Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles

Key Points

  • MicroRNAs (miRNAs) are short, single-stranded RNAs that suppress protein expression of often several related components of complex intracellular networks, making them very potent regulators.

  • The functions of miRNAs are heightened under conditions of pathophysiological stress and disease, making them attractive candidates for therapeutic manipulation.

  • Many gain- and loss-of-function studies have shown that miRNAs have prominent roles during many different diseases, including cardiovascular disorders.

  • Several antimiR (miRNA inhibitor) chemistries exist that can induce potent and sustained inhibition of specific miRNAs.

  • This Review provides an overview of the pharmacokinetic and pharmacodynamic properties of the different antimiR therapeutics and discusses some of their differences in comparison with more classical drugs.

  • We present some recent representative examples of the therapeutic effects of antimiRs in the cardiovascular system, including in cardiac remodelling, metabolism, fibrosis, apoptosis, vascular diseases, inflammation and hypertension.

  • Last, we consider some possible future directions and present some of the challenges and questions that remain in the path towards the development of miRNA-based therapeutics in general.

Abstract

In recent years, prominent roles for microRNAs (miRNAs) have been uncovered in several cardiovascular disorders. The ability to therapeutically manipulate miRNA expression and function through systemic or local delivery of miRNA inhibitors, referred to as antimiRs, has triggered enthusiasm for miRNAs as novel therapeutic targets. Here, we focus on the pharmacokinetic and pharmacodynamic properties of current antimiR designs and their relevance to cardiovascular indications, and evaluate the opportunities and obstacles associated with this new therapeutic modality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MicroRNA biogenesis and mechanism of action.
Figure 2: AntimiR chemistries.
Figure 3: Multiple functions of miR-208 in the heart.
Figure 4: MicroRNAs often regulate related target genes.

Similar content being viewed by others

References

  1. van Rooij, E. et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl Acad. Sci. USA 103, 18255–18260 (2006). This is the first description of changes in miRNA levels in murine and human heart disorders, and provides evidence for the relevance of miRNAs in heart disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ikeda, S. et al. Altered microRNA expression in human heart disease. Physiol. Genomics 31, 367–373 (2007). This study describes unique miRNA signature patterns for different forms of human heart disease.

    CAS  PubMed  Google Scholar 

  3. Thum, T. et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116, 258–267 (2007). This study suggests a relationship between changes in miRNAs and the expression of fetal genes in human heart disease.

    CAS  PubMed  Google Scholar 

  4. Bonauer, A., Boon, R. A. & Dimmeler, S. Vascular microRNAs. Curr. Drug Targets 11, 943–949 (2010).

    CAS  PubMed  Google Scholar 

  5. Zampetaki, A. & Mayr, M. MicroRNAs in vascular and metabolic disease. Circ. Res. 110, 508–522 (2012).

    CAS  PubMed  Google Scholar 

  6. Bonauer, A. et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324, 1710–1713 (2009).

    CAS  PubMed  Google Scholar 

  7. Boon, R. A. et al. MicroRNA-29 in aortic dilation: implications for aneurysm formation. Circ. Res. 109, 1115–1119 (2011).

    CAS  PubMed  Google Scholar 

  8. Caruso, P. et al. A role for miR-145 in pulmonary arterial hypertension. Circ. Res. 111, 290–300 (2012).

    CAS  PubMed  Google Scholar 

  9. Thum, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980–984 (2008).

    CAS  PubMed  Google Scholar 

  10. van Rooij, E. et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl Acad. Sci. USA 105, 13027–13032 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, S. et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 15, 261–271 (2008).

    PubMed  PubMed Central  Google Scholar 

  12. Xin, M. et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 23, 2166–2178 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hullinger, T. G. et al. Inhibition of miR-15 protects against cardiac ischemic injury. Circ. Res. 110, 71–81 (2012).

    CAS  PubMed  Google Scholar 

  14. Mutharasan, R. K., Nagpal, V., Ichikawa, Y. & Ardehali, H. microRNA-210 is upregulated in hypoxic cardiomyocytes through Akt- and p53-dependent pathways and exerts cytoprotective effects. Am. J. Physiol. Heart Circ. Physiol. 301, H1519–H1530 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009). This is a key review explaining miRNA biogenesis and function.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Orom, U. A., Nielsen, F. C. & Lund, A. H. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell 30, 460–471 (2008).

    PubMed  Google Scholar 

  17. Tay, Y., Zhang, J., Thomson, A. M., Lim, B. & Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124–1128 (2008).

    CAS  PubMed  Google Scholar 

  18. Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146, 353–358 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tay, Y. et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147, 344–357 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Miska, E. A. et al. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet. 3, e215 (2007).

    PubMed  PubMed Central  Google Scholar 

  22. Park, C. Y., Choi, Y. S. & McManus, M. T. Analysis of microRNA knockouts in mice. Hum. Mol. Genet. 19, R169–R175 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Small, E. M., Frost, R. J. & Olson, E. N. MicroRNAs add a new dimension to cardiovascular disease. Circulation 121, 1022–1032 (2010).

    PubMed  PubMed Central  Google Scholar 

  24. Leung, A. K. & Sharp, P. A. MicroRNA functions in stress responses. Mol. Cell 40, 205–215 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Stenvang, J., Petri, A., Lindow, M., Obad, S. & Kauppinen, S. Inhibition of microRNA function by antimiR oligonucleotides. Silence 3, 1 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kota, J. et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137, 1005–1017 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Miyazaki, Y. et al. Viral delivery of miR-196a ameliorates the SBMA phenotype via the silencing of CELF2. Nature Med. 18, 1136–1141 (2012).

    CAS  PubMed  Google Scholar 

  28. Bish, L. T. et al. Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Hum. Gene Ther. 19, 1359–1368 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao, G. et al. Adenovirus-based vaccines generate cytotoxic T lymphocytes to epitopes of NS1 from dengue virus that are present in all major serotypes. Hum. Gene Ther. 19, 927–936 (2008).

    CAS  PubMed  Google Scholar 

  30. Zincarelli, C., Soltys, S., Rengo, G. & Rabinowitz, J. E. Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol. Ther. 16, 1073–1080 (2008).

    CAS  PubMed  Google Scholar 

  31. Pasquinelli, A. E. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nature Rev. Genet. 13, 271–282 (2012). This paper reviews the different influences of stress on miRNA function.

    CAS  PubMed  Google Scholar 

  32. Krutzfeldt, J. et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 35, 2885–2892 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005). This is the first study to show that antimiRs can be used to silence miRNAs in vivo using antagomirs.

    Article  PubMed  Google Scholar 

  34. Levin, A. A. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim. Biophys. Acta 1489, 69–84 (1999).

    CAS  PubMed  Google Scholar 

  35. van Rooij, E., Purcell, A. L. & Levin, A. A. Developing microRNA therapeutics. Circ. Res. 110, 496–507 (2012).

    CAS  PubMed  Google Scholar 

  36. Esau, C. et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3, 87–98 (2006).

    CAS  PubMed  Google Scholar 

  37. Lanford, R. E. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327, 198–201 (2010). This paper describes the therapeutic efficacy of antimiR-based inhibition of miR-122 in primates infected with HCV.

    CAS  PubMed  Google Scholar 

  38. Rayner, K. J. et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 478, 404–407 (2011). This study shows the therapeutic benefit of antimiR-mediated inhibition of miR-33 in non-human primates in increasing plasma levels of high-density lipoprotein (HDL) and lowering very-low-density lipoprotein (VLDL) triglycerides.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Obad, S. et al. Silencing of microRNA families by seed-targeting tiny LNAs. Nature Genet. 43, 371–378 (2011).

    CAS  PubMed  Google Scholar 

  40. Garchow, B. G. et al. Silencing of microRNA-21 in vivo ameliorates autoimmune splenomegaly in lupus mice. EMBO Mol. Med. 3, 605–615 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Patrick, D. M. et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J. Clin. Invest. 120, 3912–3916 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sheehan, J. P. & Phan, T. M. Phosphorothioate oligonucleotides inhibit the intrinsic tenase complex by an allosteric mechanism. Biochemistry 40, 4980–4989 (2001).

    CAS  PubMed  Google Scholar 

  43. Henry, S. P. et al. Complement activation is responsible for acute toxicities in rhesus monkeys treated with a phosphorothioate oligodeoxynucleotide. Int. Immunopharmacol. 2, 1657–1666 (2002).

    CAS  PubMed  Google Scholar 

  44. Swayze, E. E. et al. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res. 35, 687–700 (2007).

    CAS  PubMed  Google Scholar 

  45. Elmen, J. et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 36, 1153–1162 (2008).

    CAS  PubMed  Google Scholar 

  46. Geary, R. S., Yu, R. Z. & Levin, A. A. Pharmacokinetics of phosphorothioate antisense oligodeoxynucleotides. Curr. Opin. Investig. Drugs 2, 562–573 (2001).

    CAS  PubMed  Google Scholar 

  47. Elmen, J. et al. LNA-mediated microRNA silencing in non-human primates. Nature 452, 896–899 (2008).

    CAS  PubMed  Google Scholar 

  48. Montgomery, R. L. et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 124, 1537–1547 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chang, J. et al. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol. 1, 106–113 (2004).

    CAS  PubMed  Google Scholar 

  50. Mukherji, S. et al. MicroRNAs can generate thresholds in target gene expression. Nature Genet. 43, 854–859 (2011).

    CAS  PubMed  Google Scholar 

  51. Hendrickson, D. G. et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol. 7, e1000238 (2009).

    PubMed  PubMed Central  Google Scholar 

  52. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008). References 52 and 53 show that a single miRNA can repress the production of hundreds of proteins but this repression is typically relatively mild. Furthermore, although direct repression of translation occurs, mRNA destabilization is the major driver of gene repression.

    CAS  PubMed  Google Scholar 

  54. Wolff, J. A. & Budker, V. The mechanism of naked DNA uptake and expression. Adv. Genet. 54, 3–20 (2005).

    CAS  PubMed  Google Scholar 

  55. Callis, T. E. et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest. 119, 2772–2786 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007). This study describes the first genetic deletion by a miRNA, miR-208, which is a cardiomyocyte-specific miRNA involved in cardiac remodelling during stress.

    CAS  PubMed  Google Scholar 

  57. van Rooij, E. et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev. Cell 17, 662–673 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Grueter, C. E. et al. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell 149, 671–683 (2012). This paper describes how inhibition of a cardiac-specific miRNA, miR-208, can have an effect on total body metabolism by regulation of downstream cardiac targets.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Taubert, S., Van Gilst, M. R., Hansen, M. & Yamamoto, K. R. A mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. Genes Dev. 20, 1137–1149 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, W. et al. Mediator MED23 links insulin signaling to the adipogenesis transcription cascade. Dev. Cell 16, 764–771 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang, F. et al. An ARC/mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 442, 700–704 (2006).

    CAS  PubMed  Google Scholar 

  62. Frost, R. J. & Olson, E. N. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc. Natl Acad. Sci. USA 108, 21075–21080 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Trajkovski, M. et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474, 649–653 (2011).

    CAS  PubMed  Google Scholar 

  64. Zhu, H. et al. The Lin28/let-7 axis regulates glucose metabolism. Cell 147, 81–94 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ardite, E. et al. PAI-1-regulated miR-21 defines a novel age-associated fibrogenic pathway in muscular dystrophy. J. Cell Biol. 196, 163–175 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu, G. et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J. Exp. Med. 207, 1589–1597 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zarjou, A., Yang, S., Abraham, E., Agarwal, A. & Liu, G. Identification of a microRNA signature in renal fibrosis: role of miR-21. Am. J. Physiol. Renal Physiol. 301, F793–F801 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhong, X., Chung, A. C., Chen, H. Y., Meng, X. M. & Lan, H. Y. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J. Am. Soc. Nephrol. 22, 1668–1681 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hatley, M. E. et al. Modulation of K-Ras-dependent lung tumorigenesis by microRNA-21. Cancer Cell 18, 282–293 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Thum, T. et al. Comparison of different miR-21 inhibitor chemistries in a cardiac disease model. J. Clin. Invest. 121, 461–462; author reply 462–463 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Care, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nature Med. 13, 613–618 (2007).

    CAS  PubMed  Google Scholar 

  72. Liu, N. et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 22, 3242–3254 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. He, J. F., Luo, Y. M., Wan, X. H. & Jiang, D. Biogenesis of miRNA-195 and its role in biogenesis, the cell cycle, and apoptosis. J. Biochem. Mol. Toxicol. 25, 404–408 (2011).

    CAS  PubMed  Google Scholar 

  74. Porrello, E. R. et al. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ. Res. 109, 670–679 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Fang, Y. & Davies, P. F. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler. Thromb. Vasc. Biol. 32, 979–987 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu, W. et al. Flow-dependent regulation of Kruppel-like factor 2 is mediated by microRNA-92a. Circulation 124, 633–641 (2011).

    CAS  PubMed  Google Scholar 

  78. Parmar, K. M. et al. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J. Clin. Invest. 116, 49–58 (2006).

    CAS  PubMed  Google Scholar 

  79. Kriegel, A. J., Liu, Y., Fang, Y., Ding, X. & Liang, M. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol. Genom. 44, 237–244 (2012).

    CAS  Google Scholar 

  80. Qin, W. et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J. Am. Soc. Nephrol. 22, 1462–1474 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, B. et al. Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis. J. Am. Soc. Nephrol. 23, 252–265 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Xiao, J. et al. miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol. Ther. 20, 1251–1260 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Roderburg, C. et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 53, 209–218 (2011).

    CAS  PubMed  Google Scholar 

  84. Sekiya, Y., Ogawa, T., Yoshizato, K., Ikeda, K. & Kawada, N. Suppression of hepatic stellate cell activation by microRNA-29b. Biochem. Biophys. Res. Commun. 412, 74–79 (2011).

    CAS  PubMed  Google Scholar 

  85. Zhang, Y. et al. Protective role of estrogen-induced miRNA-29 expression in carbon tetrachloride-induced mouse liver injury. J. Biol. Chem. 287, 14851–14862 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Cushing, L. et al. miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 45, 287–294 (2011).

    CAS  PubMed  Google Scholar 

  87. Maurer, B. et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 62, 1733–1743 (2010).

    CAS  PubMed  Google Scholar 

  88. Maegdefessel, L. et al. Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development. J. Clin. Invest. 122, 497–506 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Merk, D. R. et al. miR-29b participates in early aneurysm development in Marfan syndrome. Circ. Res. 110, 312–324 (2012).

    CAS  PubMed  Google Scholar 

  90. Zhang, P. et al. Inhibition of microRNA-29 enhances elastin levels in cells haploinsufficient for elastin and in bioengineered vessels — brief report. Arterioscler. Thromb. Vasc. Biol. 32, 756–759 (2012).

    CAS  PubMed  Google Scholar 

  91. Turner, M. & Vigorito, E. Regulation of B- and T-cell differentiation by a single microRNA. Biochem. Soc. Trans. 36, 531–533 (2008).

    CAS  PubMed  Google Scholar 

  92. Faraoni, I., Antonetti, F. R., Cardone, J. & Bonmassar, E. miR-155 gene: a typical multifunctional microRNA. Biochim. Biophys. Acta 1792, 497–505 (2009).

    CAS  PubMed  Google Scholar 

  93. Tili, E., Croce, C. M. & Michaille, J. J. miR-155: on the crosstalk between inflammation and cancer. Int. Rev. Immunol. 28, 264–284 (2009).

    CAS  PubMed  Google Scholar 

  94. Martin, M. M. et al. The human angiotensin II type 1 receptor +1166 A/C polymorphism attenuates microRNA-155 binding. J. Biol. Chem. 282, 24262–24269 (2007).

    CAS  PubMed  Google Scholar 

  95. Sethupathy, P. et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am. J. Hum. Genet. 81, 405–413 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Thai, T. H. et al. Regulation of the germinal center response by microRNA-155. Science 316, 604–608 (2007).

    CAS  PubMed  Google Scholar 

  97. Corsten, M. F. et al. MicroRNA profiling identifies microRNA-155 as an adverse mediator of cardiac injury and dysfunction during acute viral myocarditis. Circ. Res. 111, 415–425 (2012).

    CAS  PubMed  Google Scholar 

  98. Bang, C., Fiedler, J. & Thum, T. Cardiovascular importance of the microRNA-23/27/24 family. Microcirculation 19, 208–214 (2012).

    CAS  PubMed  Google Scholar 

  99. Zhou, Q. et al. Regulation of angiogenesis and choroidal neovascularization by members of microRNA-232724 clusters. Proc. Natl Acad. Sci. USA 108, 8287–8292 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Fiedler, J. et al. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 124, 720–730 (2011).

    CAS  PubMed  Google Scholar 

  101. Qian, L. et al. miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J. Exp. Med. 208, 549–560 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Boettger, T. et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the mir143/145 gene cluster. J. Clin. Invest. 119, 2634–2647 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Elia, L. et al. The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Differ. 16, 1590–1598 (2009).

    CAS  PubMed  Google Scholar 

  104. Marquart, T. J., Allen, R. M., Ory, D. S. & Baldan, A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc. Natl Acad. Sci. USA 107, 12228–12232 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Najafi-Shoushtari, S. H. et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328, 1566–1569 (2010).

    CAS  PubMed  Google Scholar 

  106. da Costa Martins, P. A. et al. MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nature Cell Biol. 12, 1220–1227 (2010).

    PubMed  Google Scholar 

  107. Ren, X. P. et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 119, 2357–2366 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge J. Cabrera for graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric N. Olson.

Ethics declarations

Competing interests

Work in the laboratory of Eric N. Olson was supported by grants from the US National Institutes of Health (NIH), the Robert A. Welch Foundation (Grant number I-0025), the American Heart Association, the Jon Holden DeHaan Foundation, the Donald W. Reynolds Center for Clinical Cardiovascular Research, the Fondation Leducq TransAtlantic Network of Excellence in Cardiovascular Research Program and the Cancer Prevention & Research Institute of Texas (CPRIT). Eva van Rooij and Eric N. Olson are co-founders of miRagen Therapeutics and hold equity in the company.

Related links

Related links

FURTHER INFORMATION

ClinicalTrials.gov website

Santaris Pharma website — 3 October 2011 press release

Glossary

microRNAs

(miRNAs). Short, non-coding RNAs that suppress protein expression by most commonly binding to complementary sequences located within 3′ untranslated regions of target mRNAs.

Hepatitis C virus

(HCV). An infectious disease primarily affecting the liver.

RNA-induced silencing complex

(RISC). A multiprotein complex that incorporates a microRNA to recognize complementary sequences in mRNAs and block protein expression.

Pseudogenes

Non-coding transcripts that are often conserved across species and contain conserved microRNA binding sites that can act as decoys to interfere with microRNA activity.

AntimiRs

Antisense oligonucleotides designed to target specific microRNAs.

Pharmacokinetic

In the context of antimiR (microRNA inhibitor) designs, this refers to the potency of an antimiR in binding to and inhibiting a microRNA in vivo.

Pharmacodynamic

In the context of antimiR (microRNA inhibitor) designs, this refers to mRNA de-repression of direct microRNA targets in response to treatment with an antimiR.

Phosphorothioate

Backbone linkage in which a sulphur atom replaces one of the non-bridging oxygen atoms in the phosphate group of oligonucleotides to increase nuclease resistance.

Antagomir

A cholesterol-conjugated antimiR (microRNA inhibitor) chemistry that is complementary to the full-length sequence of the target microRNA, consisting of 2′-O-methyl (2′-O-Me) linkages and containing several phosphorothioate moieties to increase stability.

2′ sugar modifications

High-affinity 2′ sugar modifications such as 2′-O-methyl (2′-O-Me), 2′-O-methoxyethyl (2′-MOE), 2′-fluoro (2′-F) or locked nucleic acid; used in oligonucleotide chemistries to improve nuclease resistance and increase duplex melting temperature (Tm).

Locked nucleic acid

(LNA). A 2′ sugar modification in which the ribose is locked in a C3′-endo conformation by the introduction of a 2′-O-,4′-C methylene bridge that strongly increases the affinity for complementary RNA and increases the duplex melting temperature (Tm) by + 2°C to + 8°C per introduced LNA modification.

Duplex melting temperature

(Tm). The temperature at which half of a particular duplex dissociates and becomes single-stranded; in this case the temperature at which an antimiR (a microRNA inhibitor) will dissociate from complementary RNA.

Tiny

A locked nucleic acid (LNA)-containing 8-mer antimiR (microRNA inhibitor) with a complete phosphorothioate backbone targeting the seed region of a microRNA or microRNA family.

P-bodies

Cytoplasmic sites of mRNA turnover. Also referred to as stress granules.

MyomiRs

The collection of microRNAs co-expressed with three different myosin heavy chain (MYH) genes: MYH6 (miR-208a), MYH7 (miR-208b) and MYH7B (miR-499).

MED13

Mediator of RNA polymerase II transcription subunit 13 (also known as THRAP1); a component of the mediator complex that can associate with numerous nuclear hormone receptors and have key roles in metabolic control. MED13 is regulated by the microRNA miR-208.

Aneurysm

An abnormal widening or ballooning of a portion of an artery resulting from weakness in the wall of the blood vessel.

Marfan syndrome

A systemic connective tissue disorder in which aortic aneurysm formation is the leading cause of death.

Angiotensin II type 1 receptor

(AT1). The receptor through which angiotensin II exerts most of its cardiac actions. This receptor has been associated with hypertension, cardiac hypertrophy and myocardial infarction, and is a direct target of the microRNA miR-155.

Viral myocarditis

Inflammation of the heart that can lead to cardiomyopathy.

Miravirsen

Pharmacological name for antimiR-122 (a microRNA inhibitor targeting miR-122), which has shown therapeutic efficacy in clinical trials by providing long-lasting suppression of viraemia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Rooij, E., Olson, E. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov 11, 860–872 (2012). https://doi.org/10.1038/nrd3864

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3864

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing