Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bench to bedside: elucidation of the OPG–RANK–RANKL pathway and the development of denosumab

Key Points

  • This Review chronicles the events that led to an increased understanding of osteoclast biology, the identification of osteoprotegerin (OPG) and the signalling pathway mediated by receptor activator of NF-κB (RANK) and RANK ligand (RANKL), as well as the development of the therapeutic RANKL-targeted antibody denosumab.

  • OPG was identified through a genomics-based approach.

  • Genetic experiments in mice elucidated the roles of OPG, RANK and RANKL in osteoclast development, activation, function and survival.

  • A series of molecules that inhibit RANKL were developed and tested in vitro and in vivo for potential therapeutic application.

  • RANKL inhibition was shown to: increase bone mass and strength in animal models of osteoporosis; reduce tumour-induced osteolysis and tumour burden in experimental models of bone metastases; and reduce serum calcium levels in models of hypocalcaemia of malignancy.

  • Denosumab is a fully human monoclonal antibody against RANKL.

  • In postmenopausal women with osteoporosis, subcutaneous denosumab dosed at 60 mg every 6 months significantly reduced the risk of new vertebral, hip and non-vertebral fractures, reduced bone turnover and increased bone mineral density at all measured skeletal sites.

  • The effects of denosumab on increasing bone mineral density were significantly greater than alendronate, the most commonly prescribed treatment for osteoporosis, in head-to-head studies.

  • In patients with breast and prostate cancer receiving hormone ablation therapy, denosumab (60 mg every 6 months) increased bone mineral density compared with placebo, and in prostate cancer patients it significantly reduced the risk of new vertebral fractures.

  • In patients with advanced cancer and bone metastases from solid tumours, denosumab (administered at 120 mg every 4 weeks) was superior to the bisphosphonate zoledronic acid in preventing pathological fractures, radiation or surgery to bone, and spinal cord compression — collectively referred to as skeletal-related events.

  • Denosumab is now approved in numerous regions throughout the world for the treatment of osteoporosis in postmenopausal women who are at high risk for fracture, for the treatment of bone loss in men or women receiving hormone ablation therapy for breast or prostate cancer who are at high risk for fracture, and for the prevention of skeletal-related events in patients with advanced cancer and bone metastases from solid tumours.

  • Additional clinical studies are underway to evaluate the efficacy of denosumab in other patient populations and disease conditions.

Abstract

Bone is a complex tissue that provides mechanical support for muscles and joints, protection for vital organs, a mineral reservoir that is essential for calcium homeostasis, and the environment and niches required for haematopoiesis. The regulation of bone mass in mammals is governed by a complex interplay between bone-forming cells termed osteoblasts and bone-resorbing cells termed osteoclasts, and is guided physiologically by a diverse set of hormones, cytokines and growth factors. The balance between these processes changes over time, causing an elevated risk of fractures with age. Osteoclasts may also be activated in the cancer setting, leading to bone pain, fracture, spinal cord compression and other significant morbidities. This Review chronicles the events that led to an increased understanding of bone resorption, the elucidation of the signalling pathway mediated by osteoprotegerin, receptor activator of NF-κB (RANK) and RANK ligand (RANKL) and its role in osteoclast biology, as well as the evolution of recombinant RANKL antagonists, which culminated in the development of the therapeutic RANKL-targeted antibody denosumab.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of OPG and the elucidation of the pivotal role of the OPG–RANK–RANKL pathway in bone.
Figure 2: The evolution of recombinant RANKL inhibitors.
Figure 3: RANKL inhibition preserves bone mass and strength in preclinical models of oestrogen deficiency.
Figure 4: The impact of RANKL inhibition in preclinical bone metastasis models and the newly appreciated role of the RANK–RANKL pathway in murine mammary tumorigenesis.
Figure 5: The clinical development of denosumab for postmenopausal osteoporosis and bone loss resulting from androgen deprivation therapy.

Similar content being viewed by others

References

  1. Adams, M. D. et al. Sequence identification of 2,375 human brain genes. Nature 355, 632–634 (1992).

    CAS  PubMed  Google Scholar 

  2. Adams, M. D., Kerlavage, A. R., Fields, C. & Venter, J. C. 3,400 new expressed sequence tags identify diversity of transcripts in human brain. Nature Genet. 4, 256–267 (1993).

    CAS  PubMed  Google Scholar 

  3. Adams, M. D., Soares, M. B., Kerlavage, A. R., Fields, C. & Venter, J. C. Rapid cDNA sequencing (expressed sequence tags) from a directionally cloned human infant brain cDNA library. Nature Genet. 4, 373–380 (1993).

    CAS  PubMed  Google Scholar 

  4. Simonet, W. S., Bucay, N., Lauer, S. J. & Taylor, J. M. A far-downstream hepatocyte-specific control region directs expression of the linked human apolipoprotein E and C-I genes in transgenic mice. J. Biol. Chem. 268, 8221–8229 (1993).

    CAS  PubMed  Google Scholar 

  5. Simonet, W. S. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319 (1997).

    CAS  PubMed  Google Scholar 

  6. Schreiber, M., Rajarathnam, K. & McFadden, G. Myxoma virus T2 protein, a tumor necrosis factor (TNF) receptor homolog, is secreted as a monomer and dimer that each bind rabbit TNFα, but the dimer is a more potent TNF inhibitor. J. Biol. Chem. 271, 13333–13341 (1996).

    CAS  PubMed  Google Scholar 

  7. Smith, C. A., Farrah, T. & Goodwin, R. G. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76, 959–962 (1994).

    CAS  PubMed  Google Scholar 

  8. Udagawa, N. et al. The bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology 125, 1805–1813 (1989).

    CAS  PubMed  Google Scholar 

  9. Tsuda, E. et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem. Biophys. Res. Commun. 234, 137–142 (1997).

    CAS  PubMed  Google Scholar 

  10. Bucay, N. et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 12, 1260–1268 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Martin, T. J. Paracrine regulation of osteoclast formation and activity: milestones in discovery. J. Musculoskelet. Neuronal Interact. 4, 243–253 (2004).

    CAS  PubMed  Google Scholar 

  12. Lacey, D. L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176 (1998).

    CAS  PubMed  Google Scholar 

  13. Yasuda, H. et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl Acad. Sci. USA 95, 3597–3602 (1998).

    CAS  PubMed  Google Scholar 

  14. Anderson, D. M. et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179 (1997).

    CAS  PubMed  Google Scholar 

  15. Wong, B. R. et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J. Biol. Chem. 272, 25190–25194 (1997).

    CAS  PubMed  Google Scholar 

  16. Dougall, W. C. et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 13, 2412–2424 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hsu, H. et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl Acad. Sci. USA 96, 3540–3545 (1999).

    CAS  PubMed  Google Scholar 

  18. Kong, Y. Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323 (1999).

    CAS  PubMed  Google Scholar 

  19. Li, J. et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl Acad. Sci. USA 97, 1566–1571 (2000).

    CAS  PubMed  Google Scholar 

  20. The American Society for Bone and Mineral Research President's Committee on Nomenclature. Proposed standard nomenclature for new tumor necrosis factor family members involved in the regulation of bone resorption. J. Bone Miner. Res. 15, 2293–2296 (2000).

  21. Schlondorff, J., Lum, L. & Blobel, C. P. Biochemical and pharmacological criteria define two shedding activities for TRANCE/OPGL that are distinct from the tumor necrosis factor α convertase. J. Biol. Chem. 276, 14665–14674 (2001).

    CAS  PubMed  Google Scholar 

  22. Hikita, A. et al. Negative regulation of osteoclastogenesis by ectodomain shedding of receptor activator of NF-κB ligand. J. Biol. Chem. 281, 36846–36855 (2006).

    CAS  PubMed  Google Scholar 

  23. Suzuki, J. et al. Regulation of osteoclastogenesis by three human RANKL isoforms expressed in NIH3T3 cells. Biochem. Biophys. Res. Commun. 314, 1021–1027 (2004).

    CAS  PubMed  Google Scholar 

  24. Mizuno, A. et al. Transgenic mice overexpressing soluble osteoclast differentiation factor (sODF) exhibit severe osteoporosis. J. Bone Miner. Metab. 20, 337–344 (2002).

    CAS  PubMed  Google Scholar 

  25. Eghbali-Fatourechi, G. et al. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J. Clin. Invest. 111, 1221–1230 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lam, J., Nelson, C. A., Ross, F. P., Teitelbaum, S. L. & Fremont, D. H. Crystal structure of the TRANCE/RANKL cytokine reveals determinants of receptor–ligand specificity. J. Clin. Invest. 108, 971–979 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Banner, D. W. et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNF β complex: implications for TNF receptor activation. Cell 73, 431–445 (1993).

    CAS  PubMed  Google Scholar 

  28. Hymowitz, S. G. et al. Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol. Cell 4, 563–571 (1999).

    CAS  PubMed  Google Scholar 

  29. Liu, C. et al. Structural and functional insights of RANKL–RANK interaction and signaling. J. Immunol. 184, 6910–6919 (2010).

    CAS  PubMed  Google Scholar 

  30. Dempsey, P. W., Doyle, S. E., He, J. Q. & Cheng, G. The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev. 14, 193–209 (2003).

    CAS  PubMed  Google Scholar 

  31. Wu, H. & Arron, J. R. TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology. Bioessays 25, 1096–1105 (2003).

    CAS  PubMed  Google Scholar 

  32. Boyle, W. J., Simonet, W. S. & Lacey, D. L. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).

    CAS  PubMed  Google Scholar 

  33. Feng, X. Regulatory roles and molecular signaling of TNF family members in osteoclasts. Gene 350, 1–13 (2005).

    CAS  PubMed  Google Scholar 

  34. Lomaga, M. A. et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13, 1015–1024 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Burgess, T. L. et al. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J. Cell Biol. 145, 527–538 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lacey, D. L. et al. Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am. J. Pathol. 157, 435–448 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kanazawa, K. & Kudo, A. Self-assembled RANK induces osteoclastogenesis ligand-independently. J. Bone Miner. Res. 20, 2053–2060 (2005).

    CAS  PubMed  Google Scholar 

  38. Crockett, J. C. et al. Signal peptide mutations in RANK prevent downstream activation of NF-κB. J. Bone Miner. Res. 26, 1926–1938 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rodan, G. A. & Martin, T. J. Role of osteoblasts in hormonal control of bone resorption — a hypothesis. Calcif. Tissue Int. 33, 349–351 (1981).

    CAS  PubMed  Google Scholar 

  40. Nakashima, T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nature Med. 17, 1231–1234 (2011).

    CAS  PubMed  Google Scholar 

  41. Xiong, J. et al. Matrix-embedded cells control osteoclast formation. Nature Med. 17, 1235–1241 (2011).

    CAS  PubMed  Google Scholar 

  42. Tomoyasu, A. et al. Characterization of monomeric and homodimeric forms of osteoclastogenesis inhibitory factor. Biochem. Biophys. Res. Commun. 245, 382–387 (1998).

    CAS  PubMed  Google Scholar 

  43. Bekker, P. J., Holloway, D., Nakanishi, A., Arrighi, H. M. & Dunstan, C. R. Osteoprotegerin (OPG) has potent and sustained antiresorptive activity in postmenopausal women. J. Bone Miner. Res. Abstr. 14, S180 (1999).

    Google Scholar 

  44. Bekker, P. J. et al. The effect of a single dose of osteoprotegerin in postmenopausal women. J. Bone Miner. Res. 16, 348–360 (2001).

    CAS  PubMed  Google Scholar 

  45. Whyte, M. P. & Mumm, S. Heritable disorders of the RANKL/OPG/RANK signaling pathway. J. Musculoskelet. Neuronal Interact. 4, 254–267 (2004).

    CAS  PubMed  Google Scholar 

  46. Body, J. et al. A Phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer 97, 887–892 (2003).

    PubMed  Google Scholar 

  47. Green, L. L. Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J. Immunol. Methods 231, 11–23 (1999).

    CAS  PubMed  Google Scholar 

  48. Lonberg, N. Human antibodies from transgenic animals. Nature Biotech. 23, 1117–1125 (2005).

    CAS  Google Scholar 

  49. Kostenuik, P. J. et al. Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-in mice that express chimeric (murine/human) RANKL. J. Bone Miner. Res. 24, 182–195 (2009).

    CAS  PubMed  Google Scholar 

  50. Kearns, A. E., Khosla, S. & Kostenuik, P. J. Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr. Rev. 29, 155–192 (2008).

    CAS  PubMed  Google Scholar 

  51. Abdallah, B. M. et al. Increased RANKL/OPG mRNA ratio in iliac bone biopsies from women with hip fractures. Calcif. Tissue Int. 76, 90–97 (2005).

    CAS  PubMed  Google Scholar 

  52. Li, X. et al. Increased RANK ligand in bone marrow of orchiectomized rats and prevention of their bone loss by the RANK ligand inhibitor osteoprotegerin. Bone 45, 669–676 (2009).

    CAS  PubMed  Google Scholar 

  53. Ominsky, M. S. et al. RANKL inhibition with osteoprotegerin increases bone strength by improving cortical and trabecular bone architecture in ovariectomized rats. J. Bone Miner. Res. 23, 672–682 (2008).

    CAS  PubMed  Google Scholar 

  54. Proell, V. et al. Orchiectomy upregulates free soluble RANKL in bone marrow of aged rats. Bone 45, 677–681 (2009).

    CAS  PubMed  Google Scholar 

  55. Kostenuik, P. J. et al. Decreased bone remodeling and porosity are associated with improved bone strength in ovariectomized cynomolgus monkeys treated with denosumab, a fully human RANKL antibody. Bone 49, 151–161 (2011).

    CAS  PubMed  Google Scholar 

  56. Ominsky, M. S. et al. Denosumab, a fully human RANKL antibody, reduced bone turnover markers and increased trabecular and cortical bone mass, density, and strength in ovariectomized cynomolgus monkeys. Bone 49, 162–173 (2011).

    CAS  PubMed  Google Scholar 

  57. Samadfam, R., Xia, Q. & Goltzman, D. Pretreatment with anticatabolic agents blunts but does not eliminate the skeletal anabolic response to parathyroid hormone in oophorectomized mice. Endocrinology 148, 2778–2787 (2007).

    CAS  PubMed  Google Scholar 

  58. Samadfam, R., Xia, Q. & Goltzman, D. Co-treatment of PTH with osteoprotegerin or alendronate increases its anabolic effect on the skeleton of oophorectomized mice. J. Bone Miner. Res. 22, 55–63 (2007).

    CAS  PubMed  Google Scholar 

  59. Riggs, B. L. et al. Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N. Engl. J. Med. 322, 802–809 (1990).

    CAS  PubMed  Google Scholar 

  60. Sogaard, C. H., Mosekilde, L. & Richards, A. Marked decrease in trabecular bone quality after five years of sodium fluoride therapy — assessed by biomechanical testing of iliac crest bone biopsies in osteoporotic patients. Bone 15, 393–399 (1994).

    CAS  PubMed  Google Scholar 

  61. Mundy, G. Metastasis to bone: causes, consequences and therapeutic opportunities. Nature Rev. Cancer 2, 584–593 (2001).

    Google Scholar 

  62. Good, C. R., O'Keefe, R. J., Puzas, J. E., Schwarz, E. M. & Rosier, R. N. Immunohistochemical study of receptor activator of nuclear factor κ-B ligand (RANK-L) in human osteolytic bone tumors. J. Surg. Oncol. 79, 174–179 (2002).

    PubMed  Google Scholar 

  63. Grimaud, E. et al. Receptor activator of nuclear factor κB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. Am. J. Pathol. 163, 2021–2031 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang, L., Cheng, Y. Y., Chow, L. T., Zheng, M. H. & Kumta, S. M. Tumour cells produce receptor activator of NF-κB ligand (RANKL) in skeletal metastases. J. Clin. Pathol. 55, 877–878 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kitazawa, S. & Kitazawa, R. RANK ligand is a prerequisite for cancer-associated osteolytic lesions. J. Pathol. 198, 228–236 (2002).

    CAS  PubMed  Google Scholar 

  66. Ohshiba, T., Miyaura, C., Inada, M. & Ito, A. Role of RANKL-induced osteoclast formation and MMP-dependent matrix degradation in bone destruction by breast cancer metastasis. Br. J. Cancer 88, 1318–1326 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pearse, R. N. et al. Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc. Natl Acad. Sci. USA 98, 11581–11586 (2001).

    CAS  PubMed  Google Scholar 

  68. Zhu, J. et al. EGF-like ligands stimulate osteoclastogenesis by regulating expression of osteoclast regulatory factors by osteoblasts: implications for osteolytic bone metastases. J. Biol. Chem. 282, 26656–26664 (2007).

    CAS  PubMed  Google Scholar 

  69. Brown, J. M. et al. Osteoprotegerin and rank ligand expression in prostate cancer. Urology 57, 611–616 (2001).

    CAS  PubMed  Google Scholar 

  70. Giuliani, N. et al. Human myeloma cells stimulate the receptor activator of nuclear factor-κ B ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease. Blood 100, 4615–4621 (2002).

    CAS  PubMed  Google Scholar 

  71. Zhang, J. et al. Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J. Clin. Invest. 107, 1235–1244 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Canon, J. et al. Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clin. Exp. Metastasis 25, 119–129 (2008).

    CAS  PubMed  Google Scholar 

  73. Zheng, Y. et al. Accelerated bone resorption, due to dietary calcium deficiency, promotes breast cancer tumor growth in bone. Cancer Res. 67, 9542–9548 (2007).

    CAS  PubMed  Google Scholar 

  74. Quinn, J. E. et al. Comparison of Fc-osteoprotegerin and zoledronic acid activities suggests that zoledronic acid inhibits prostate cancer in bone by indirect mechanisms. Prostate Cancer Prostatic Dis. 8, 253–259 (2005).

    CAS  PubMed  Google Scholar 

  75. Whang, P. G., Schwarz, E. M., Gamradt, S. C., Dougall, W. C. & Lieberman, J. R. The effects of RANK blockade and osteoclast depletion in a model of pure osteoblastic prostate cancer metastasis in bone. J. Orthop. Res. 23, 1475–1483 (2005).

    CAS  PubMed  Google Scholar 

  76. Miller, R. E. et al. RANK ligand inhibition plus docetaxel improves survival and reduces tumor burden in a murine model of prostate cancer bone metastasis. Mol. Cancer Ther. 7, 2160–2169 (2008).

    CAS  PubMed  Google Scholar 

  77. Feeley, B. et al. Mixed metastatic lung cancer lesions in bone are inhibited by noggin overexpression and Rank:Fc administration. J. Bone Miner. Res. 21, 1571–1580 (2006).

    CAS  PubMed  Google Scholar 

  78. Croucher, P. I. et al. Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma. Blood 98, 3534–3540 (2001).

    CAS  PubMed  Google Scholar 

  79. Vanderkerken, K. et al. Recombinant osteoprotegerin decreases tumor burden and increases survival in a murine model of multiple myeloma. Cancer Res. 63, 287–289 (2003).

    CAS  PubMed  Google Scholar 

  80. Yaccoby, S. et al. Myeloma interacts with the bone marrow microenvironment to induce osteoclastogenesis and is dependent on osteoclast activity. Br. J. Haematol. 116, 278–290 (2002).

    PubMed  Google Scholar 

  81. Canon, J. et al. Inhibition of RANKL increases the anti-tumor effect of the EGFR inhibitor panitumumab in a murine model of bone metastasis. Bone 46, 1613–1619 (2010).

    CAS  PubMed  Google Scholar 

  82. Holland, P. M. et al. Combined therapy with the RANKL inhibitor RANK-Fc and rhApo2L/TRAIL/dulanermin reduces bone lesions and skeletal tumor burden in a model of breast cancer skeletal metastasis. Cancer Biol. Ther. 9, 539–550 (2010).

    CAS  PubMed  Google Scholar 

  83. Luger, N. M. et al. Osteoprotegerin diminishes advanced bone cancer pain. Cancer Res. 61, 4038–4047 (2001).

    CAS  PubMed  Google Scholar 

  84. Roudier, M. P., Bain, S. D. & Dougall, W. C. Effects of the RANKL inhibitor, osteoprotegerin, on the pain and histopathology of bone cancer in rats. Clin. Exp. Metastasis 23, 167–175 (2006).

    CAS  PubMed  Google Scholar 

  85. Honore, P. et al. Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nature Med. 6, 521–528 (2000).

    CAS  PubMed  Google Scholar 

  86. Capparelli, C. et al. Osteoprotegerin prevents and reverses hypercalcemia in a murine model of humoral hypercalcemia of malignancy. Cancer Res. 60, 783–787 (2000).

    CAS  PubMed  Google Scholar 

  87. Oyajobi, B. O. et al. Therapeutic efficacy of a soluble receptor activator of nuclear factor κB-IgG Fc fusion protein in suppressing bone resorption and hypercalcemia in a model of humoral hypercalcemia of malignancy. Cancer Res. 61, 2572–2578 (2001).

    CAS  PubMed  Google Scholar 

  88. Fata, J. E. et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103, 41–50 (2000).

    CAS  PubMed  Google Scholar 

  89. Asselin-Labat, M. L. et al. Control of mammary stem cell function by steroid hormone signalling. Nature 465, 798–802 (2010).

    CAS  PubMed  Google Scholar 

  90. Beleut, M. et al. Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland. Proc. Natl Acad. Sci. USA 107, 2989–2994 (2010).

    CAS  PubMed  Google Scholar 

  91. Joshi, P. A. et al. Progesterone induces adult mammary stem cell expansion. Nature 465, 803–807 (2010).

    CAS  PubMed  Google Scholar 

  92. Gonzalez-Suarez, E. et al. RANK overexpression in transgenic mice with mouse mammary tumor virus promoter-controlled RANK increases proliferation and impairs alveolar differentiation in the mammary epithelia and disrupts lumen formation in cultured epithelial acini. Mol. Cell Biol. 27, 1442–1454 (2007).

    CAS  PubMed  Google Scholar 

  93. Gonzalez-Suarez, E. et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 468, 103–107 (2010).

    CAS  PubMed  Google Scholar 

  94. Schramek, D. et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature 468, 98–102 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Chlebowski, R. T. et al. Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Women's Health Initiative Randomized Trial. JAMA 289, 3243–3253 (2003).

    CAS  PubMed  Google Scholar 

  96. Tan, W. et al. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL–RANK signalling. Nature 470, 548–553 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Armstrong, A. P. et al. RANKL acts directly on RANK-expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes. Prostate 68, 92–104 (2008).

    CAS  PubMed  Google Scholar 

  98. Holstead-Jones, D. et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440, 692–696 (2006).

    Google Scholar 

  99. Luo, J. L. et al. Nuclear cytokine-activated IKKα controls prostate cancer metastasis by repressing Maspin. Nature 446, 690–694 (2007).

    CAS  PubMed  Google Scholar 

  100. Cross, S. S. et al. Expression of receptor activator of nuclear factor κβ ligand (RANKL) and tumour necrosis factor related, apoptosis inducing ligand (TRAIL) in breast cancer, and their relations with osteoprotegerin, oestrogen receptor, and clinicopathological variables. J. Clin. Pathol. 59, 716–720 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Van Poznak, C. et al. Expression of osteoprotegerin (OPG), TNF related apoptosis inducing ligand (TRAIL), and receptor activator of nuclear factor κB ligand (RANKL) in human breast tumours. J. Clin. Pathol. 59, 56–63 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Leibbrandt, A. & Penninger, J. M. RANK/RANKL: regulators of immune responses and bone physiology. Ann. NY Acad. Sci. 1143, 123–150 (2008).

    CAS  PubMed  Google Scholar 

  103. Rossi, S. W. et al. RANK signals from CD4+3 inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J. Exp. Med. 204, 1267–1272 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Knoop, K. A. et al. RANKL is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium. J. Immunol. 183, 5738–5747 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Akiyama, T. et al. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29, 423–437 (2008).

    CAS  PubMed  Google Scholar 

  106. Hikosaka, Y. et al. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29, 438–450 (2008).

    CAS  PubMed  Google Scholar 

  107. Bachmann, M. F. et al. TRANCE, a tumor necrosis factor family member critical for CD40 ligand-independent T helper cell activation. J. Exp. Med. 189, 1025–1031 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Miller, R. E. et al. Receptor activator of NF-B ligand inhibition suppresses bone resorption and hypercalcemia but does not affect host immune responses to influenza infection. J. Immunol. 179, 266–274 (2007).

    CAS  PubMed  Google Scholar 

  109. Stolina, M. et al. Continuous RANKL inhibition in osteoprotegerin transgenic mice and rats suppresses bone resorption without impairing lymphorganogenesis or functional immune responses. J. Immunol. 179, 7497–7505 (2007).

    CAS  PubMed  Google Scholar 

  110. Stolina, M., Guo, J., Faggioni, R., Brown, H. & Senaldi, G. Regulatory effects of osteoprotegerin on cellular and humoral immune responses. Clin. Immunol. 109, 347–354 (2003).

    CAS  PubMed  Google Scholar 

  111. Ferrari-Lacraz, S. & Ferrari, S. Do RANKL inhibitors (denosumab) affect inflammation and immunity? Osteoporos. Int. 22, 435–446 (2011).

    CAS  PubMed  Google Scholar 

  112. Morony, S. et al. Osteoprotegerin inhibits vascular calcification without affecting atherosclerosis in ldlr(−/−) mice. Circulation 117, 411–420 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Helas, S. et al. Inhibition of receptor activator of NF-κB ligand by denosumab attenuates vascular calcium deposition in mice. Am. J. Pathol. 175, 473–478 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ock, S. et al. Receptor activator of nuclear factor-κB ligand (RANKL) is a novel inducer of myocardial inflammation. Cardiovasc. Res. 1 Feb 2012 (doi:10.1093/cvr/cvs078).

    CAS  PubMed  Google Scholar 

  115. Hanada, R. et al. Central control of fever and female body temperature by RANKL/RANK. Nature 462, 505–509 (2009).

    CAS  PubMed  Google Scholar 

  116. Duheron, V. et al. Receptor activator of NF-κB (RANK) stimulates the proliferation of epithelial cells of the epidermo-pilosebaceous unit. Proc. Natl Acad. Sci. USA 108, 5342–5347 (2011).

    CAS  PubMed  Google Scholar 

  117. Bekker, P. J. et al. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J. Bone Miner. Res. 19, 1059–1066 (2004).

    CAS  PubMed  Google Scholar 

  118. McClung, M. R. et al. Denosumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 354, 821–831 (2006).

    CAS  PubMed  Google Scholar 

  119. Bouxsein, M. L. & Delmas, P. D. Vertebral fracture assessment using standard bone densitometry equipment predicts incident fractures in women. Nature Clin. Pract. Endocrinol. Metab. 4, 652–653 (2008).

    Google Scholar 

  120. Delmas, P. D., Marin, F., Marcus, R., Misurski, D. A. & Mitlak, B. H. Beyond hip: importance of other nonspinal fractures. Am. J. Med. 120, 381–387 (2007).

    CAS  PubMed  Google Scholar 

  121. Cummings, S. R. et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 361, 756–765 (2009).

    CAS  PubMed  Google Scholar 

  122. Kanis, J. A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos. Int. 4, 368–381 (1994).

    CAS  PubMed  Google Scholar 

  123. Boonen, S. et al. Treatment with denosumab reduces the incidence of new vertebral and hip fractures in postmenopausal women at high risk. J. Clin. Endocrinol. Metab. 96, 1727–1736 (2011).

    CAS  PubMed  Google Scholar 

  124. Brown, J. P. et al. Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, Phase 3 trial. J. Bone Miner. Res. 24, 153–161 (2009).

    CAS  PubMed  Google Scholar 

  125. Kendler, D. L. et al. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women transitioning from alendronate therapy. J. Bone Miner. Res. 25, 72–81 (2010).

    CAS  PubMed  Google Scholar 

  126. Miller, P. D. et al. Effect of denosumab on bone mineral density and biochemical markers of bone turnover: six-year results of a Phase 2 clinical trial. J. Clin. Endocrinol. Metab. 96, 394–402 (2011).

    CAS  PubMed  Google Scholar 

  127. Bone, H. G. et al. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women. J. Clin. Endocrinol. Metab. 93, 2149–2157 (2008).

    CAS  PubMed  Google Scholar 

  128. Ellis, G. K. et al. Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J. Clin. Oncol. 26, 4875–4882 (2008).

    CAS  PubMed  Google Scholar 

  129. Smith, M. R. et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N. Engl. J. Med. 361, 745–755 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Coleman, R. E. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat. Rev. 27, 165–176 (2001).

    CAS  PubMed  Google Scholar 

  131. Coleman, R. E. Emerging strategies in bone health management for the adjuvant patient. Semin. Oncol. 34 (Suppl. 4), 11–16 (2007).

    Google Scholar 

  132. Roodman, G. D. Mechanisms of bone metastasis. N. Engl. J. Med. 350, 1655–1664 (2004).

    CAS  PubMed  Google Scholar 

  133. Rosen, L. S. et al. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a Phase III, double-blind, comparative trial. Cancer J. 7, 377–387 (2001).

    CAS  PubMed  Google Scholar 

  134. Rosen, L. S. et al. Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung cancer and other solid tumors: a Phase III, double-blind, randomized trial — the Zoledronic Acid Lung Cancer and Other Solid Tumors Study Group. J. Clin. Oncol. 21, 3150–3157 (2003).

    CAS  PubMed  Google Scholar 

  135. Novartis Pharmaceuticals Corporation: Zometa US prescribing information. Novartis website [online], (2010).

  136. Cimino, M. A., Rotstein, C., Slaughter, R. L. & Emrich, L. J. Relationship of serum antibiotic concentrations to nephrotoxicity in cancer patients receiving concurrent aminoglycoside and vancomycin therapy. Am. J. Med. 83, 1091–1097 (1987).

    CAS  PubMed  Google Scholar 

  137. Launay-Vacher, V. et al. Prevalence of renal insufficiency in breast cancer patients and related pharmacological issues. Breast Cancer Res. Treat. 124, 745–753 (2010).

    CAS  PubMed  Google Scholar 

  138. Oh, W. K. et al. The risk of renal impairment in hormone-refractory prostate cancer patients with bone metastases treated with zoledronic acid. Cancer 109, 1090–1096 (2007).

    CAS  PubMed  Google Scholar 

  139. Ries, F. & Klastersky, J. Nephrotoxicity induced by cancer chemotherapy with special emphasis on cisplatin toxicity. Am. J. Kidney Dis. 8, 368–379 (1986).

    CAS  PubMed  Google Scholar 

  140. Barrett-Lee, P. et al. An audit to determine the time taken to administer intravenous bisphosphonate infusions in patients diagnosed with metastatic breast cancer to bone in a hospital setting. Curr. Med. Res. Opin. 23, 1575–1582 (2007).

    PubMed  Google Scholar 

  141. Body, J. J. et al. A study of the biological receptor activator of nuclear factor-κB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin. Cancer Res. 12, 1221–1228 (2006).

    CAS  PubMed  Google Scholar 

  142. Lipton, A. et al. Randomized active-controlled Phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J. Clin. Oncol. 25, 4431–4437 (2007).

    CAS  PubMed  Google Scholar 

  143. Fizazi, K. et al. Randomized Phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J. Clin. Oncol. 27, 1564–1571 (2009).

    CAS  PubMed  Google Scholar 

  144. Stopeck, A. T. et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J. Clin. Oncol. 28, 5132–5139 (2010).

    CAS  PubMed  Google Scholar 

  145. Fizazi, K. et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377, 813–822 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Henry, D. H. et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J. Clin. Oncol. 29, 1125–1132 (2011).

    CAS  PubMed  Google Scholar 

  147. Henry, D. H. et al. Delayed skeletal-related events in a randomized Phase III study of denosumab versus zoledronic acid in patients with advanced cancer. J. Clin. Oncol. Abstr. 28, 9133 (2010).

    Google Scholar 

  148. Lipton, A. et al. Comparison of denosumab versus zoledronic acid (ZA) for the treatment of bone metastases in advanced cancer patients: an integrated analysis of 3 pivotal trials. Ann. Oncol. Abstr. 21, 1249P (2010).

  149. Smith, M. R. et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a Phase 3, randomised, placebo-controlled trial. Lancet 379, 1239–1246 (2012).

    Google Scholar 

  150. Thomas, D. et al. Denosumab in patients with giant-cell tumour of bone: an open-label, Phase 2 study. Lancet Oncol. 11, 275–280 (2010).

    CAS  PubMed  Google Scholar 

  151. Blay, J. et al. Denosumab safety and efficacy in giant cell tumor of bone (GCTB): interim results from a Phase 2 study. J. Clin. Oncol. Abstr. 29, 10034 (2011).

    Google Scholar 

  152. Papapoulos, S. et al. Five years of denosumab exposure in women with postmenopausal osteoporosis: results from the first two years of the FREEDOM extension. J. Bone Miner. Res. 27, 694–701 (2012).

    CAS  PubMed  Google Scholar 

  153. Saad, F. et al. Incidence, risk factors, and outcomes of osteonecrosis of the jaw: integrated analysis from three blinded active-controlled Phase III trials in cancer patients with bone metastases. Ann. Oncol. 10 Oct 2011 (doi:10.1093/annonc/mdr435).

    PubMed  Google Scholar 

  154. Amgen: Xgeva US prescribing information. Amgen website [online], (2010).

  155. Amgen: Prolia US prescribing information. Amgen website [online], (2011).

  156. Bolon, B. et al. Osteoprotegerin, an endogenous antiosteoclast factor for protecting bone in rheumatoid arthritis. Arthritis Rheum. 46, 3121–3135 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the efforts of: Amgen Genome Project team members (notably L. Souza who sanctioned and established it, as well as F. Calzone, who was a key architect of the programme generally and an important member of the early osteoprotegerin (OPG) team), Amgen Protein Sciences, Amgen Manufacturing and Quality Groups, the early OPG teams and their leaders C. Dunstan and P. Bekker, the early AMG 162 team and its leaders A. Depaoli, R. Zitnik and L. Fitzpatrick, as well as the many scientists at Immunex who were involved in the cloning of receptor activator of NF-κB (RANK) and RANK ligand, as well as RANK-Fc development. We would also like to thank the patients who participated in the clinical studies, along with their physicians. H. Brenza Zoog Ph.D. (Amgen) provided editorial support. J. Keysor (SurfMedia Enterprises, LLC) provided graphics support with funding from Amgen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Lacey.

Ethics declarations

Competing interests

D.L.L. is a biopharmaceutical consultant and a retired employee and shareholder of Amgen.

W.S.S., P.J.K., W.C.D., J.K.S. and R.D. are current employees and shareholders of Amgen.

W.J.B. is President and CSO of VivaMab, LLC, and Director of Alethia Biotherapeutics, and a former Amgen employee and shareholder of Amgen.

J.S.M. is an employee of Alder Biopharmaceuticals, and a former employee of Amgen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacey, D., Boyle, W., Simonet, W. et al. Bench to bedside: elucidation of the OPG–RANK–RANKL pathway and the development of denosumab. Nat Rev Drug Discov 11, 401–419 (2012). https://doi.org/10.1038/nrd3705

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3705

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer