Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Moving smaller in drug discovery and delivery

Abstract

Advances in new micro- and nanotechnologies are accelerating the identification and evaluation of drug candidates, and the development of new delivery technologies that are required to transform biological potential into medical reality. This article will highlight the emerging micro- and nanotechnology tools, techniques and devices that are being applied to advance the fields of drug discovery and drug delivery. Many of the promising applications of micro- and nanotechnology are likely to occur at the interfaces between microtechnology, nanotechnology and biochemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-assembly is viewed as a key tool for molecular nanotechnology.
Figure 2: Quantum dots are nanometre-scale particles of semiconductor materials.
Figure 3: Nanopore sequencing has been proposed as an alternative to conventional sequencing.
Figure 4: Microfluidic devices can handle cells and small volumes of liquids.
Figure 5: Schematic representation of a multi-reservoir drug-delivery microchip.
Figure 6: Micromachined needles and needle arrays are being evaluated to replace the 150-year-old hypodermic needle.

References

  1. Christensen, C. M. The Innovator's Dilemma (Harvard Business School Press, Boston, 1997).

    Google Scholar 

  2. Ito, T. & Okazaki, S. Pushing the limits of lithography. Nature 406, 1027–1031 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Mirkin, C. A. & Rogers, J. A. Emerging methods for micro- and nanofabrication. MRS Bull. 26, 506–546 (2001).

    Article  CAS  Google Scholar 

  4. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunneling microscope. Nature 344, 524–526 (1990).

    Article  CAS  Google Scholar 

  5. Taylor, R. M. & Superfine, R. in Handbook of Nanostructured Materials and Nanotechnology Vol. 2 (ed. Nalwa, H. S.) 271–308 (Academic, New York, 1999).

    Google Scholar 

  6. Niemeyer, C. M. Self-assembled nanostructures based on DNA: towards the development of nanobiotechnology. Curr. Opin. Chem. Biol. 4, 609–618 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Seeman, N. C. DNA nicks and nodes and nanotechnology. Nano Lett. 1, 22–26 (2001).

    Article  CAS  Google Scholar 

  8. Bashir, R. DNA-mediated artificial nanobiostructures: state of the art and future directions. Superlat. Microstruct. 29, 1–16 (2001).

    Article  CAS  Google Scholar 

  9. Mueller, J. E., Du, S. M. & Seeman, N. C. Design and synthesis of a knot from single-stranded DNA. J. Am. Chem. Soc. 113, 6306–6308 (1991).

    Article  CAS  Google Scholar 

  10. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Belcher, A. M. et al. Control of crystal phase switching and orientation by soluble mollusk-shell proteins. Nature 381, 56–58 (1996).

    Article  CAS  Google Scholar 

  12. Whaley, S. R. et al. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 626–627 (2000).

    Article  CAS  Google Scholar 

  13. Multiple articles on nanotechnology in Scientific Amer. 285, 32–91 (2001).

  14. Weissleder, R., Tung, C.-H., Mahmood, U. & Bogdanov, A. Jr . In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnol. 17, 375–378 (1999).

    Article  CAS  Google Scholar 

  15. Zhuang, X. et al. A single molecule study of RNA catalysis and folding. Science 288, 2048–2051 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Zhuang, X. et al. Fluorescence quenching: a tool for single-molecule protein-folding study. Proc. Natl Acad. Sci. USA 97, 14241–14244 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Clark, H. A., Hoyer, M., Philbert, M. A. & Kopelman, R. Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal. Chem. 71, 4831–4836 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mammen, M., Choi, S.-K. & Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Edn Engl. 37, 2754–2794 (1998).

    Article  Google Scholar 

  20. Mourez, M. et al. Designing a polyvalent inhibitor of anthrax toxin. Nature Biotechnol. 19, 958–961 (2001).

    Article  CAS  Google Scholar 

  21. Dubertret, B., Calame, M. & Libchaber, A. J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nature Biotechnol. 19, 365–370 (2001).

    Article  CAS  Google Scholar 

  22. Tyagi, S. & Kramer, F. R. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnol. 14, 303–308 (1996).

    Article  CAS  Google Scholar 

  23. Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L. & Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1080 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Taton, T. A., Lu, G. & Mirkin, C. A. Two-color labeling of oligonucleotides arrays via size-selective scattering of nanoparticle probes. J. Am. Chem. Soc. 123, 5164–5165 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Chan, W. C. W. & Nie, S. Quatum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Mattoussi, H. et al. Bioconjugation of highly luminescent colloidal CdSe–ZnS quantum dots with an engineered two-domain recombinant protein. Phys. Status Solidi B 224, 277–283 (2001).

    Article  CAS  Google Scholar 

  27. Gerion, D. et al. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Am. Chem. Soc. 105, 8861–8871 (2001).

    CAS  Google Scholar 

  28. Lee, H. W. H. . et al. Light emission from silicon quantum dots. Crit. Rev. Opt. Sci. Technol. CR77, 147–164 (2000).

    CAS  Google Scholar 

  29. Wang, C., Shim, M. & Guyot-Sionnest, P. Electrochromic nanocrystal quantum dots. Science 291, 2390–2392 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Becker, A. et al. Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nature Biotechnol. 19, 327–331 (2001).

    Article  CAS  Google Scholar 

  31. Pouliquen, D. Magnetite–dextran nanocapsules: preparation and properties. Microsph. Microcap. Liposomes 3, 495–523 (2001).

    CAS  Google Scholar 

  32. Weissleder, R. et al. In vivo magnetic resonance imaging of transgene expression. Nature Med. 6, 351–354 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Lewin, M. et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnol. 18, 410–414 (2000).

    Article  CAS  Google Scholar 

  34. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meller, A., Nivon, L., Brandin, E., Golovchenko, J. & Branton, D. Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl Acad. Sci. USA 97, 1079–1084 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Howorka, S., Cheley, S. & Bayley, H. Sequence-specific detection of individual DNA strands using engineered nanopores. Nature Biotechnol. 19, 636–639 (2001).

    Article  CAS  Google Scholar 

  37. MacBeath, G., Koehler, A. N. & Schreiber, S. L. Printing small molecules as microarrays and detecting protein–ligand interactions en masse. J. Am. Chem. Soc. 121, 7967–7968 (1999).

    Article  CAS  Google Scholar 

  38. MacBeath, G. & Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Cahill, D. J. Protein and antibody arrays and their medical applications. J. Immunol. Methods 250, 81–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Kononen, J. et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nature Med. 4, 844–847 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Fennell, D. A. & Cotter, F. E. Stochastic modeling of apoptosis tolerance distributions measured by multivariate flow analysis of human leukemia cells. Cytometry 39, 266–274 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Pellois, J. P., Wang, W. Gao, X. Peptide synthesis based on t-Boc chemistry and solution photogenerated acids. J. Comb. Chem. 2, 355–360 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Gao, X. et al. Oligonucleotide synthesis using solution photo-generated acids. J. Am. Chem. Soc. 120, 12698–12699 (1998).

    Article  CAS  Google Scholar 

  44. Singh-Gasson, S. et al. Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nature Biotechnol. 17, 974–978 (1999).

    Article  CAS  Google Scholar 

  45. Bustamante, C. et al. Circular DNA molecules imaged in air by scanning force microscopy. Biochemistry 31, 22–26 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Stine, W. B. Jr et al. The nanometer-scale structure of amyloid-β visualized by atomic force microscopy. J. Protein Chem. 15, 193–203 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Drexler, K. E. & Foster, J. S. Synthetic tips. Nature 343, 600 (1990).

    Article  CAS  PubMed  Google Scholar 

  48. Wong, S. S., Woolley, A. T., Joselevich, E. & Lieber, C. M. Functionalization of carbon nanotube AFM probes using tip-activated gases. Chem. Phys. Lett. 306, 219–225 (1999).

    Article  CAS  Google Scholar 

  49. Wong, S. S., Joselevich, E., Woolley, A. T., Cheung, C. L. & Lieber, C. M. Covalently functionalized nanotubes as nanometer sized probes in chemistry and biology. Nature 394, 52–55 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Schmalzing, D. et al. DNA typing in thirty seconds with a microfabricated device. Proc. Natl Acad. Sci. USA 94, 10273–10278 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Foquet, M. E., Han, J., Lopez, A., Wright, W. & Craighead, H. G. Fabrication of microcapillaries and waveguides for single molecule detection. Proc. Int. Soc. Optical Eng. (SPIE) 3258, 141–147 (1998).

    CAS  Google Scholar 

  52. Chou, H.-P., Spence, C., Scherer, A. & Quake, S. A microfabricated device for sizing and sorting DNA molecules. Proc. Natl Acad. Sci. USA 96, 11–13 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fu, A. Y., Spence, C., Scherer, A., Arnold, F. H. & Quake, S. R. A microfabricated fluorescence-activated cell sorter. Nature Biotechnol. 17, 1109–1111 (1999).

    Article  CAS  Google Scholar 

  54. Takayama, S. et al. Laminar flows — subcellular positioning of small molecules. Nature 411, 1016 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Chiu, D. T. et al. Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc. Natl Acad. Sci. USA 97, 2408–2413 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Straub, E., Meyer, E. & Fromherz, P. Recombinant maxi-K channels on transistor, a prototype of iono-electronic interfacing. Nature Biotechnol. 19, 121–124 (2001).

    Article  CAS  Google Scholar 

  58. Walmsey, R. M., Billinton, N. & Heyer, W. D. Green fluorescent protein as a reporter for the DNA damage induced gene RAD54 in Saccharomyces cerevisiae. Yeast 13, 1535–1545 (1997).

    Article  CAS  Google Scholar 

  59. Zeng, W.-S. et al. Green fluorescent protein reporter gene and endogenous P53 transcriptional activation as detector for DNA damage in animal cell. Yichuan 21, 5–8 (1999).

    CAS  Google Scholar 

  60. Sniegowski, J. J. in Tribology Issues and Opportunities. (ed. Bhushan, B.) 325–340 (Proc. NSF/AFOSR/ASME Workshop, 1998).

    Book  Google Scholar 

  61. Santini, J. T. Jr, Cima, M. J. & Langer, R. A controlled-release microchip. Nature 397, 335–338 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Bohm, S., Olthius, W. & Bergveld, P. An electrochemically actuated micro dosing system with improved dose control. Micro. Electro. Mech. Syst. 1, 391–395 (1999).

    CAS  Google Scholar 

  63. McAllister, D. V., Allen, M. G. & Prausnitz, M. R. Microfabricated microneedles for gene and drug delivery. Annu. Rev. Biomed. Eng. 2, 289–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. McAllister, D. V. et al. Solid and hollow microneedles for transdermal drug delivery. Proc. Int. Symp. Control. Release Bioact. Mater. 26, 192–193 (1999).

    Google Scholar 

  65. Trimmer, W. et al. Injection of DNA into plant and animal tissues with micromechanical piercing structures. Proc. Inst. Electrical Electronics Eng. Inc. Micro Electro Mech. Syst. Workshop 111–115 (1995).

  66. Okada, H. One- and three-month release injectable microspheres of the LH-RH superagonist leuprorelin acetate. Adv. Drug Deliv. Rev. 28, 43–70 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Cleland, J. L., Johnson, O. L., Putney, S. & Jones, A. J. S. Recombinant human growth hormone poly(lactic-co-glycolic acid) microsphere formulation development. Adv. Drug Deliv. Rev. 28, 71–84 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Luo, D. & Saltzman, W. M. Synthetic DNA delivery systems. Nature Biotechnol. 18, 33–37 (2000).

    Article  CAS  Google Scholar 

  69. Yang, N. S., Burkholder, J., Roberts, B., Martinell, B. & McCabe, D. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc. Natl Acad. Sci. USA 87, 9568–9572 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang, N. S. & Sun, W. H. Gene gun and other non-viral approaches for cancer gene therapy. Nature Med. 2, 481–483 (1995).

    Article  Google Scholar 

  71. Cohen, H. et al. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther. 7, 1896–1905 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Merisko-Liversidge, E. et al. Formulation and antitumor activity evaluation of nanocrystalline suspensions of poorly soluble anticancer drugs. Pharm. Res. 13, 272–278 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Jain, R. A., Hontz, R. & Swanson, J. R. Controlled release of nanocrystal naproxen from directly compressed matrix Proc. Int. Symp. Control. Release Bioact. Mater. 26, 883–884 (1999).

    Google Scholar 

  74. Anderson, W. F. Human gene therapy. Nature 392, S25–S30 (1996).

    Google Scholar 

  75. Gref, R. et al. Biodegradable long circulating polymeric nanospheres. Science 263, 1600–1603 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Tobio, M., Gref, R., Sanchez, A., Langer, R. & Alonso, M. J. Stealth PLA–PEG nanoparticles as protein carriers for nasal administration. Pharm. Res. 15, 270–275 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Wooley, K. L. Shell crosslinked polymer assemblies: nanoscale contructs inspired from biological systems. J. Poly. Sci. A 38, 1397–1407 (2000).

    Article  CAS  Google Scholar 

  78. Thurmond, K. B., Remsen, E. E., Kowalewski, T. & Wooley, K. L. Packaging of DNA by shell crosslinked nanoparticles. Nucleic Acids Res. 27, 2966–2971 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Marinakos, S. M. Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation. J. Am. Chem. Soc. 121, 8518–8522 (1999).

    Article  CAS  Google Scholar 

  80. Sukhorukov, G. B. et al. Microencapsulation by means of step-wise adsorption of polyelectrolytes. J. Microencapsulation 17, 177–185 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Dahne, L., Leporatti, S., Donath, E. & Mohwald, H. Fabrication of micro reaction cages with tailored properties. J. Am. Chem. Soc. 123, 5431–5436 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Qiu, X., Leporatti, S., Donath, E. & Mohwald, H. Studies on the drug release properties of polysaccharide multilayers encapsulated ibuprofen microparticles. Langmuir 17, 5375–5380 (2001).

    Article  CAS  Google Scholar 

  83. Liversidge, G. G. & Cundy, K. C. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs. I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int. J. Pharm. 125, 91–97(1995).

    Article  CAS  Google Scholar 

  84. Patton, J. S., Trinchero, P. & Platz, R. M. Bioavailability of pulmonary delivered peptides and proteins: α-interferon, calcitonins and parathyroid hormones. J. Control. Release 28, 79–85 (1994).

    Article  CAS  Google Scholar 

  85. Edwards, D. A. et al. Large porous particles for pulmonary drug delivery. Science 276, 1868–1871 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Takeuchi, H., Yamamoto, H. & Kawashima, Y. Mucoadhesive nanoparticulate systems for peptide drug delivery. Adv. Drug Deliv. Rev. 47, 39–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Van Rens, M. T., Schramel, F. M., Elbers, J. R. & Lammers, J. W. The clinical value of lung imaging fluorescence endoscopy for detecting synchronous lung cancer. Lung Cancer 32, 13–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Shibuya, K. et al. Fluorescence bronchoscopy in the detection of preinvasive bronchial lesions in patients with sputum cytology suspicious or positive for malignancy. Lung Cancer 32, 19–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Newman, L. Larger debate underlies spiral CT screening for lung cancer. J. Natl Cancer Inst. 92, 592–594 (2000).

    Article  PubMed  Google Scholar 

  90. Roco, M. C. & Bainbridge, W. S. National Science Foundation Final Report on the Societal Implications of Nanoscience and Nanotechnology (National Science Foundation, Arlington, Virginia, 2001).

    Book  Google Scholar 

  91. Baselt, D. The Tip–Sample Interaction in Atomic Force Microscopy and its Implications for Biological Applications. Thesis, Calif. Inst. Technol. (1993).

    Google Scholar 

  92. Hafner, J. H., Cheung, C. L. & Lieber, C. M. Direct growth of single-walled carbon nanotube scanning probe microscopy tips. J. Am. Chem. Soc. 121, 9750–9751 (1999).

    Article  CAS  Google Scholar 

  93. Mucic, R. C., Storhoff, J. J., Mirkin, C. A. & Letsinger, R. L. DNA-directed synthesis of binary nanoparticle network materials. J. Am. Chem. Soc. 120, 12674–12675 (1998)

    Article  CAS  Google Scholar 

  94. Kaushik, S. et al. Lack of pain associated with microfabricated microneedles. Anesth. Analg. 92, 502–504 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Langer.

Related links

Related links

DATABASES

LocusLink

amyloid-β

human growth hormone

LHRH

TP53

Medscape DrugInfo

Rapamune

Saccharomyces Genome Database

RAD54

SWISS-PROT

green fluorescent protein

FURTHER INFORMATION

FDA

Human Gene Therapy

MEMS

National Nanotechnology Initiative

National Science Foundation

Protein Data Bank

Whitehead Institute's Center for Genome Research

LINKS

Affymetrix

Cascade Scientific, Ltd;

Sandia National Laboratories

Digital Instruments

Rowland Institute for Science

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaVan, D., Lynn, D. & Langer, R. Moving smaller in drug discovery and delivery. Nat Rev Drug Discov 1, 77–84 (2002). https://doi.org/10.1038/nrd707

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd707

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing