Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The pharmacological landscape and therapeutic potential of serine hydrolases

Key Points

  • Serine hydrolases are one of the largest and most diverse classes of enzymes found in eukaryotes and prokaryotes, including 240 members in humans.

  • Several clinically approved drugs target serine hydrolases. Prominent among these therapeutics are inhibitors of thrombin, acetylcholinesterase and dipeptidyl peptidase 4 that are used to treat clotting disorders, Alzheimer's disease-associated dementia and diabetes, respectively.

  • Many serine hydrolases have recently emerged as enzymes with therapeutic potential and are the focus of intense inhibitor discovery efforts.

  • Compounds that act through covalent mechanisms have proved to be especially effective at selectively inhibiting serine hydrolases. Here, we highlight the mechanism-based electrophiles that have successfully formed the basis of selective, in vivo-active inhibitors (including several approved drugs) and also review promising new chemotypes that have recently been discovered.

  • Activity-based protein profiling has facilitated the discovery of dysregulated serine hydrolases in disease and has enabled the rapid development of selective inhibitors for the functional characterization of these enzymes.

Abstract

Serine hydrolases perform crucial roles in many biological processes, and several of these enzymes are targets of approved drugs for indications such as type 2 diabetes, Alzheimer's disease and infectious diseases. Despite this, most of the human serine hydrolases (of which there are more than 200) remain poorly characterized with respect to their physiological substrates and functions, and the vast majority lack selective, in vivo-active inhibitors. Here, we review the current state of pharmacology for mammalian serine hydrolases, including marketed drugs, compounds that are under clinical investigation and selective inhibitors emerging from academic probe development efforts. We also highlight recent methodological advances that have accelerated the rate of inhibitor discovery and optimization for serine hydrolases, which we anticipate will aid in their biological characterization and, in some cases, therapeutic validation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the serine hydrolase catalytic cycle.
Figure 2: The human serine hydrolases.
Figure 3: Activity-based protein profiling for enzyme and inhibitor discovery.
Figure 4: Fluorescence polarization-ABPP platform for high-throughput screening.

Similar content being viewed by others

References

  1. Long, J. Z. & Cravatt, B. F. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem. Rev. 111, 6022–6063 (2011). This is a comprehensive review of the mammalian metabolic serine hydrolases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Davie, E. W. & Ratnoff, O. D. Waterfall sequence for intrinsic blood clotting. Science 145, 1310–1312 (1964).

    Article  CAS  PubMed  Google Scholar 

  3. Whitcomb, D. C. & Lowe, M. E. Human pancreatic digestive enzymes. Dig. Dis. Sci. 52, 1–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Lane, R. M., Potkin, S. G. & Enz, A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol. 9, 101–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Bonventre, J. V. et al. Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature 390, 622–625 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Menendez, J. A. & Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nature Rev. Cancer 7, 763–777 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Simon, G. M. & Cravatt, B. F. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. J. Biol. Chem. 285, 11051–11055 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nomura, D. K. et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140, 49–61 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Steuber, H. & Hilgenfeld, R. Recent advances in targeting viral proteases for the discovery of novel antivirals. Curr. Top. Med. Chem. 10, 323–345 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. White, M. J. et al. The HtrA-like serine protease PepD interacts with and modulates the Mycobacterium tuberculosis 35-kDa antigen outer envelope protein. PLoS ONE 6, e18175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Damblon, C. et al. The catalytic mechanism of β-lactamases: NMR titration of an active-site lysine residue of the TEM-1 enzyme. Proc. Natl Acad. Sci. USA 93, 1747–1752 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bachovchin, D. A. et al. Superfamily-wide portrait of serine hydrolase inhibition achieved by library-versus-library screening. Proc. Natl Acad. Sci. USA 107, 20941–20946 (2010). This paper reports the findings of a global survey of carbamate-containing compounds for inhibition against a large panel of serine hydrolases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, W., Blankman, J. L. & Cravatt, B. F. A functional proteomic strategy to discover inhibitors for uncharacterized hydrolases. J. Am. Chem. Soc. 129, 9594–9595 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Johnson, D. S. et al. Discovery of PF-04457845: a highly potent, orally bioavailable, and selective urea FAAH inhibitor. ACS Med. Chem. Lett. 2, 91–96 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Adibekian, A. et al. Click-generated triazole ureas as ultrapotent in vivo-active serine hydrolase inhibitors. Nature Chem. Biol. 7, 469–478 (2011).

    Article  CAS  Google Scholar 

  16. Leung, D., Hardouin, C., Boger, D. L. & Cravatt, B. F. Discovering potent and selective reversible inhibitors of enzymes in complex proteomes. Nature Biotech. 21, 687–691 (2003).

    Article  CAS  Google Scholar 

  17. Hoover, H. S., Blankman, J. L., Niessen, S. & Cravatt, B. F. Selectivity of inhibitors of endocannabinoid biosynthesis evaluated by activity-based protein profiling. Bioorg. Med. Chem. Lett. 18, 5838–5841 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tew, D. G., Boyd, H. F., Ashman, S., Theobald, C. & Leach, C. A. Mechanism of inhibition of LDL phospholipase A2 by monocyclic-β-lactams. Burst kinetics and the effect of stereochemistry. Biochemistry 37, 10087–10093 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Stedman, E. & Barger, G. J. Physostigmine (eserine). Part III. J. Chem. Soc. 127, 247–258 (1925).

    Article  CAS  Google Scholar 

  20. Weibel, E. K., Hadvary, P., Hochuli, E., Kupfer, E. & Lengsfeld, H. Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. I. Producing organism, fermentation, isolation and biological activity. J. Antibiot. 40, 1081–1085 (1987).

    Article  CAS  Google Scholar 

  21. Li, J., Wilk, E. & Wilk, S. Aminoacylpyrrolidine-2-nitriles: potent and stable inhibitors of dipeptidyl-peptidase IV (CD 26). Arch. Biochem. Biophys. 323, 148–154 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Flentke, G. R. et al. Inhibition of dipeptidyl aminopeptidase IV (DP-IV) by Xaa-boroPro dipeptides and use of these inhibitors to examine the role of DP-IV in T-cell function. Proc. Natl Acad. Sci. USA 88, 1556–1559 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Perona, J. J. & Craik, C. S. Structural basis of substrate specificity in the serine proteases. Protein Sci. 4, 337–360 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yousef, G. M., Kopolovic, A. D., Elliott, M. B. & Diamandis, E. P. Genomic overview of serine proteases. Biochem. Biophys. Res. Commun. 305, 28–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Holmes, R. S. et al. Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins. Mamm. Genome 21, 427–441 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kienesberger, P. C., Oberer, M., Lass, A. & Zechner, R. Mammalian patatin domain containing proteins: a family with diverse lipolytic activities involved in multiple biological functions. J. Lipid Res. 50, S63–S68 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Shin, S. et al. Structure of malonamidase E2 reveals a novel Ser-cisSer-Lys catalytic triad in a new serine hydrolase fold that is prevalent in nature. EMBO J. 21, 2509–2516 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bracey, M. H., Hanson, M. A., Masuda, K. R., Stevens, R. C. & Cravatt, B. F. Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling. Science 298, 1793–1796 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Shi, Y. & Burn, P. Lipid metabolic enzymes: emerging drug targets for the treatment of obesity. Nature Rev. Drug Discov. 3, 695–710 (2004).

    Article  CAS  Google Scholar 

  30. Singh, J., Petter, R. C., Baillie, T. A. & Whitty, A. The resurgence of covalent drugs. Nature Rev. Drug Discov. 10, 307–317 (2011). This is a comprehensive review of the advantages and challenges of covalent drugs.

    Article  CAS  Google Scholar 

  31. Bar-On, P. et al. Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. Biochemistry 41, 3555–3564 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Metzler, W. J. et al. Involvement of DPP-IV catalytic residues in enzyme–saxagliptin complex formation. Protein Sci. 17, 240–250 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Villhauer, E. B. et al. 1-[[(3-hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J. Med. Chem. 46, 2774–2789 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Hadvary, P., Sidler, W., Meister, W., Vetter, W. & Wolfer, H. The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase. J. Biol. Chem. 266, 2021–2027 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Kawabata, K. et al. ONO-5046, a novel inhibitor of human neutrophil elastase. Biochem. Biophys. Res. Commun. 177, 814–820 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Nakayama, Y. et al. Clarification of mechanism of human sputum elastase inhibition by a new inhibitor, ONO-5046, using electrospray ionization mass spectrometry. Bioorg. Med. Chem. Lett. 12, 2349–2353 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Silver, L. L. Multi-targeting by monotherapeutic antibacterials. Nature Rev. Drug Discov. 6, 41–55 (2007).

    Article  CAS  Google Scholar 

  38. Flores, M. V., Strawbridge, J., Ciaramella, G. & Corbau, R. HCV-NS3 inhibitors: determination of their kinetic parameters and mechanism. Biochim. Biophys. Acta 1794, 1441–1448 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Papp-Wallace, K. M., Endimiani, A., Taracila, M. A. & Bonomo, R. A. Carbapenems: past, present, and future. Antimicrob. Agents Chemother. 55, 4943–4960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Llarrull, L. I., Testero, S. A., Fisher, J. F. & Mobashery, S. The future of the β-lactams. Curr. Opin. Microbiol. 13, 551–557 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schlutter, J. Therapeutics: new drugs hit the target. Nature 474, S5–S7 (2011).

    Article  PubMed  CAS  Google Scholar 

  42. Mackman, N. Triggers, targets and treatments for thrombosis. Nature 451, 914–918 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Macfarlane, R. G. An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature 202, 498–499 (1964).

    Article  CAS  PubMed  Google Scholar 

  44. Gustafsson, D. et al. A new oral anticoagulant: the 50-year challenge. Nature Rev. Drug Discov. 3, 649–659 (2004).

    Article  CAS  Google Scholar 

  45. Markwardt, F. The development of hirudin as an antithrombotic drug. Thromb. Res. 74, 1–23 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. White, H. D. & Chew, D. P. Bivalirudin: an anticoagulant for acute coronary syndromes and coronary interventions. Expert Opin. Pharmacother. 3, 777–788 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Okamoto, S. A synthetic thrombin inhibitor taking extremely active stereostructure. Thromb. Haemost. 42, A205 (1979).

    Google Scholar 

  48. Walenga, J. M. An overview of the direct thrombin inhibitor argatroban. Pathophysiol. Haemost. Thromb. 32 (Suppl. 3), 9–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Boudes, P. F. The challenges of new drugs benefits and risks analysis: lessons from the ximelagatran FDA Cardiovascular Advisory Committee. Contemp. Clin. Trials 27, 432–440 (2006).

    Article  PubMed  Google Scholar 

  50. Brandstetter, H. et al. Refined 2.3 Å X-ray crystal structure of bovine thrombin complexes formed with the benzamidine and arginine-based thrombin inhibitors NAPAP, 4-TAPAP and MQPA. A starting point for improving antithrombotics. J. Mol. Biol. 226, 1085–1099 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. Hauel, N. H. et al. Structure-based design of novel potent nonpeptide thrombin inhibitors. J. Med. Chem. 45, 1757–1766 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Eisert, W. G. et al. Dabigatran: an oral novel potent reversible nonpeptide inhibitor of thrombin. Arterioscler. Thromb. Vasc. Biol. 30, 1885–1889 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Schulman, S. et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N. Engl. J. Med. 361, 2342–2352 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Fujikawa, K., Legaz, M. E., Kato, H. & Davie, E. W. The mechanism of activation of bovine factor IX (Christmas factor) by bovine factor XIa (activated plasma thromboplastin antecedent). Biochemistry 13, 4508–4516 (1974).

    Article  CAS  PubMed  Google Scholar 

  55. Nutt, E. et al. The amino acid sequence of antistasin. A potent inhibitor of factor Xa reveals a repeated internal structure. J. Biol. Chem. 263, 10162–10167 (1988).

    Article  CAS  PubMed  Google Scholar 

  56. Tuszynski, G. P., Gasic, T. B. & Gasic, G. J. Isolation and characterization of antistasin. An inhibitor of metastasis and coagulation. J. Biol. Chem. 262, 9718–9723 (1987).

    Article  CAS  PubMed  Google Scholar 

  57. Waxman, L., Smith, D. E., Arcuri, K. E. & Vlasuk, G. P. Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa. Science 248, 593–596 (1990).

    Article  CAS  PubMed  Google Scholar 

  58. Bauer, K. A. et al. Fondaparinux, a synthetic pentasaccharide: the first in a new class of antithrombotic agents — the selective factor Xa inhibitors. Cardiovasc. Drug Rev. 20, 37–52 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Perzborn, E., Roehrig, S., Straub, A., Kubitza, D. & Misselwitz, F. The discovery and development of rivaroxaban, an oral, direct factor Xa inhibitor. Nature Rev. Drug Discov. 10, 61–75 (2011).

    Article  CAS  Google Scholar 

  60. Becker, R. C., Alexander, J., Dyke, C. K. & Harrington, R. A. Development of DX-9065a, a novel direct factor Xa antagonist, in cardiovascular disease. Thromb. Haemost. 92, 1182–1193 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Sato, K. et al. YM-60828, a novel factor Xa inhibitor: separation of its antithrombotic effects from its prolongation of bleeding time. Eur. J. Pharmacol. 339, 141–146 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Lam, P. Y. et al. Structure-based design of novel guanidine/benzamidine mimics: potent and orally bioavailable factor Xa inhibitors as novel anticoagulants. J. Med. Chem. 46, 4405–4418 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Pinto, D. J. et al. Discovery of 1-[3-(aminomethyl)phenyl]-N-3-fluoro-2′-(methylsulfonyl)-[1,1′-biphenyl]-4 -yl]-3-(trifluoromethyl)-1H-pyrazole-5-carboxamide (DPC423), a highly potent, selective, and orally bioavailable inhibitor of blood coagulation factor Xa. J. Med. Chem. 44, 566–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Roehrig, S. et al. Discovery of the novel antithrombotic agent 5-chloro-N-({(5S)-2-oxo-3- [4-(3-oxomorpholin-4-yl)phenyl]-1,3-oxazolidin-5-yl}methyl)thiophene- 2-carboxamide (BAY 59–7939): an oral, direct factor Xa inhibitor. J. Med. Chem. 48, 5900–5908 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Eriksson, B. I., Quinlan, D. J. & Eikelboom, J. W. Novel oral factor Xa and thrombin inhibitors in the management of thromboembolism. Annu. Rev. Med. 62, 41–57 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Giacobini, E. Cholinesterases: new roles in brain function and in Alzheimer's disease. Neurochem. Res. 28, 515–522 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Bowen, D. M., Smith, C. B., White, P. & Davison, A. N. Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99, 459–496 (1976).

    Article  CAS  PubMed  Google Scholar 

  68. Davies, P. & Maloney, A. J. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet 2, 1403 (1976).

    Article  CAS  PubMed  Google Scholar 

  69. Perry, E. K., Gibson, P. H., Blessed, G., Perry, R. H. & Tomlinson, B. E. Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J. Neurol. Sci. 34, 247–265 (1977).

    Article  CAS  PubMed  Google Scholar 

  70. Bartus, R. T., Dean, R. L., Beer, B. & Lippa, A. S. The cholinergic hypothesis of geriatric memory dysfunction. Science 217, 408–414 (1982).

    Article  CAS  PubMed  Google Scholar 

  71. Hansen, R. A., Gartlehner, G., Kaufer, D. J., Lohr, K. N. & Carey, T. Drug class review on Alzheimer's drugs: final report. Drug Class Reviews (2006).

  72. Ellis, J. M. Cholinesterase inhibitors in the treatment of dementia. J. Am. Osteopath. Assoc. 105, 145–158 (2005).

    PubMed  Google Scholar 

  73. Casida, J. E. & Quistad, G. B. Serine hydrolase targets of organophosphorus toxicants. Chem. Biol. Interact. 157–158, 277–283 (2005).

    Article  PubMed  CAS  Google Scholar 

  74. Kawakami, Y. et al. The rationale for E2020 as a potent acetylcholinesterase inhibitor. Bioorg. Med. Chem. 4, 1429–1446 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Nochi, S., Asakawa, N. & Sato, T. Kinetic-study on the inhibition of acetylcholinesterase by 1-benzyl-4-[(5,6-dimethoxy-L-indanon)-2-Yl]methylpiperidine hydrochloride (E2020). Biol. Pharm. Bull. 18, 1145–1147 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Sugimoto, H., Iimura, Y., Yamanishi, Y. & Yamatsu, K. Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-benzyl-4-[(5, 6-dimethoxy-1-oxoindan-2-yl)methyl]piperidine hydrochloride and related compounds. J. Med. Chem. 38, 4821–4829 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Harvey, A. L. The pharmacology of galanthamine and its analogues. Pharmacol. Ther. 68, 113–128 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Thomsen, T. & Kewitz, H. Selective inhibition of human acetylcholinesterase by galanthamine in vitro and in vivo. Life Sci. 46, 1553–1558 (1990).

    Article  CAS  PubMed  Google Scholar 

  79. Thomsen, T., Bickel, U., Fischer, J. P. & Kewitz, H. Stereoselectivity of cholinesterase inhibition by galanthamine and tolerance in humans. Eur. J. Clin. Pharmacol. 39, 603–605 (1990).

    Article  CAS  PubMed  Google Scholar 

  80. Hemsworth, B. A. & West, G. B. The anticholinesterase activity of physostigmine. J. Pharm. Pharmacol. 20, 406–407 (1968).

    Article  CAS  PubMed  Google Scholar 

  81. Kennedy, J. S. et al. Preferential cerebrospinal fluid acetylcholinesterase inhibition by rivastigmine in humans. J. Clin. Psychopharmacol. 19, 513–521 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Kathuria, S. et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nature Med. 9, 76–81 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Long, J. Z. et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nature Chem. Biol. 5, 37–44 (2009).

    Article  CAS  Google Scholar 

  84. Bongers, J., Lambros, T., Ahmad, M. & Heimer, E. P. Kinetics of dipeptidyl peptidase IV proteolysis of growth hormone-releasing factor and analogs. Biochim. Biophys. Acta 1122, 147–153 (1992).

    Article  CAS  PubMed  Google Scholar 

  85. Rosenblum, J. S. & Kozarich, J. W. Prolyl peptidases: a serine protease subfamily with high potential for drug discovery. Curr. Opin. Chem. Biol. 7, 496–504 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Murphy, K. G., Dhillo, W. S. & Bloom, S. R. Gut peptides in the regulation of food intake and energy homeostasis. Endocr. Rev. 27, 719–727 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Thorens, B. Glucagon-like peptide-1 and control of insulin secretion. Diabetes Metab. 21, 311–318 (1995).

    CAS  Google Scholar 

  88. Meier, J. J., Nauck, M. A., Schmidt, W. E. & Gallwitz, B. Gastric inhibitory polypeptide: the neglected incretin revisited. Regul. Pept. 107, 1–13 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Drucker, D. J. Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology 122, 531–544 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Holst, J. J. & Deacon, C. F. Inhibition of the activity of dipeptidyl-peptidase IV as a treatment for type 2 diabetes. Diabetes 47, 1663–1670 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Feng, J. et al. Discovery of alogliptin: a potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV. J. Med. Chem. 50, 2297–2300 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Lambeir, A. M. et al. Dipeptide-derived diphenyl phosphonate esters: mechanism-based inhibitors of dipeptidyl peptidase IV. Biochim. Biophys. Acta 1290, 76–82 (1996).

    Article  PubMed  Google Scholar 

  93. Hughes, T. E., Mone, M. D., Russell, M. E., Weldon, S. C. & Villhauer, E. B. NVP-DPP728 (1-[[[2-[(5-cyanopyridin-2-yl)amino]ethyl]amino]acetyl]-2-cyano-(S)-pyrrolidine), a slow-binding inhibitor of dipeptidyl peptidase IV. Biochemistry 38, 11597–11603 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Oefner, C. et al. High-resolution structure of human apo dipeptidyl peptidase IV/CD26 and its complex with 1-[([2-[(5-iodopyridin-2-yl)amino]-ethyl]amino)-acetyl]-2-cyano-(S)-pyrrol idine. Acta Crystallogr. D Biol. Crystallogr. 59, 1206–1212 (2003).

    Article  PubMed  Google Scholar 

  95. Villhauer, E. B. et al. 1-[2-[(5-cyanopyridin-2-yl)amino]ethylamino]acetyl-2-(S)-pyrrolidinecarbon itrile: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J. Med. Chem. 45, 2362–2365 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Magnin, D. R. et al. Synthesis of novel potent dipeptidyl peptidase IV inhibitors with enhanced chemical stability: interplay between the N-terminal amino acid alkyl side chain and the cyclopropyl group of α-aminoacyl-l-cis-4,5-methanoprolinenitrile-based inhibitors. J. Med. Chem. 47, 2587–2598 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Augeri, D. J. et al. Discovery and preclinical profile of saxagliptin (BMS-477118): a highly potent, long-acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J. Med. Chem. 48, 5025–5037 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Kim, D. et al. (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J. Med. Chem. 48, 141–151 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Eckhardt, M. et al. 8-(3-(R)-aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin -2-ylmethyl)-3,7-dihydropurine-2,6-dione (BI 1356), a highly potent, selective, long-acting, and orally bioavailable DPP-4 inhibitor for the treatment of type 2 diabetes. J. Med. Chem. 50, 6450–6453 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Xu, J. et al. Discovery of potent and selective β-homophenylalanine based dipeptidyl peptidase IV inhibitors. Bioorg. Med. Chem. Lett. 14, 4759–4762 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Cravatt, B. F. et al. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384, 83–87 (1996).

    Article  CAS  PubMed  Google Scholar 

  102. Naidu, P. S. et al. Evaluation of fatty acid amide hydrolase inhibition in murine models of emotionality. Psychopharmacology 192, 61–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Cravatt, B. F. et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl Acad. Sci. USA 98, 9371–9376 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lichtman, A. H. et al. Reversible inhibitors of fatty acid amide hydrolase that promote analgesia: evidence for an unprecedented combination of potency and selectivity. J. Pharmacol. Exp. Ther. 311, 441–448 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Russo, R. et al. The fatty acid amide hydrolase inhibitor URB597 (cyclohexylcarbamic acid 3′-carbamoylbiphenyl-3-yl ester) reduces neuropathic pain after oral administration in mice. J. Pharmacol. Exp. Ther. 322, 236–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Justinova, Z. et al. Fatty acid amide hydrolase inhibition heightens anandamide signaling without producing reinforcing effects in primates. Biol. Psychiatry 64, 930–937 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ahn, K. et al. Novel mechanistic class of fatty acid amide hydrolase inhibitors with remarkable selectivity. Biochemistry 46, 13019–13030 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Ahn, K. et al. Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain. Chem. Biol. 16, 411–420 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Khanna, I. K. & Alexander, C. W. Fatty acid amide hydrolase inhibitors — progress and potential. CNS Neurol. Disord. Drug Targets 10, 545–558 (2011). This is a detailed review of the current panel of FAAH inhibitors, which includes an array of hydrolase-directed chemotypes.

    Article  CAS  PubMed  Google Scholar 

  110. Zalewski, A., Macphee, C. & Nelson, J. J. Lipoprotein-associated phospholipase A2: a potential therapeutic target for atherosclerosis. Curr. Drug Targets Cardiovasc. Haematol. Disord. 5, 527–532 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Packard, C. J. et al. Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group. N. Engl. J. Med. 343, 1148–1155 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. MacPhee, C. H. et al. Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor. Biochem. J. 338, 479–487 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Davis, B. et al. Electrospray ionization mass spectrometry identifies substrates and products of lipoprotein-associated phospholipase A2 in oxidized human low density lipoprotein. J. Biol. Chem. 283, 6428–6437 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Blackie, J. A. et al. The identification of clinical candidate SB-480848: a potent inhibitor of lipoprotein-associated phospholipase A2. Bioorg. Med. Chem. Lett. 13, 1067–1070 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Boyd, H. F. et al. 2-(alkylthio)pyrimidin-4-ones as novel, reversible inhibitors of lipoprotein-associated phospholipase A2. Bioorg. Med. Chem. Lett. 10, 395–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Wilensky, R. L. et al. Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development. Nature Med. 14, 1059–1066 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Mallela, J., Yang, J. & Shariat-Madar, Z. Prolylcarboxypeptidase: a cardioprotective enzyme. Int. J. Biochem. Cell Biol. 41, 477–481 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Wallingford, N. et al. Prolylcarboxypeptidase regulates food intake by inactivating α-MSH in rodents. J. Clin. Invest. 119, 2291–2303 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhou, C. et al. Design and synthesis of prolylcarboxypeptidase (PrCP) inhibitors to validate PrCP as a potential target for obesity. J. Med. Chem. 53, 7251–7263 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Shen, H. C. et al. Discovery of benzimidazole pyrrolidinyl amides as prolylcarboxypeptidase inhibitors. Bioorg. Med. Chem. Lett. 21, 1299–1305 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Lehner, R. & Verger, R. Purification and characterization of a porcine liver microsomal triacylglycerol hydrolase. Biochemistry 36, 1861–1868 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Lehner, R. & Vance, D. E. Cloning and expression of a cDNA encoding a hepatic microsomal lipase that mobilizes stored triacylglycerol. Biochem. J. 343, 1–10 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dolinsky, V. W., Gilham, D., Alam, M., Vance, D. E. & Lehner, R. Triacylglycerol hydrolase: role in intracellular lipid metabolism. Cell. Mol. Life Sci. 61, 1633–1651 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Wei, E. et al. Loss of TGH/Ces3 in mice decreases blood lipids, improves glucose tolerance, and increases energy expenditure. Cell Metab. 11, 183–193 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Gilham, D. et al. Inhibitors of hepatic microsomal triacylglycerol hydrolase decrease very low density lipoprotein secretion. FASEB J. 17, 1685–1687 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Zechner, R., Kienesberger, P. C., Haemmerle, G., Zimmermann, R. & Lass, A. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J. Lipid Res. 50, 3–21 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Das, S. K. et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 333, 233–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. McCoy, M. G. et al. Characterization of the lipolytic activity of endothelial lipase. J. Lipid Res. 43, 921–929 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Ma, K. et al. Endothelial lipase is a major genetic determinant for high-density lipoprotein concentration, structure, and metabolism. Proc. Natl Acad. Sci. USA 100, 2748–2753 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ishida, T. et al. Endothelial lipase is a major determinant of HDL level. J. Clin. Invest. 111, 347–355 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Goodman, K. B. et al. Discovery of potent, selective sulfonylfuran urea endothelial lipase inhibitors. Bioorg. Med. Chem. Lett. 19, 27–30 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Kato, T., Okada, M. & Nagatsu, T. Distribution of post-proline cleaving enzyme in human brain and the peripheral tissues. Mol. Cell. Biochem. 32, 117–121 (1980).

    Article  CAS  PubMed  Google Scholar 

  133. Wilk, S. Prolyl endopeptidase. Life Sci. 33, 2149–2157 (1983).

    Article  CAS  PubMed  Google Scholar 

  134. Lopez, A., Tarrago, T. & Giralt, E. Low molecular weight inhibitors of prolyl oligopeptidase: a review of compounds patented from 2003 to 2010. Expert Opin. Ther. Pat. 21, 1023–1044 (2011).

    Article  PubMed  CAS  Google Scholar 

  135. Bakker, A. V., Jung, S., Spencer, R. W., Vinick, F. J. & Faraci, W. S. Slow tight-binding inhibition of prolyl endopeptidase by benzyloxycarbonyl-prolyl-prolinal. Biochem. J. 271, 559–562 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Toide, K., Iwamoto, Y., Fujiwara, T. & Abe, H. JTP-4819: a novel prolyl endopeptidase inhibitor with potential as a cognitive enhancer. J. Pharmacol. Exp. Ther. 274, 1370–1378 (1995).

    CAS  PubMed  Google Scholar 

  137. Barelli, H. et al. S 17092–1, a highly potent, specific and cell permeant inhibitor of human proline endopeptidase. Biochem. Biophys. Res. Commun. 257, 657–661 (1999).

    Article  CAS  PubMed  Google Scholar 

  138. Bellemere, G., Morain, P., Vaudry, H. & Jegou, S. Effect of S 17092, a novel prolyl endopeptidase inhibitor, on substance P and α-melanocyte-stimulating hormone breakdown in the rat brain. J. Neurochem. 84, 919–929 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Nolte, W. M., Tagore, D. M., Lane, W. S. & Saghatelian, A. Peptidomics of prolyl endopeptidase in the central nervous system. Biochemistry 48, 11971–11981 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Toide, K. et al. Effect of a novel prolyl endopeptidase inhibitor, JTP-4819, on neuropeptide metabolism in the rat brain. Naunyn Schmiedebergs Arch. Pharmacol. 353, 355–362 (1996).

    Article  CAS  PubMed  Google Scholar 

  141. Shinoda, M., Okamiya, K. & Toide, K. Effect of a novel prolyl endopeptidase inhibitor, JTP-4819, on thyrotropin-releasing hormone-like immunoreactivity in the cerebral cortex and hippocampus of aged rats. Jpn J. Pharmacol. 69, 273–276 (1995).

    Article  CAS  PubMed  Google Scholar 

  142. Schneider, J. S., Giardiniere, M. & Morain, P. Effects of the prolyl endopeptidase inhibitor S 17092 on cognitive deficits in chronic low dose MPTP-treated monkeys. Neuropsychopharmacology 26, 176–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Morain, P. et al. S 17092: a prolyl endopeptidase inhibitor as a potential therapeutic drug for memory impairment. Preclinical and clinical studies. CNS Drug Rev. 8, 31–52 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Morain, P., Boeijinga, P. H., Demazieres, A., De Nanteuil, G. & Luthringer, R. Psychotropic profile of S 17092, a prolyl endopeptidase inhibitor, using quantitative EEG in young healthy volunteers. Neuropsychobiology 55, 176–183 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Lambeir, A. M. Translational research on prolyl oligopeptidase inhibitors: the long road ahead. Expert Opin. Ther. Pat. 21, 977–981 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Puustinen, P. et al. PME-1 protects extracellular signal-regulated kinase pathway activity from protein phosphatase 2A-mediated inactivation in human malignant glioma. Cancer Res. 69, 2870–2877 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Andreasen, P. A., Egelund, R. & Petersen, H. H. The plasminogen activation system in tumor growth, invasion, and metastasis. Cell. Mol. Life Sci. 57, 25–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Nomura, D. K., Dix, M. M. & Cravatt, B. F. Activity-based protein profiling for biochemical pathway discovery in cancer. Nature Rev. Cancer 10, 630–638 (2010). This review summarizes the use of ABPP to provide information on the metabolic and signalling enzymes in cancer and to enable the development of selective chemical probes to characterize their functions.

    Article  CAS  Google Scholar 

  149. Scanlan, M. J. et al. Molecular cloning of fibroblast activation protein α, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc. Natl Acad. Sci. USA 91, 5657–5661 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Rettig, W. J. et al. Regulation and heteromeric structure of the fibroblast activation protein in normal and transformed cells of mesenchymal and neuroectodermal origin. Cancer Res. 53, 3327–3335 (1993).

    CAS  PubMed  Google Scholar 

  151. Garin-Chesa, P., Old, L. J. & Rettig, W. J. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc. Natl Acad. Sci. USA 87, 7235–7239 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cheng, J. D. et al. Promotion of tumor growth by murine fibroblast activation protein, a serine protease, in an animal model. Cancer Res. 62, 4767–4772 (2002).

    CAS  PubMed  Google Scholar 

  153. Cheng, J. D. et al. Abrogation of fibroblast activation protein enzymatic activity attenuates tumor growth. Mol. Cancer Ther. 4, 351–360 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Adams, S. et al. PT-100, a small molecule dipeptidyl peptidase inhibitor, has potent antitumor effects and augments antibody-mediated cytotoxicity via a novel immune mechanism. Cancer Res. 64, 5471–5480 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Kraman, M. et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α. Science 330, 827–830 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Edosada, C. Y. et al. Selective inhibition of fibroblast activation protein protease based on dipeptide substrate specificity. J. Biol. Chem. 281, 7437–7444 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Wolf, B. B., Quan, C., Tran, T., Wiesmann, C. & Sutherlin, D. On the edge of validation — cancer protease fibroblast activation protein. Mini Rev. Med. Chem. 8, 719–727 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Patterson, S. D. & Aebersold, R. H. Proteomics: the first decade and beyond. Nature Genet. 33, S311–S323 (2003).

    Article  CAS  Google Scholar 

  159. Yates, J. R. Mass spectral analysis in proteomics. Annu. Rev. Biophys. Biomol. Struct. 33, 297–316 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Domon, B. & Aebersold, R. Mass spectrometry and protein analysis. Science 312, 212–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Cravatt, B. F., Simon, G. M. & Yates, J. R. The biological impact of mass-spectrometry-based proteomics. Nature 450, 991–1000 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  163. Brown, P. O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. Nature Genet. 21, 33–37 (1999).

    Article  CAS  PubMed  Google Scholar 

  164. Evans, M. J. & Cravatt, B. F. Mechanism-based profiling of enzyme families. Chem. Rev. 106, 3279–3301 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Cravatt, B. F., Wright, A. T. & Kozarich, J. W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77, 383–414 (2008). This is a review of the principles and applications of ABPP.

    Article  CAS  PubMed  Google Scholar 

  166. Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. Proc. Natl Acad. Sci. USA 96, 14694–14699 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Weerapana, E., Simon, G. M. & Cravatt, B. F. Disparate proteome reactivity profiles of carbon electrophiles. Nature Chem. Biol. 4, 405–407 (2008).

    Article  CAS  Google Scholar 

  168. Kato, D. et al. Activity-based probes that target diverse cysteine protease families. Nature Chem. Biol. 1, 33–38 (2005).

    Article  CAS  Google Scholar 

  169. Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Patricelli, M. P. et al. Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry 46, 350–358 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Salisbury, C. M. & Cravatt, B. F. Activity-based probes for proteomic profiling of histone deacetylase complexes. Proc. Natl Acad. Sci. USA 104, 1171–1176 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Salisbury, C. M. & Cravatt, B. F. Optimization of activity-based probes for proteomic profiling of histone deacetylase complexes. J. Am. Chem. Soc. 130, 2184–2194 (2008).

    Article  CAS  PubMed  Google Scholar 

  173. Madsen, M. A., Deryugina, E. I., Niessen, S., Cravatt, B. F. & Quigley, J. P. Activity-based protein profiling implicates urokinase activation as a key step in human fibrosarcoma intravasation. J. Biol. Chem. 281, 15997–16005 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Pan, Z. et al. Development of activity-based probes for trypsin-family serine proteases. Bioorg. Med. Chem. Lett. 16, 2882–2885 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Jessani, N. et al. Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo. Proc. Natl Acad. Sci. USA 101, 13756–13761 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Jessani, N. et al. A streamlined platform for high-content functional proteomics of primary human specimens. Nature Methods 2, 691–697 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Blankman, J. L., Simon, G. M. & Cravatt, B. F. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem. Biol. 14, 1347–1356 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Mahrus, S. & Craik, C. S. Selective chemical functional probes of granzymes A and B reveal granzyme B is a major effector of natural killer cell-mediated lysis of target cells. Chem. Biol. 12, 567–577 (2005).

    Article  CAS  PubMed  Google Scholar 

  179. Barglow, K. T. & Cravatt, B. F. Discovering disease-associated enzymes by proteome reactivity profiling. Chem. Biol. 11, 1523–1531 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Morak, M. et al. Differential activity-based gel electrophoresis for comparative analysis of lipolytic and esterolytic activities. J. Lipid Res. 50, 1281–1292 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kaschani, F. et al. Diversity of serine hydrolase activities of unchallenged and botrytis-infected Arabidopsis thaliana. Mol. Cell. Proteomics 8, 1082–1093 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Jessani, N., Liu, Y., Humphrey, M. & Cravatt, B. F. Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. Proc. Natl Acad. Sci. USA 99, 10335–10340 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Chiang, K. P., Niessen, S., Saghatelian, A. & Cravatt, B. F. An enzyme that regulates ether lipid signaling pathways in cancer annotated by multidimensional profiling. Chem. Biol. 13, 1041–1050 (2006).

    Article  CAS  PubMed  Google Scholar 

  184. Chang, J. W., Nomura, D. K. & Cravatt, B. F. A potent and selective inhibitor of KIAA1363/AADACL1 that impairs prostate cancer pathogenesis. Chem. Biol. 18, 476–484 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Nomura, D. K. et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chem. Biol. 18, 846–856 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Long, J. Z., Nomura, D. K. & Cravatt, B. F. Characterization of monoacylglycerol lipase inhibition reveals differences in central and peripheral endocannabinoid metabolism. Chem. Biol. 16, 744–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kinsey, S. G. et al. Blockade of endocannabinoid-degrading enzymes attenuates neuropathic pain. J. Pharmacol. Exp. Ther. 330, 902–910 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Nomura, D. K. et al. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science 334, 809–813 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Woitach, J. T., Zhang, M., Niu, C. H. & Thorgeirsson, S. S. A retinoblastoma-binding protein that affects cell-cycle control and confers transforming ability. Nature Genet. 19, 371–374 (1998).

    Article  CAS  PubMed  Google Scholar 

  190. Shields, D. J. et al. RBBP9: a tumor-associated serine hydrolase activity required for pancreatic neoplasia. Proc. Natl Acad. Sci. USA 107, 2189–2194 (2010).

    Article  CAS  PubMed  Google Scholar 

  191. Bachovchin, D. A., Brown, S. J., Rosen, H. & Cravatt, B. F. Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes. Nature Biotech. 27, 387–394 (2009). This paper describes the introduction of competitive ABPP for high-throughput screening.

    Article  CAS  Google Scholar 

  192. Bachovchin, D. A. et al. Oxime esters as selective, covalent inhibitors of the serine hydrolase retinoblastoma-binding protein 9 (RBBP9). Bioorg. Med. Chem. Lett. 20, 2254–2258 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kidd, D., Liu, Y. & Cravatt, B. F. Profiling serine hydrolase activities in complex proteomes. Biochemistry 40, 4005–4015 (2001).

    Article  CAS  PubMed  Google Scholar 

  194. Greenbaum, D. et al. Chemical approaches for functionally probing the proteome. Mol. Cell. Proteomics 1, 60–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  195. Johnson, D. S., Weerapana, E. & Cravatt, B. F. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med. Chem. 2, 949–964 (2010).

    Article  CAS  PubMed  Google Scholar 

  196. Potashman, M. H. & Duggan, M. E. Covalent modifiers: an orthogonal approach to drug design. J. Med. Chem. 52, 1231–1246 (2009).

    Article  CAS  PubMed  Google Scholar 

  197. Knuckley, B. et al. A fluopol-ABPP HTS assay to identify PAD inhibitors. Chem. Commun. (Camb.) 46, 7175–7177 (2010).

    Article  CAS  Google Scholar 

  198. Bachovchin, D. A. et al. Organic synthesis toward small-molecule probes and drugs special feature: academic cross-fertilization by public screening yields a remarkable class of protein phosphatase methylesterase-1 inhibitors. Proc. Natl Acad. Sci. USA 108, 6811–6816 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Lee, J., Chen, Y., Tolstykh, T. & Stock, J. A specific protein carboxyl methylesterase that demethylates phosphoprotein phosphatase 2A in bovine brain. Proc. Natl Acad. Sci. USA 93, 6043–6047 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Sontag, J. M., Nunbhakdi-Craig, V., Mitterhuber, M., Ogris, E. & Sontag, E. Regulation of protein phosphatase 2A methylation by LCMT1 and PME-1 plays a critical role in differentiation of neuroblastoma cells. J. Neurochem. 115, 1455–1465 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Bachovchin, D. A. et al. Discovery and optimization of sulfonyl acrylonitriles as selective, covalent inhibitors of protein phosphatase methylesterase-1. J. Med. Chem. 54, 5229–5236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Berlin, J. M. & Fu, G. C. Enantioselective nucleophilic catalysis: the synthesis of aza-β-lactams through [2 + 2] cycloadditions of ketenes with azo compounds. Angew. Chem. Int. Ed. Engl. 47, 7048–7050 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Wood, W. J., Patterson, A. W., Tsuruoka, H., Jain, R. K. & Ellman, J. A. Substrate activity screening: a fragment-based method for the rapid identification of nonpeptidic protease inhibitors. J. Am. Chem. Soc. 127, 15521–15527 (2005).

    Article  CAS  PubMed  Google Scholar 

  204. Patterson, A. W. et al. Identification of selective, nonpeptidic nitrile inhibitors of cathepsin S using the substrate activity screening method. J. Med. Chem. 49, 6298–6307 (2006).

    Article  CAS  PubMed  Google Scholar 

  205. Salisbury, C. M. & Ellman, J. A. Rapid identification of potent nonpeptidic serine protease inhibitors. Chembiochem. 7, 1034–1037 (2006).

    Article  CAS  PubMed  Google Scholar 

  206. Edwards, P. D., Zottola, M. A., Davis, M., Williams, J. & Tuthill, P. A. Peptidyl α-ketoheterocyclic inhibitors of human neutrophil elastase. 3. In vitro and in vivo potency of a series of peptidyl α-ketobenzoxazoles. J. Med. Chem. 38, 3972–3982 (1995).

    Article  CAS  PubMed  Google Scholar 

  207. Erlanson, D. A. et al. Site-directed ligand discovery. Proc. Natl Acad. Sci. USA 97, 9367–9372 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Erlanson, D. A., Wells, J. A. & Braisted, A. C. Tethering: fragment-based drug discovery. Annu. Rev. Biophys. Biomol. Struct. 33, 199–223 (2004).

    Article  CAS  PubMed  Google Scholar 

  209. Hagel, M. et al. Selective irreversible inhibition of a protease by targeting a noncatalytic cysteine. Nature Chem. Biol. 7, 22–24 (2011).

    Article  CAS  Google Scholar 

  210. Levy, J. H. & O'Donnell, P. S. The therapeutic potential of a kallikrein inhibitor for treating hereditary angioedema. Expert Opin. Investig. Drugs 15, 1077–1090 (2006).

    Article  CAS  PubMed  Google Scholar 

  211. Stoop, A. A. & Craik, C. S. Engineering of a macromolecular scaffold to develop specific protease inhibitors. Nature Biotech. 21, 1063–1068 (2003).

    Article  CAS  Google Scholar 

  212. Dennis, M. S. & Lazarus, R. A. Kunitz domain inhibitors of tissue factor–factor VIIa. II. Potent and specific inhibitors by competitive phage selection. J. Biol. Chem. 269, 22137–22144 (1994).

    Article  CAS  PubMed  Google Scholar 

  213. Xuan, J. A. et al. Antibodies neutralizing hepsin protease activity do not impact cell growth but inhibit invasion of prostate and ovarian tumor cells in culture. Cancer Res. 66, 3611–3619 (2006).

    Article  CAS  PubMed  Google Scholar 

  214. Sun, J., Pons, J. & Craik, C. S. Potent and selective inhibition of membrane-type serine protease 1 by human single-chain antibodies. Biochemistry 42, 892–900 (2003).

    Article  CAS  PubMed  Google Scholar 

  215. Lazarus, R. A., Olivero, A. G., Eigenbrot, C. & Kirchhofer, D. Inhibitors of tissue factor. Factor VIIa for anticoagulant therapy. Curr. Med. Chem. 11, 2275–2290 (2004).

    Article  CAS  PubMed  Google Scholar 

  216. Edwards, A. M. et al. Too many roads not taken. Nature 470, 163–165 (2011).

    Article  CAS  PubMed  Google Scholar 

  217. Subramanian, A. R., Kaufmann, M. & Morgenstern, B. DIALIGN-TX: greedy and progressive approaches for segment-based multiple sequence alignment. Algorithms Mol. Biol. 3, 6 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Cravatt laboratory for helpful discussions. This work was supported by grants from the US National Institutes of Health (DA025285, GM090294, CA132630, DA017259, DA009789 and CA087660), the National Science Foundation (predoctoral fellowship to D.A.B.), the California Breast Cancer Research Program (predoctoral fellowship to D.A.B.), and The Skaggs Institute for Chemical Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin F. Cravatt.

Ethics declarations

Competing interests

Benjamin F. Cravatt is a co-founder and advisor for a biotechnology company interested in developing inhibitors for serine hydrolase as therapeutic targets.

Supplementary information

Supplementary information S1 (table)

Drugs that target viral and bacterial serine hydrolases. (PDF 283 kb)

Supplementary information S2 (table)

The human serine hydrolases. (PDF 188 kb)

Related links

Related links

FURTHER INFORMATION

The Cravatt Laboratory

Glossary

Warheads

Reactive chemical groups that covalently bind to specific amino acid residues of the target enzyme.

Zymogens

Inactive enzyme precursors, or pro-enzymes, that require a biochemical event (for example, a hydrolysis reaction) to convert them into active enzymes.

Thrombi

Aggregations of platelets, fibrin and cells.

Coagulation cascade

A stepwise process involving the sequential activation of several serine protease zymogens by limited proteolysis that results in the formation of fibrin blood clots.

Prodrug

A pharmacological entity administered in a largely inactive form that is metabolized in vivo into an active drug.

Cachexia

A wasting syndrome characterized by the uncontrolled loss of muscle and adipose tissue.

Fluorescence polarization

A measure of the apparent size of a fluorophore; it is widely used to study molecular interactions. Briefly, a fluorophore excited with plane-polarized light will emit polarized light parallel to the plane of excitation unless it rotates in the excited state. As the speed of rotational diffusion is inversely proportional to molecular volume, the resulting extent of depolarization gives a relative estimate of the size of the fluorophore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachovchin, D., Cravatt, B. The pharmacological landscape and therapeutic potential of serine hydrolases. Nat Rev Drug Discov 11, 52–68 (2012). https://doi.org/10.1038/nrd3620

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3620

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research