns, S. Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor GPR109A expressed by immune cells. J. Clin. Invest. 121, 1163–1173 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Wu, B. J. et al. Evidence that niacin inhibits acute vascular inflammation and improves endothelial dysfunction independent of changes in plasma lipids. Arterioscler. Thromb. Vasc. Biol. 30, 968–975 (2010). References 184 and 185 are the first studies to show the lipid-independent beneficial cardiovascular effects of nicotinic acid. Some of these effects appear to be mediated by HCA 2.

    CAS  PubMed  Google Scholar 

  186. Plaisance, E. P. et al. Niacin stimulates adiponectin secretion through the GPR109A receptor. Am. J. Physiol. Endocrinol. Metab. 296, E549–E558 (2009).

    CAS  PubMed  Google Scholar 

  187. Westphal, S., Borucki, K., Taneva, E., Makarova, R. & Luley, C. Extended-release niacin raises adiponectin and leptin. Atherosclerosis 193, 361–365 (2007).

    CAS  PubMed  Google Scholar 

  188. Ingersoll, M. A. et al. Niacin inhibits skin dendritic cell mobilization in a GPR109A independent manner but has no impact on monocyte trafficking in atherosclerosis. Immunobiology 217, 548–557 (2011).

    PubMed  PubMed Central  Google Scholar 

  189. Holzhauser, E. et al. Nicotinic acid has anti-atherogenic and anti-inflammatory properties on advanced atherosclerotic lesions independent of its lipid-modifying capabilities. J. Cardiovasc. Pharmacol. 57, 447–454 (2011).

    PubMed  Google Scholar 

  190. Kamanna, V. S., Ganji, S. H. & Kashyap, M. L. The mechanism and mitigation of niacin-induced flushing. Int. J. Clin. Pract. 63, 1369–1377 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Cheng, K. et al. Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans. Proc. Natl Acad. Sci. USA 103, 6682–6687 (2006).

    CAS  PubMed  Google Scholar 

  192. Paolini, J. F. et al. Effects of laropiprant on nicotinic acid-induced flushing in patients with dyslipidemia. Am. J. Cardiol. 101, 625–630 (2008).

    CAS  PubMed  Google Scholar 

  193. Walters, R. W. et al. β-arrestin1 mediates nicotinic acid-induced flushing, but not its antilipolytic effect, in mice. J. Clin. Invest. 119, 1312–1321 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Rajagopal, S., Rajagopal, K. & Lefkowitz, R. J. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nature Rev. Drug Discov. 9, 373–386 (2010).

    CAS  Google Scholar 

  195. Tang, H., Lu, J. Y., Zheng, X., Yang, Y. & Reagan, J. D. The psoriasis drug monomethylfumarate is a potent nicotinic acid receptor agonist. Biochem. Biophys. Res. Commun. 375, 562–565 (2008). This is the first report on fumaric acid esters as ligands of HCA 2.

    CAS  PubMed  Google Scholar 

  196. Papadopoulou, A., D'Souza, M., Kappos, L. & Yaldizli, O. Dimethyl fumarate for multiple sclerosis. Expert. Opin. Investig. Drugs 19, 1603–1612 (2010).

    CAS  PubMed  Google Scholar 

  197. [No authors listed]. Trial watch: Phase III success for Biogen's oral multiple sclerosis therapy. Nature Rev. Drug Discov. 10, 404 (2011).

  198. Zhang, J. et al. Niaspan treatment improves neurological functional recovery in experimental autoimmune encephalomyelitis mice. Neurobiol. Dis. 32, 273–280 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Schilling, S., Goelz, S., Linker, R., Luehder, F. & Gold, R. Fumaric acid esters are effective in chronic experimental autoimmune encephalomyelitis and suppress macrophage infiltration. Clin. Exp. Immunol. 145, 101–107 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Fuccella, L. M. et al. Inhibition of lipolysis by nicotinic acid and by acipimox. Clin. Pharmacol. Ther. 28, 790–795 (1980).

    CAS  PubMed  Google Scholar 

  201. Cayen, M. N., Kallai-Sanfacon, M. A., Dubuc, J., Greselin, E. & Dvornik, D. Evaluation of the lipid-lowering activity of AY-25712 in rats. Atherosclerosis 45, 267–279 (1982).

    CAS  PubMed  Google Scholar 

  202. Soudijn, W., van Wijngaarden, I. & IJzerman, A. P. Nicotinic acid receptor subtypes and their ligands. Med. Res. Rev. 27, 417–433 (2007).

    CAS  PubMed  Google Scholar 

  203. Semple, G., Boatman, P. D. & Richman, J. G. Recent progress in the discovery of niacin receptor agonists. Curr. Opin. Drug Discov. Devel. 10, 452–459 (2007).

    CAS  PubMed  Google Scholar 

  204. van Herk, T. et al. Pyrazole derivatives as partial agonists for the nicotinic acid receptor. J. Med. Chem. 46, 3945–3951 (2003).

    CAS  PubMed  Google Scholar 

  205. Gharbaoui, T. et al. Agonist lead identification for the high affinity niacin receptor GPR109a. Bioorg. Med. Chem. Lett. 17, 4914–4919 (2007).

    CAS  PubMed  Google Scholar 

  206. Skinner, P. J. et al. Fluorinated pyrazole acids are agonists of the high affinity niacin receptor GPR109a. Bioorg. Med. Chem. Lett. 17, 5620–5623 (2007).

    CAS  PubMed  Google Scholar 

  207. Semple, G. et al. 3-(1H-tetrazol-5-yl)-1,4,5,6-tetrahydro-cyclopentapyrazole (MK-0354): a partial agonist of the nicotinic acid receptor, G-protein coupled receptor 109a, with antilipolytic but no vasodilatory activity in mice. J. Med. Chem. 51, 5101–5108 (2008).

    CAS  PubMed  Google Scholar 

  208. Boatman, P. D. et al. Potent tricyclic pyrazole tetrazole agonists of the nicotinic acid receptor (GPR109a). Bioorg. Med. Chem. Lett. 20, 2797–2800 (2010).

    CAS  PubMed  Google Scholar 

  209. Imbriglio, J. E. et al. GPR109a agonists. Part 1: 5-alkyl and 5-aryl-pyrazole-tetrazoles as agonists of the human orphan G-protein coupled receptor GPR109a. Bioorg. Med. Chem. Lett. 19, 2121–2124 (2009).

    CAS  PubMed  Google Scholar 

  210. Schmidt, D. et al. Pyrazole acids as niacin receptor agonists for the treatment of dyslipidemia. Bioorg. Med. Chem. Lett. 19, 4768–4772 (2009).

    CAS  PubMed  Google Scholar 

  211. Imbriglio, J. E. et al. GPR109a agonists. Part 2: pyrazole-acids as agonists of the human orphan G-protein coupled receptor GPR109a. Bioorg. Med. Chem. Lett. 20, 4472–4474 (2010).

    CAS  PubMed  Google Scholar 

  212. Ren, N. et al. Phenolic acids suppress adipocyte lipolysis via activation of the nicotinic acid receptor GPR109A (HM74a/PUMA-G). J. Lipid Res. 50, 908–914 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. van Veldhoven, J. P. et al. Structure–activity relationships of trans-substituted-propenoic acid derivatives on the nicotinic acid receptor HCA2 (GPR109A). Bioorg. Med. Chem. Lett. 21, 2736–2739 (2011).

    CAS  PubMed  Google Scholar 

  214. Shen, H. C. et al. Discovery of biaryl anthranilides as full agonists for the high affinity niacin receptor. J. Med. Chem. 50, 6303–6306 (2007).

    CAS  PubMed  Google Scholar 

  215. Shen, H. C. et al. Discovery of orally bioavailable and novel urea agonists of the high affinity niacin receptor GPR109A. Bioorg. Med. Chem. Lett. 17, 6723–6728 (2007).

    CAS  PubMed  Google Scholar 

  216. Schmidt, D. et al. Anthranilic acid replacements in a niacin receptor agonist. Bioorg. Med. Chem. Lett. 20, 3426–3430 (2010).

    CAS  PubMed  Google Scholar 

  217. Raghavan, S. et al. Tetrahydro anthranilic acid as a surrogate for anthranilic acid: application to the discovery of potent niacin receptor agonists. Bioorg. Med. Chem. Lett. 18, 3163–3167 (2008).

    CAS  PubMed  Google Scholar 

  218. Ding, F. X. et al. Discovery of pyrazolyl propionyl cyclohexenamide derivatives as full agonists for the high affinity niacin receptor GPR109A. Bioorg. Med. Chem. Lett. 20, 3372–3375 (2010).

    CAS  PubMed  Google Scholar 

  219. Shen, H. C. et al. Discovery of a biaryl cyclohexene carboxylic acid (MK-6892): a potent and selective high affinity niacin receptor full agonist with reduced flushing profiles in animals as a preclinical candidate. J. Med. Chem. 53, 2666–2670 (2010).

    CAS  PubMed  Google Scholar 

  220. Peters, J. U. et al. Pyrido pyrimidinones as selective agonists of the high affinity niacin receptor GPR109A: optimization of in vitro activity. Bioorg. Med. Chem. Lett. 20, 5426–5430 (2010).

    CAS  PubMed  Google Scholar 

  221. Shen, H. C. et al. Discovery of pyrazolopyrimidines as the first class of allosteric agonists for the high affinity nicotinic acid receptor GPR109A. Bioorg. Med. Chem. Lett. 18, 4948–4951 (2008).

    CAS  PubMed  Google Scholar 

  222. Blad, C. C. et al. Novel 3,6,7-substituted pyrazolopyrimidines as positive allosteric modulators for the hydroxycarboxylic acid receptor 2 (GPR109A). J. Med. Chem. 55, 3563–3567 (2012).

    CAS  PubMed  Google Scholar 

  223. Boatman, P. D., Richman, J. G. & Semple, G. Nicotinic acid receptor agonists. J. Med. Chem. 51, 7653–7662 (2008).

    CAS  PubMed  Google Scholar 

  224. Martres, P. HM74a agonists: will they be the new generation of nicotinic acid? Curr. Top. Med. Chem. 9, 428–435 (2009).

    CAS  PubMed  Google Scholar 

  225. Shen, H. C. Acyl hydroxypyrazoles as novel agonists for high-affinity nicotinic acid receptor GPR109A: WO2008051403. Expert Opin. Ther. Pat. 19, 1149–1155 (2009).

    CAS  PubMed  Google Scholar 

  226. Shen, H. C. & Colletti, S. L. Novel patent publications on high-affinity nicotinic acid receptor agonists. Expert Opin. Ther. Pat. 19, 957–967 (2009).

    CAS  PubMed  Google Scholar 

  227. Nomura, H., Nielsen, B. W. & Matsushima, K. Molecular cloning of cDNAs encoding a LD78 receptor and putative leukocyte chemotactic peptide receptors. Int. Immunol. 5, 1239–1249 (1993).

    CAS  PubMed  Google Scholar 

  228. Yousefi, S. Cooper, P. R., Mueck, B., Potter, S. L. & Jarai, G. cDNA representational difference analysis of human neutrophils stimulated by GM-CSF. Biochem. Biophys. Res. Commun. 277, 401–409 (2000).

    CAS  PubMed  Google Scholar 

  229. Costa, C. G. et al. Simultaneous analysis of plasma free fatty acids and their 3-hydroxy analogs in fatty acid beta-oxidation disorders. Clin. Chem. 44, 463–471 (1998).

    CAS  PubMed  Google Scholar 

  230. Jones, P. M., Tjoa, S., Fennessey, P. V., Goodman, S. I. & Bennett, M. J. Addition of quantitative 3-hydroxy-octadecanoic acid to the stable isotope gas chromatography-mass spectrometry method for measuring 3-hydroxy fatty acids. Clin. Chem. 48, 176–179 (2002).

    CAS  PubMed  Google Scholar 

  231. Ahmed, K., Tunaru, S. & Offermanns, S. GPR109A, GPR109B and GPR81, a family of hydroxy-carboxylic acid receptors. Trends Pharmacol. Sci. 30, 557–562 (2009).

    CAS  PubMed  Google Scholar 

  232. Mandrika, I., Petrovska, R. & Klovins, J. Evidence for constitutive dimerization of niacin receptor subtypes. Biochem. Biophys. Res. Commun. 395, 281–287 (2010).

    CAS  PubMed  Google Scholar 

  233. Mahboubi, K. et al. Triglyceride modulation by acifran analogs: activity towards the niacin high and low affinity G protein-coupled receptors HM74A and HM74. Biochem. Biophys. Res. Commun. 340, 482–490 (2006).

    CAS  PubMed  Google Scholar 

  234. Jung, J. K. et al. Analogues of acifran: agonists of the high and low affinity niacin receptors, GPR109a and GPR109b. J. Med. Chem. 50, 1445–1448 (2007).

    CAS  PubMed  Google Scholar 

  235. Semple, G. et al. 1-alkyl-benzotriazole-5-carboxylic acids are highly selective agonists of the human orphan G-protein-coupled receptor GPR109b. J. Med. Chem. 49, 1227–1230 (2006).

    CAS  PubMed  Google Scholar 

  236. Skinner, P. J. et al. 3-nitro-4-amino benzoic acids and 6-amino nicotinic acids are highly selective agonists of GPR109b. Bioorg. Med. Chem. Lett. 17, 6619–6622 (2007).

    CAS  PubMed  Google Scholar 

  237. Skinner, P. J. et al. 5-N,N-disubstituted 5-aminopyrazole-3-carboxylic acids are highly potent agonists of GPR109b. Bioorg. Med. Chem. Lett. 19, 4207–4209 (2009).

    CAS  PubMed  Google Scholar 

  238. Ariza, A. C., Deen, P. M. T. & Robben, J. H. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions. Front. Endocrinol. 3, 22 (2012). This is an excellent review on the physiological and pathological functions of SUCNR1 and its potential as a pharmacological target.

    Google Scholar 

  239. He, W. et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429, 188–193 (2004).

    CAS  PubMed  Google Scholar 

  240. Toma, I. et al. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J. Clin. Invest. 118, 2526–2534 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Sapieha, P. et al. The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nature Med. 14, 1067–1076 (2008).

    CAS  PubMed  Google Scholar 

  242. Rubic, T. et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nature Immunol. 9, 1261–1269 (2008).

    CAS  Google Scholar 

  243. Vargas, S. L., Toma, I., Kang, J. J., Meer, E. J. & Peti-Peterdi, J. Activation of the succinate receptor GPR91 in macula densa cells causes renin release. J. Am. Soc. Nephrol. 20, 1002–1011 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Amisten, S., Braun, O. O., Bengtsson, A. & Erlinge, D. Gene expression profiling for the identification of G-protein coupled receptors in human platelets. Thromb. Res. 122, 47–57 (2008).

    CAS  PubMed  Google Scholar 

  245. Regard, J. B., Sato, I. T. & Coughlin, S. R. Anatomical profiling of G protein-coupled receptor expression. Cell 135, 561–571 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Peti-Peterdi, J. High glucose and renin release: the role of succinate and GPR91. Kidney Int. 78, 1214–1217 (2010).

    CAS  PubMed  Google Scholar 

  247. Robben, J. H. et al. Localization of the succinate receptor in the distal nephron and its signaling in polarized MDCK cells. Kidney Int. 76, 1258–1267 (2009).

    CAS  PubMed  Google Scholar 

  248. Bhuniya, D. et al. Discovery of a potent and selective small molecule hGPR91 antagonist. Bioorg. Med. Chem. Lett. 21, 3596–3602 (2011).

    CAS  PubMed  Google Scholar 

  249. Wittenberger, T. et al. GPR99, a new G protein-coupled receptor with homology to a new subgroup of nucleotide receptors. BMC Genomics 3, 17 (2002).

    PubMed  PubMed Central  Google Scholar 

  250. Qi, A. D., Harden, T. K. & Nicholas, R. A. GPR80/99, proposed to be the P2Y(15) receptor activated by adenosine and AMP, is not a P2Y receptor. Purinerg. Signal. 1, 67–74 (2004).

    CAS  Google Scholar 

  251. Wagner, B. M., Donnarumma, F., Wintersteiger, R., Windischhofer, W. & Leis, H. J. Simultaneous quantitative determination of alpha-ketoglutaric acid and 5-hydroxymethylfurfural in human plasma by gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 396, 2629–2637 (2010).

    CAS  PubMed  Google Scholar 

  252. Ahmadian, M., Wang, Y. & Sul, H. S. Lipolysis in adipocytes. Int. J. Biochem. Cell Biol. 42, 555–559 (2010).

    CAS  PubMed  Google Scholar 

  253. Zechner, R. et al. FAT SIGNALS — lipases and lipolysis in lipid metabolism and signaling. Cell. Metab. 15, 279–291 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Tunaru, S., Lattig, J., Kero, J., Krause, G. & Offermanns, S. Characterization of determinants of ligand binding to the nicotinic acid receptor GPR109A (HM74A/PUMA-G). Mol. Pharmacol. 68, 1271–1280 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank S. Hümmer for excellent secretarial help with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Offermanns.

Related links

Related links

FURTHER INFORMATION

Stefan Offermanns's homepage

ClinicalTrials.gov website

Glossary

Enteroendocrine cells

Specialized endocrine cells of the gastrointestinal tract that are in contact with the gut lumen and secrete various hormones such as the incretins glucagon-like peptide 1 and gastric inhibitory peptide.

Citric acid cycle

Also known as the Krebs cycle; the process by which organisms aerobically generate energy through the oxidation of acetate.

Protomers

Units of an oligomeric protein; a protein dimer consists of two protomers.

Orthosteric agonists

Ligands that bind to the receptor at the same site as the endogenous ligand of the receptor.

Allosteric agonists

Ligands that bind to the receptor at a site different to that of the endogenous ligand (or ligands).

Glucagon-like peptide 1

(GLP1). A peptide hormone produced by enteroendocrine cells that stimulates insulin secretion from pancreatic β-cells.

Post-prandial

After a meal.

Incretins

A group of gastrointestinal hormones, including glucagon-like peptide 1 and gastric inhibitory peptide, that regulate insulin secretion.

L-cells

A subgroup of enteroendocrine cells that produce glucagon-like peptide 1 and peptide YY with an amino-terminal tyrosine amide.

Ketogenesis

The process by which fatty acids, which are degraded in the liver, are further metabolized into ketone bodies.

Prostaglandin D2 receptor

A G protein-coupled receptor that is activated by prostaglandin D2.

Apolipoprotein E

A particular apolipoprotein that is found on chylomicrons and intermediate-density lipoproteins. Mice lacking the gene encoding apolipoprotein E are prone to developing atherosclerosis.

β-oxidation

A process (occurring in mitochondria) by which fatty acids are broken down to acetyl-CoA.

Macula densa cells

Specialized cells lining the wall of the distal tubulus of the kidney at the point where the distal tubulus comes into contact with its parent glomerulus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blad, C., Tang, C. & Offermanns, S. G protein-coupled receptors for energy metabolites as new therapeutic targets. Nat Rev Drug Discov 11, 603–619 (2012). https://doi.org/10.1038/nrd3777

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3777

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research