Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drugs targeting the renin–angiotensin–aldosterone system

Key Points

  • Hypertension is the most common modifiable risk factor for cardiovascular disease (CVD), and the risk of CVD events, including myocardial infarction, stroke, heart failure and end-stage renal disease, can be greatly reduced by lowering blood pressure.

  • The best-known regulator of blood pressure and determinant of target-organ damage from hypertension is the renin–angiotensin–aldosterone system (RAAS). Overexpression of renin and its metabolic products predisposes to hypertension and related target-organ damage.

  • Renin cleaves angiotensinogen to produce the inactive peptide angiotensin I. Cleavage of angiotensin I by angiotensin-converting enzyme (ACE) gives the active peptide angiotensin II (although there are alternative routes). Most of the known functions of the RAAS are mediated through the activation of the angiotensin II type 1 receptor (AT1 receptor) by angiotensin II, which leads to vasoconstriction, aldosterone release and other functions that tend to elevate blood pressure and cause hypertrophy or hyperplasia of target cells.

  • Approved drugs that act on the RAAS that are discussed here include ACE inhibitors, AT1-receptor blockers (ARBs) and aldosterone-receptor antagonists (ARAs). These agents have been shown to be highly effective in lowering blood pressure and, particularly in the case of the ARBs, are extremely well tolerated. A novel class of combined ACE and neutral-endopeptidase inhibitors that are in development, called vasopeptidase inhibitors, are also discussed.

  • Clinical-trial evidence is beginning to clarify some of the key issues in the use of ACE inhibitors and ARBs, such as clinical benefits beyond blood-pressure lowering. These drugs are also helping to better define the role of the RAAS in the pathogenesis of hypertension, stroke, myocardial infarction, heart failure and end-stage renal disease.

Abstract

Effective antihypertensive therapy has made a major contribution to the reductions in the morbidity and mortality of cardiovascular disease that have been achieved since the 1960s. However, blood-pressure control with conventional drugs has not succeeded in reducing cardiovascular disease risks to levels seen in normotensive persons. Drugs that inhibit or antagonize components of the renin–angiotensin–aldosterone system are addressing this deficiency by targeting both blood pressure and related structural and functional abnormalities of the heart and blood vessels, thus preventing target-organ damage and related cardiovascular events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The renin–angiotensin–aldosterone system: a key regulator of blood pressure.
Figure 2: Angiotensin peptides and receptors.
Figure 3: Actions of angiotensin II.
Figure 4: Selected chemical structures of drugs that target the renin–angiotensin– aldosterone system.
Figure 5: Mechanism of action of vasopeptidase inhibitors.

Similar content being viewed by others

References

  1. Geneva World Health Organization. The World Health Report 2001. Mental health: New Understanding, New Hope [online], (cited 3 June 2002), 〈http://www.who.int/whr/2001/main/en/index.htm〉 (2001).

  2. Mosterd, A. et al. Trends in the prevalence of hypertension, antihypertension therapy, and left ventricular hypertrophy from 1950 to 1999. N. Engl. J. Med. 340, 1221–1227 (1999).

    CAS  PubMed  Google Scholar 

  3. Havlik, R. J. et al. Antihypertensive drug therapy and survival by treatment status in a national survey. Hypertension 13, I-28–I-32 (1989).

    CAS  Google Scholar 

  4. Lonn, E. M. et al. Emerging role of angiotensin-converting enzyme inhibitors in cardiac and vascular protection. Circulation 90, 2056–2069 (1994).

    CAS  PubMed  Google Scholar 

  5. Burnier, M. & Brunner, H. R. Angiotensin II receptor antagonists. Lancet 355, 637–645 (2000).

    CAS  PubMed  Google Scholar 

  6. Oparil, S. & Haber, E. The renin–angiotensin system. N. Engl. J. Med. 291, 389–401, 446–457 (1974).

    CAS  PubMed  Google Scholar 

  7. Goodfriend, T. L., Elliot, M. E. & Catt, K. J. Angiotensin receptors and their antagonists N. Engl. J. Med. 334, 1649–1654 (1996).

    CAS  PubMed  Google Scholar 

  8. Kerins, D. M., Haq, Q. & Vaughan, D. E. Angiotensin induction of PAI-1 expression in endothelial cells is mediated by the hexapeptide angiotensin IV. J. Clin. Invest. 96, 2515–2520 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cesari, M., Rossi, G. P. & Pessina, A. C. Biological properties of the angiotensin peptides other than angiotensin II: implications for hypertension and cardiovscular disease. J. Hypertens. 20, 793–799 (2002).

    CAS  PubMed  Google Scholar 

  10. Bergma, D. J. et al. Cloning and characterization of a human angiotensin II type 1 receptor. Biochem. Biophys. Res. Commun. 183, 989–995 (1992).

    Google Scholar 

  11. Mukoyama, M. et al. Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J. Biol. Chem. 68, 24539–24542 (1993).

    Google Scholar 

  12. de Gasparo, M. et al. The angiotensin receptors. Pharmacol. Rev. 52, 415–472 (2000).

    CAS  PubMed  Google Scholar 

  13. Albiston, A. L. et al. Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J. Biol. Chem. 276, 48623–48626 (2001).

    CAS  PubMed  Google Scholar 

  14. Fernandez, L. et al. AT2 receptor stimulation increases survival in gerbils with abrupt unilateral carotid ligation. J. Cardiovasc. Pharmacol. 24, 937–940 (1994).

    CAS  PubMed  Google Scholar 

  15. Achard, J. M. et al. Protection against ischemia: a physiological function of the renin angiotensin system. Biochem. Pharmacol. 62, 261–272 (2001).

    CAS  PubMed  Google Scholar 

  16. Makino, I. et al. Transient upregulation of the AT2 receptor mRNA level after global ischemia in the rat brain. Neuropeptides 30, 596–601 (1996).

    CAS  PubMed  Google Scholar 

  17. Blume, A. et al. AT2 receptor inhibition in the rat brain reverses the beneficial effects of AT1 receptor blockade on neurological outcome after focal brain ischemia. Hypertension 36, 656 (2000).

    Google Scholar 

  18. Unger, T. The angiotensin II type 2 receptor: variations on an enigmatic theme. J. Hypertens. 17, 1775–1786 (1999).

    CAS  PubMed  Google Scholar 

  19. Levy, B. I. et al. Chronic blockade of AT2 subtype receptors prevents the effect of angiotensin II on the rat vascular structure. J. Clin. Invest. 98, 418–425 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Henrion, D., Kubis, N. & Levy, B. Physiological and patho-physiological functions of the AT2 subtype receptor of angiotensin II from large arteries to the microcirculation. Hypertension 38, 1150–1157 (2001).

    CAS  PubMed  Google Scholar 

  21. Griendling, K. K. et al. Angiotensin II stimulates NADH and NADPH oxidase in cultured vascular smooth muscle cells. Circ. Res. 74, 1141–1148 (1994).

    CAS  PubMed  Google Scholar 

  22. Huraux, C. et al. Superoxide production, risk factors, and endothelium-dependent relaxations in human internal mammary arteries. Circulation 99, 53–59 (1999).

    CAS  PubMed  Google Scholar 

  23. Vaughan, D. E., Lazos, S. A. & Tong, K. Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. J. Clin. Invest. 95, 995–1001 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ricker, P. M. et al. Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin II. Circulation 87, 1969–1973 (1993).

    Google Scholar 

  25. Brown, N. J., Agirbasli, M. A., Williams, G. H., Litchfield, W. R. & Vaughan, D. E. Effect of activation and inhibition of the renin–angiotensin system on plasma PAI-1. Hypertension 32, 965–971 (1998).

    CAS  PubMed  Google Scholar 

  26. The Heart Outcomes Prevention Evaluation Study Investigators. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on death from cardiovascular causes, myocardial infarction, and stroke in high-risk patients. N. Engl. J. Med. 342, 145–153 (2000).HOPE is the landmark trial that showed for the first time that ACE-inhibitor treatment can prevent CVD events in both hypertensive and non-hypertensive patients with established CVD. This was the first demonstration that ACE-inhibitor treatment has beneficial effects on vascular disease above and beyond blood-pressure lowering and prevention of heart failure.

  27. Brunner, H. R. et al. Essential hypertension: renin and aldosterone, heart attack and stroke. N. Engl. J. Med. 286, 441–449 (1972).This study, highly controversial at the time of its publication, showed that plasma renin activity was inversely related to risk of heart attack and stroke independent of other risk factors in hypertensive patients. These findings provided a basis for the hypothesis that drugs that interrupt the RAAS might have vasoprotective effects beyond blood-pressure lowering.

    CAS  PubMed  Google Scholar 

  28. Alderman, M. et al. Association of the renin–sodium-profile with the risk of myocardial infarction in patients with hypertension. N. Engl. J. Med. 324, 1098–1104 (1991).

    CAS  PubMed  Google Scholar 

  29. Linz, W., Scholkens, B. A. & Ganten, D. Converting enzyme inhibition specifically prevents the development and induces regression of cardiac hypertrophy in rats. Clin. Exp. Hypertens. A 11, 1325–1350 (1989).

    CAS  PubMed  Google Scholar 

  30. Lindpaintner, K. et al. Cardiac angiotensinogen and its local activation in the isolated perfused beating heart. Circ. Res. 67, 564–573 (1990).

    CAS  PubMed  Google Scholar 

  31. Baker, R. R. et al. Endogenous xanthine oxidase-derived O2 metabolites inhibit surfactant. Am. J. Physiol. 259, H324–H332 (1990).

    CAS  PubMed  Google Scholar 

  32. Dzau, V. J., Ellison, K. E., Brody, T., Ingelfinger, J. & Pratt, R. E. A comparative study of the distributions of renin and angiotensinogen messenger ribonucleic acids in rat and mouse tissue. Endocrinology 120, 2334–2338 (1987).

    CAS  PubMed  Google Scholar 

  33. Pescott, G., Silversides, D. W., Chiu, S. M. & Reudelhuber, T. L. Contribution of circulating renin to local synthesis of angiotensin peptides in the heart. Physiol. Genomics 4, 67–73 (2000).

    Google Scholar 

  34. Dzau, V. J. Local expression and pathophysiological role of renin–angiotensin in the blood vessels and heart. Basic Res. Cardiol. 88, 2–14 (1993).

    Google Scholar 

  35. Husain, A. The chymase–angiotensin system in humans. J. Hypertens. 11, 1155–1159 (1993).

    CAS  PubMed  Google Scholar 

  36. Chandrasekharan, U. M., Sanker, S., Glynias, M. J., Karnik, S. S. & Husain, A. Angiotensin II-forming activity in a reconstructed ancestral chymase. Science 271, 502–505 (1996).

    CAS  PubMed  Google Scholar 

  37. Balcells, E., Meng, Q. C., Johnson, W. C., Oparil, S. & Dell'Italia, L. J. Angiotensin II formation from ACE and chymase in human and animal hearts: methods and species considerations. Am. J. Physiol. 273, H1769–H1774 (1997).

    CAS  PubMed  Google Scholar 

  38. Wolny, A. et al. Functional and biochemical analysis of angiotensin II-forming pathways in the human heart. Circ. Res. 80, 219–227 (1997).

    CAS  PubMed  Google Scholar 

  39. Dell'Italia, L. J. et al. Compartmentalization of angiotensin II generation in the dog heart: evidence for independent mechanisms in intravascular and interstitial spaces. J. Clin. Invest. 100, 253–258 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Funder, J. W. Mineralocorticoid receptors and hypertension. J. Steroid Biochem. Mol. Biol. 53, 53–55 (1995).

    CAS  PubMed  Google Scholar 

  41. Slight, S. H. et al. Extra-adrenal mineralocorticoids and cardiovascular tissue. J. Mol. Cell Cardiol. 31, 1175–1184 (1999).

    CAS  PubMed  Google Scholar 

  42. Brilla, C. G. & Weber, K. T. Mineralocorticoid excess, dietary medium and myocardial fibrosis. J. Lab. Clin. Med. 120, 893–901 (1992).

    CAS  PubMed  Google Scholar 

  43. Delcayre, C. et al. Cardiac aldosterone production and ventricular remodeling. Kidney Intl 57, 1346–1351 (2000).

    CAS  Google Scholar 

  44. Skeggs, L. T., Kahn, J. R., Lentz, K. & Shumway, N. P. Preparation, purification, and amino acid sequence of a polypeptide renin substrate. J. Exp. Med. 106, 439–453 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wood, J. M., Stanton, J. L. & Hofbauer, K. G. Inhibitors of renin as potential therapeutic agents J. Enzyme Inhibit. 1, 169–185 (1987).

    CAS  Google Scholar 

  46. Stanton, A. et al. Dose response antihypertensive efficacy of aliskiren (SPP100), an orally active renin inhibitor. Am. J. Hypertens. 15 (Suppl. 1), A56–A57 (2002).

    Google Scholar 

  47. Ferreira, S. H. A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca. Br. J. Pharmacol. Chemother. 24, 163 (1965).This fascinating combination of rigorous science and serendipity showed that peptides present in snake venom can inhibit kininase II (ACE), reducing blood pressure in animal models. The orally active ACE inhibitors were ultimately synthesized on the basis of this information.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ondetti, M. A., Rubin, B. & Cushman, D. W. Design of specific inhibitors of angiotensin converting enzyme: new class of orally acting active antihypertensive agents. Science 196, 441–444 (1977).

    CAS  PubMed  Google Scholar 

  49. Garg, R. & Yusuf, S. for the Collaborative Group on ACE-Inhibitor Trials. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. JAMA 273, 1450–1456 (1995).

    CAS  PubMed  Google Scholar 

  50. Schmeider, R. E., Martus, P. & Klingbeil, A. Reversal of left ventricular hypertrophy in essential hypertension: a meta-analysis of randomized double-blind studies. JAMA 275, 1507–1513 (1996).

    Google Scholar 

  51. Pfeffer, et al. Effect of captropil on progressive ventricular dilatation after anterior myocardial infarction. N. Engl. J. Med. 319, 80–86 (1988).

    CAS  PubMed  Google Scholar 

  52. Williams, G. H. Converting-enzyme inhibitors in the treatment of hypertension. N. Engl. J. Med. 319, 1517–1525 (1988).

    CAS  PubMed  Google Scholar 

  53. Giatras, I., Lau, J. & Levey, A. S. for the Angiotensin-converting Enzyme Inhibition and Progressive Renal Disease Study Group. Effect of angiotensin-converting enzyme inhibitors on the progression of nondiabetic renal disease: a meta-analysis of randomized trials. Ann. Intern. Med. 127, 337–345 (1997).

    CAS  PubMed  Google Scholar 

  54. Jafar, T. et al. Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease: a meta-analysis of patient-level data. Ann. Intern. Med. 135, 73–87 (2001).This meta-analysis tested whether antihypertensive regimens that include an ACE inhibitor are superior to other regimens in slowing the progression of renal disease in non-diabetic patients with renal dysfunction. Large benefits that did not seem to depend on reduction in blood pressure or urinary protein excretion were seen in patients with baseline proteinuria, leading to a treatment indication for ACE inhibitors in patients with non-diabetic chronic renal disease and proteinuria.

    CAS  PubMed  Google Scholar 

  55. Ravid, M., Lang, R., Rachmani, R. & Lishner, M. Long-term renoprotective effect of angiotensin-converting enzyme inhibition on non-insulin dependent diabetes mellitus: a 7-year follow-up study. Arch. Int. Med. 156, 286–289 (1996).

    CAS  Google Scholar 

  56. Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rhode, R. D. for the Collaborative Study Group. The effect of angiotensin-converting enzyme inhibition on diabetic nephropathy. N. Engl. J. Med. 329, 1456–1462 (1993).This was the first study to show that ACE-inhibitor treatment is effective in slowing the progression of renal disease in diabetic (insulin-dependent) patients with proteinuria. The contribution of blood-pressure reduction to this effect is still debated.

    CAS  PubMed  Google Scholar 

  57. Sica, D. A. & Gehr, T. W. B. in Hypertension: A Companion to Brenner and Rector's The Kidney (eds Oparil, S. & Weber, M. A.) 599–609 (W. B. Saunders Co., Philadelphia, 2000).

    Google Scholar 

  58. Clement, D. L. in Manual of Hypertension (eds Mancia, G. et al.) 359–373 (Harcourt, London, 2002)

    Google Scholar 

  59. Brunner, H. R., Waeber, B. & Nussberger, J. in Cardiovascular Drug Therapy 2nd edn (ed. Messerli, F.) 690–711 (W. B. Saunders Co., Philadelphia, 1996).

    Google Scholar 

  60. Ruddy, M. C., Kostis, J. B. & Frishman, W. H. in Cardiovascular Pharmotherapeutics (eds Frishman, W. H. & Sonnenblick, E. H.) 131–192 (McGraw–Hill, New York, 1996).

    Google Scholar 

  61. Leonetti, G. & Cusipidi, C. Choosing the right ACE inhibitors: a guide to selection. Drugs 49, 516–535 (1995).

    CAS  PubMed  Google Scholar 

  62. Biollaz, J., Brunner, H. R., Gavras, I., Waeber, B. & Gavras, H. Antihypertensive therapy with MK421: angiotensin II–renin relationships to evaluate efficiency of converting enzyme blockade. J. Cardiovasc. Pharmacol. 44, 966–972 (1982).

    Google Scholar 

  63. King, S. J. & Oparil, S. Converting enzyme (CE) inhibitors increase CE mRNA and activity in endothelial cells. Am. J. Physiol. Cell Physiol. 263, C743–C749 (1992).

    CAS  Google Scholar 

  64. Brown, N. J., Gainer, J. V., Stein, C. M. & Vaughan, D. E. Bradykinin stimulates tissue plasminogen activator release in human vasculature. Hypertension 33, 1431–1435 (1999).

    CAS  PubMed  Google Scholar 

  65. Bouaziz, H., Joulin, Y., Safar, M. & Benetos, A. Effects of bradykinin B2 receptor antagonism on the hypotensive effects of ACE inhibition. Br. J. Pharmacol. 113, 717–722 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Barbe, F. et al. Bradykinin pathway is involved in acute hemodynamic effects of enalaprilat in dogs with heart failure. Am. J. Physiol. 270, H1985–H1992 (1996).

    CAS  PubMed  Google Scholar 

  67. Linz, W. & Scholkens, B. A. Specific B2-bradykinin receptor antagonist HOE 140 abolishes the anithypertrophic effect of ramipril. Br. J. Pharmacol. 105, 771–772 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hornig, B., Kohler, C. & Drexler, H. Role of bradykinin in mediating vascular effects of angiotensin-converting enzyme inhibitors in humans. Circulation 95, 1115–1118 (1997).

    CAS  PubMed  Google Scholar 

  69. Gainer, J. V., Morrow, J. D., Loveland, A., King, D. & Brown, N. J. Effect of bradykinin receptor blockade on the response to angiotensin-converting-enzyme inhibitor in normotensive and hypertensive subjects. N. Engl. J. Med. 339, 1285–1292 (1998).

    CAS  PubMed  Google Scholar 

  70. Blood Pressure Lowering Treatment Trialists' Collaboration. Effects of ACE inhibitors, calcium antagonists, and other blood-pressure-lowering drugs: results of prospectively designed overviews of randomized trials. Lancet 356, 1955–1964 (2000).

  71. Hansson, L. et al. Effects of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: The Captopril Prevention Project (CAPPP) randomized trial. Lancet 353, 611–616 (1999).

    CAS  PubMed  Google Scholar 

  72. Hansson, L. et al. Randomized trial of old and new antihypertensive drugs in elderly patients: cardiovascular mortality and morbidity the Swedish Trial in Old Patients with Hypertension-2 Study. Lancet 354, 1751–1756 (1999).

    CAS  PubMed  Google Scholar 

  73. PROGRESS Collaborative Group. Randomised trial of a perindopril-based blood pressure-lowering regimen among 6105 individuals with previous stroke or transient ischemic attack. Lancet 358, 1033–1041 (2001).

  74. PATS Collaborating Group. Post-stroke antihypertensive treatment study: a preliminary result. Chin. Med. J. 108, 710–717 (1995).

  75. Davis, B. R. et al. Rationale and design for the antihypertensive and lipid lowering treatment to prevent heart attack trial (ALLHAT). Am. J. Hypertens. 9, 342–360 (1996).

    CAS  PubMed  Google Scholar 

  76. Agadoa, L. Y. et al. Effect of ramipril vs amlodipine on renal outcomes in hypertensive nephrosclerosis: a randomized controlled trial. JAMA 285, 2719–2728 (2001).

    Google Scholar 

  77. CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandanavian Enalapril survival Study (CONSENSUS). N. Engl. J. Med. 316, 1429–1435 (1987).

  78. The SOLVD Investigators. Effects of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N. Engl. J. Med. 325, 293–302 (1991).

  79. The SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N. Engl. J. Med. 327, 685–691 (1992).

  80. Cohn, J. N. et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N. Engl. J. Med. 325, 303–310 (1991).

    CAS  PubMed  Google Scholar 

  81. ACE Inhibitor Myocardial Infarction Collaborative Group. Indications for ACE inhibitors in the early treatment of acute myocardial infarction. Systematic overview of individual data from 100,000 patients in randomized trials. Circulation 97, 2202–2212 (1998).

  82. The sixth report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Arch. Intern. Med. 157, 2413–2446 (1997).

  83. Bakris, G. L. et al. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am. J. Kidney Dis. 36, 646–661 (2000).

    CAS  PubMed  Google Scholar 

  84. Koike, H., Sada, T. & Mizuno, M. In vitro and in vivo pharmacology of olmesartan medoxomil, an angiotensin II type AT1 receptor antagonist. J. Hypertens. (Suppl 1) 19, S3–S14 (2001).

    CAS  Google Scholar 

  85. Reif, M. et al. Effects of candesartan cilexetil in patients with systemic hypertension. Am. J. Cardiol. 82, 961–965 (1998).

    CAS  PubMed  Google Scholar 

  86. Oparil, et al. An elective-titration study of the comparative effectiveness of two angiotensin II receptor blockers irbesartan and losartan. Clin. Ther. 20, 398–409 (1998).

    CAS  PubMed  Google Scholar 

  87. Mallion, J. M., Siche, J. P. & Lacouriere, Y. ABPM comparison of the antihypertensive profiles of the selective angiotensin II receptor antagonists telmisartan and losartan in patients with mild-to-moderate hypertension. J. Hum. Hypertens. 13, 657–664 (1999).

    CAS  PubMed  Google Scholar 

  88. Anderson, O. K. & Neldman, S. The antihypertensive effect and tolerability of candesartan cilexetil, a new generation angiotensin II antagonist, in comparison with losartan. Blood Pressure 7, 53–59 (1998).

    Google Scholar 

  89. Oparil, S., Williams, D., Chrysant, S. G., Marbury, T. C. & Neutel, J. Comparative efficacy of olmesartan, losartan, valsartan, and irbesartan in the control of essential hypertension. J. Clin. Hypertens. 3, 283–291 (2001).

    CAS  Google Scholar 

  90. Conlin, P. R. et al. Angiotensin II antagonists for hypertension: are there differences in efficacy? Am. J. Hypertens. 13, 418–426 (2000).

    CAS  PubMed  Google Scholar 

  91. Chiu, A. G., Krowiak, E. J. & Deeb, Z. E. Angioedema associated with angiotensin II receptor antagonists: challenging our knowledge of angioedema and its etiology. Laryngoscope 111, 1729–1731 (2001).

    CAS  PubMed  Google Scholar 

  92. Nakashima, M., Uematsu, T., Kosuge, K. & Kanamaru, M. Pilot study of the uricosuric effect of DuP-753, a new angiotensin II receptor antagonist, in healthy subjects. Eur. J. Clin. Pharmacol. 42, 333–335 (1992).

    CAS  PubMed  Google Scholar 

  93. Dahlöf, B. et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomized trial against atenolol. Lancet 359, 995–1003 (2002).LIFE is the first randomized, controlled outcome trial to show that any particular antihypertensive drug (or drug class) confers benefits beyond blood-pressure reduction and is more effective than any other class in preventing CVD events and mortality. ARB-based treatment resulted in 25% greater reductions in stroke and new-onset diabetes compared with treatment based on beta-blockers in high-risk patients with left ventricular hypertrophy by ECG.

    PubMed  Google Scholar 

  94. Lindholm, L. H. et al. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomized trial against atenolol. Lancet 359, 1004–1010 (2002).A prespecified analysis of outcomes in the more than 1,100-patient diabetic subgroup in LIFE showed a 39% reduction in total mortality and a 37% reduction in CVD mortality with ARB treatment compared to beta-blocker treatment. LIFE is the only study to show that ARB treatment of hypertensive diabetic patients has survival benefits beyond blood-pressure lowering.

    CAS  PubMed  Google Scholar 

  95. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).RENAAL showed that, compared with placebo (usual care), treatment with the ARB losartan slowed the progression of renal disease, reduced proteinuria and led to other clinical benefits in normotensive or hypertensive patients with type 2 diabetes. The favourable renal effects of the ARB seemed to be, at least in part, independent of blood pressure.

    CAS  PubMed  Google Scholar 

  96. Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).IDNT clearly showed a slowing of the progression of renal disease with the ARB irbesartan compared with amlodipine or placebo (usual care) in patients with type 2 diabetes, nephropathy and renal dysfunction, despite equivalent blood-pressure reductions with amlodipine. The irbesartan effect was dose dependent.

    CAS  PubMed  Google Scholar 

  97. Parving, H. H. et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 345, 870–878 (2001).

    CAS  PubMed  Google Scholar 

  98. Wheeldon, N. M. & Viberti, G. C. Microalbuminuria reduction with valsartan. Am. J. Hypertens. 14, Abstract 0–6 (2001).

    Google Scholar 

  99. Pitt, B. et al. on behalf of the ELITE Study Investigators. Randomised trial of Losartan versus captopril in patients over 65 with heart failure. Lancet 349, 747–752 (1997).

    CAS  PubMed  Google Scholar 

  100. McKelvie, R. S. et al. Comparison of candesartan, enalapril, and their combination in congestive heart failure: Randomised Evaluation of Strategies for Left Ventricular Dysfunction (RESOLVD) pilot study. Circulation 100, 1056–1064 (1999).

    CAS  PubMed  Google Scholar 

  101. Pitt, B. et al. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomised trial – the Losartan Heart Failure Survival Study ELITE II. Lancet 355, 1582–1587 (2000).

    CAS  PubMed  Google Scholar 

  102. Cohn, J. N. & Tognoni, G. for the Val-HeFT Investigators. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N. Engl. J. Med. 345, 1667–1675 (2001).

    CAS  PubMed  Google Scholar 

  103. Zannad, F. et al. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insight from Randomized Aldactone Evaluation Study (RALES). Circulation 102, 2700–2706 (2000).

    CAS  PubMed  Google Scholar 

  104. Jeunemaitre, X. et al. Efficacy and tolerance of spironolactone in essential hypertension. Am. J. Cardiol. 60, 820–825 (1987).

    CAS  PubMed  Google Scholar 

  105. Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N. Engl. J. Med. 341, 709–717 (1999).RALES showed that aldosterone receptor blockade with spironolactone, along with conventional therapy, significantly reduces the risk of morbidity and mortality in patients with severe heart failure. This is the first demonstration that aldosterone antagonists have CVD benefits beyond blood-pressure lowering.

    CAS  PubMed  Google Scholar 

  106. Calhoun, D. A., Zaman, M. A. & Nishizaka, M. K. Resistant hypertension. Curr. Hypertens. Rep. 4, 221–228 (2002).

    PubMed  Google Scholar 

  107. Ouzan, J. et al. The role of spironolactone in the treatment of patients with refractory hypertension. Am. J. Hypertens. 15, 333–339 (2002).

    CAS  PubMed  Google Scholar 

  108. Burgess, E. et al. The selective aldosterone blocker eplerenone is safe and efficacious for the treatment of long-term treatment of mild to moderate hypertension. Am. J. Hypertens. 15 (Suppl. 1), A57–A58 (2002).

    Google Scholar 

  109. Weber, M. A. Vasopeptidase inhibitors. Lancet 358, 1525–1532 (2001).

    CAS  PubMed  Google Scholar 

  110. de Gasparo, M. et al. Proposed update of angiotensin receptor nomenclature. Hypertension 25, 924–927 (1995).

    CAS  PubMed  Google Scholar 

  111. Bauer, J. H. & Reams, G. P. The angiotensin II type I receptor antagonists — a new class of antihypertensive drugs. Arch. Intern. Med. 155, 1361–1368 (1995).

    CAS  PubMed  Google Scholar 

  112. Eberhardt, R. T., Kevak, R. M., Kang, P. M. & Frishman, W. H. Angiotensin II receptor blockade: an innovative approach to cardiovascular pharmacotherapy. J. Clin. Pharmacol. 33, 1023–1038 (1993).

    CAS  PubMed  Google Scholar 

  113. Foote, E. F. & Halstenson, C. E. New therapeutic agents in the management of hypertension: angiotension II-receptor antagonists and renin inhibitors. Ann. Pharmacother. 27, 1495–1503 (1993).

    CAS  PubMed  Google Scholar 

  114. Corti, R. et al. Vasopeptidase inhibitors: a new therapeutic concept in cardiovascular diseases. Circulation. 104, 1856–1862 (2001).

    CAS  PubMed  Google Scholar 

  115. Brunner, H. R. The new oral angiotensin II antagonist Olmesartan: a concise overview. J. Hum. Hypertens. 169 (Suppl. 2), S13–S16 (2002).

    Google Scholar 

  116. Ruddy, M. C & Kostis, J. B. in Hypertension: A Companion to Brenner and Rector's The Kidney (eds Oparil, S. & Weber, M. A.) 621–637 (W. B. Saunders Co., Philadelphia, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Amin Zaman.

Related links

Related links

DATABASES

OMIM

atherosclerosis

diabetic nephropathy

gynaecomastia

hyperaldosteronism

hypertension

insulin-dependent diabetes

stroke

type 2 diabetes

Locuslink

ACE

ACTH

arginine vasopressin

AT1 receptor

AT2 receptor

B2 receptor

β-adrenoceptor

bradykinin

chymase

endothelin

insulin

NEP

renin

tPA

Medscape DrugInfo

amlodipine

benazepril

candesartan

captopril

enalapril

enalaprilat

eprosartan

fosinopril

irbesartan

lisinopril

losartan

metoprolol

moexipril

perindopril

quinapril

ramipril

telmisartan

trandolapril

valsartan

FURTHER INFORMATION

National Heart, Lung and Blood Institute

National Kidney Foundation

Glossary

MYOCARDIAL INFARCTION

Commonly known as a heart attack, this is the death of part of the heart muscle owing to a sudden loss of blood supply.

HYPERTROPHY

An increase in the size of a tissue or organ resulting from an increase in the size of the cells present.

HYPERPLASIA

An increase in the size of a tissue or organ resulting from an increase in the total number of cells present.

ATHEROSCLEROSIS

A degenerative condition that is characterized by a narrowing of the arteries, owing to deposits of fatty substances, cholesterol, cellular waste products, calcium and other substances in the arterial inner lining.

MINERALOCORTICOID

A corticosteroid that acts primarily on water and electrolyte balance by promoting the renal retention of sodium ions and excretion of potassium ions. Aldosterone is the most potent of the naturally occuring mineralocorticoids.

FIBROSIS

The production of fibrous connective tissue as a consequence of chronic inflammation or healing.

PROTEINURIA

The presence of protein in urine.

ANGIOEDEMA

The development of tissue swelling, most commonly around the eyes and lips, which can lead to airway obstruction in rare cases.

PRESSOR RESPONSE

An increase in blood pressure due to angiotensin II-induced activation of AT1 receptors.

HYPERKALAEMIA

The presence in the blood of an abnormally high concentration of potassium.

URICOSURIC ACTION

A tendency to promote urinary excretion of uric acid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaman, M., Oparil, S. & Calhoun, D. Drugs targeting the renin–angiotensin–aldosterone system. Nat Rev Drug Discov 1, 621–636 (2002). https://doi.org/10.1038/nrd873

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd873

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing